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ABSTRACT 

Genetic algorithms have been extensively used as a global optimization tool. These algorithms, however, suffer from 
their generally slow convergence rates. This paper proposes two approaches to address this limitation. First, a new 
crossover technique, the weighted average normally-distributed arithmetic crossover (NADX), is introduced to enhance 
the rate of convergence. Second, twinkling is incorporated within the crossover phase of the genetic algorithms. Twin-
kling is a controlled random deviation that allows only a subset of the design variables to undergo the decisions of an 
optimization algorithm while maintaining the remaining variable values. Two twinkling genetic algorithms are pro-
posed. The proposed algorithmsare compared to simple genetic algorithms by using various mathematical and engi-
neering design test problems. The results show that twinkling genetic algorithms have the ability to consistently reach 
known global minima, rather than nearby sub-optimal points, and are able to do this with competitive rates of conver-
gence. 
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1. Introduction 

Genetic algorithms [1] are global optimization algorithms 
based on observing the rules of biological evolution. A 
simple genetic algorithm (SGA) employs two main 
operations for a sequence of generations: crossover and 
mutation. The objective of an SGA is to improve the 
overall fitness of the population while avoiding being 
trapped ata local extremum. In general, SGAssuffer from 
their inability to guide the search in a well-controlled 
fashion. Thus, they often need to perform a very large 
number of function evaluationsin order to achieve the 
objective of the search. They also have the tendency to 
stagnate at sub-optimal solutions, including but not 
limited to localminima. 

To address these limitations, many researchers have 
observed that using a combination of uniformly distributed 
random numbers in the crossover process limits the 
potential “genetic diversity” of the population, which 
either slows the pace of progression toward the solution 
or else causes the search to stagnate. To address this 
issue, a number of alternatives were proposed. For 
example, a specialized weighted average crossover was 
proposed [2]. This technique, which was labeled the 
Simulated Binary Crossover (SBX), is a variation of the 
affine hull, which combines a random number multiplier 

with a normal distribution. Aunimodal normal distribution 
crossover that generates two “children” from a region of 
a normal distribution defined by three “parents” was 
introduced [3]. To avoid premature convergence due to 
lack of diversity, a new crossover operator was presented 
[4], based on fuzzy connectives for real-coded genetic 
algorithms. Additionally, a comprehensive survey of the 
crossover operators was presented [5]. 

Hybrid genetic algorithms that can incorporate local 
search techniques in conjunction with the genetic algo- 
rithms were created in order to improve the performance 
of genetic algorithms. For example, a solution was pro- 
posed for the problem of flowshop scheduling with fuzzy 
due dates, using a hybrid genetic algorithm that com- 
bineda genetic algorithm with a neighborhood search 
composed of multi-start descent, taboo search, and simu- 
lated annealing [6]. A hybrid interval algorithm was in- 
troduced that starts by using interval arithmetic to deter- 
mine a possible range for the minimum [7]. A hybrid 
method was proposed that combined a genetic algorithm 
with the simplex method [8]; this algorithm reflected  
points out of N +  simplex points instead of reflecting 
one point only, as in the classical simplex algorithm. A 
genetic algorithm was used at the second stage of the 
search, and this process occurred concurrently along with 
an elitist genetic algorithm. In order to avoid being 
trapped in a local minimum, another method incorpo- *Corresponding author. 
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rated a genetic algorithminto a modified form of the 
Powell method [8]. The output of a genetic algorithm 
was used as an input to a Quasi-Newton algorithm [10] 
wherethe difference between Darwin-inspired and La- 
marck-inspired strategies was discussed. A solution was 
proposed for the minimum cost expansion pattern of new 
reactive power sources to be installed in power systems 
[11], where each iterationof the algorithm started with a 
simulated annealing followed by a genetic algorithm. 
Simplex and genetic algorithms were combined [12]. 
Thisalgorithm started by choosing N + 1 random pairs 
from the population. After applying the crossover and 
mutation operations, the simplex algorithm was used on 
these points for k iterations. The points with the lowest 
function values replaced those with the highest function 
values in the original population. A hybrid Nelder and 
Mead simplex genetic algorithm for the shape optimiza- 
tion of a solid C-frame cross-section was suggested by 
[13]. A hybrid genetic algorithm/sequential linear pro- 
gramming (SLP) algorithm was presented [14]. This al- 
gorithm used two metrics for evaluating the modality of 
the design space: the variance in the fitness of the popu- 
lation and the error associated with fitting a response 
surface to the designs. These two metrics were used to 
switch between the genetic and the SLP algorithms. A 
hybrid fuzzy simplex genetic algorithm that used a fuzzy 
simplex search was developed to improve the fitness of 
the individuals before they are reintroduced for the 
crossover and the mutation operations [15]. 

Global optimization presents many challenges. For 
example, an evolutionary algorithm for efficient global 
minimization of an expensive black-box function was 
developedthat utilizes information from local-searches to 
efficiently bias its domain exploration [16]; analysis of 
the population density clusters was incorporated in the 
algorithm. Otherresearchers approach the problem of 
global optimization through stochastic strategies, manya- 
dopting a global stochastic strategy consisting of global 
and local search phases [17]. During the global phase, 
random points are drawn from the domain of search 
according to a uniform distribution. During the local 
phase, a set of drawn points is transformed by means of 
local optimization methods to obtain approximatesof the 
global and local extremes. 

Twinkling strategy presents an alternative philosophy 
to approach optimization problems. The concept of 
twinkling, introduced to improve the optimization search 
moves [18], canreduce the evaluation effort needed to 
reach a pseudo-optimal solution of the Traveling Salesman 
Problem. The application of twinkling to gradient search 
techniques (steepest descent and conjugate gradient) has 
been presented with an application to the problem of 
numerical identification of two dimensional shapes by 
non-uniform rational B-Splines [19]. Several aspects of 

the simplex search also use the twinkling technique [20]. 
Additionally, twinkling was incorporated in a naive 
random search algorithm [21]. This approach demonstrated 
certain advantages in terms of number of function 
evaluations, when compared to several techniques including, 
genetic algorithm, simulated annealing, particle swarm, 
and random search algorithms. 

The objective of this paper is to explore the possibilities 
of incorporating twinkling within genetic algorithms. 
Thiswork is divided as follows. Section 2 explains the 
twinkling paradigm, anda brief overview of the simple 
genetic algorithm is presented in Section 3. The weighted 
average normally-distributed arithmetic crossover (NADX) 
is introduced in Section 4. Section 5 describes the 
process of incorporating twinkling in the SGA crossover 
operation. The steps of the algorithms proposed in this 
paper are presented in Section 6. A detailed assessment 
of the influence of the various components of the pro- 
posed algorithms on the search progression is discussed 
in Section 7. Evaluation of the proposed algorithms using 
various benchmark test functions and engineering design 
problems is included in Section 8. Finally, conclusions 
and recommendations for future work are provided in 
Section 9. 

2. The Twinkling Paradigm 

In principle, twinkling introduces a deviation from the 
standard practice of any algorithm by allowing only a 
random subset of the variables to undergo the heuristic 
decisions of an optimization algorithm. The remaining 
variables maintain their values as in the previous iteration 
or generation.In describing the twinkling operation, con- 
sider a point g under consideration within an optimi- 
zation algorithm, 

 1,2, ,g gX X n   

The twinkling operation starts by introducing a 
“twinkling dimension,” t1, which is a randomly chosen 
integer between 1 and n. Twinkling dimensions are used 
to determine the number of variables that undergoes the 
change. A “twinkling array,” t2, is then created. The size 
of this array is equal to t1. Each element in this array is 
randomly chosen to be a number between 1 and n. The 
values of the twinkling array, t2, are unique and non- 
repeating numbers. The elements in t2 represent the 
random subset of variables that will be subject to 
twinkling. The two operations described here can be 
represented as follows: 

 
   

1

2 1

rand 1,

rand 1, 1,2, ,

n

j n j



 



  
    (1) 

Thus, twinkling can be applied to any standard op- 
timization algorithm to update Xg as follows: 
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   1               if    g gX i X i i 2  

2

      (2) 

    1          if    g gX i A X i i          (3) 

where, A(X) is the optimization algorithm of choice.  

3. Simple Genetic Algorithm 

Simple genetic algorithms have several variations that 
differ slightly. The algorithm described in this section 
follows that of [22]. The following discussion assumes 
that the algorithm is used to find the minimum of a 
problem.  

A simple genetic algorithm begins by randomly ge- 
nerating an initial population of m individuals, or “chro- 
mosomes”. Each individual is a string composed of n 
variables using real values. The algorithm selects a 
percentage of the population p with the best fitness, 
lowest function value, as “parents”, as well as members 
of the next generation. The “children”, which are the 
remainder of the population, are generated by crossing 
over two randomly chosen parents (P1 and P2) from the 
selected population by using a weighted average operator 
to create two children (C1 and C2) as follows: 

 rand 0,1                (4) 

   1 1 1C P    2P

2P

           (5) 

   2 11C P               (6) 

The above formulation is known as a convex com- 
bination in the presence of the non-negative conditions 
[23]. 

A random number of variable values are mutated in 
each generation: 

Mutated Number mn           (7) 

where, m is the mutation rate from [0,1]. The positions of 
the mutated variables are chosen randomly from a unique 
array of random integer numbers [1, 2, ···, mn]. In the 
remainder of this work,this algorithm is labeled SGAU 
(simple genetic algorithm with theconvex com- bination). 

4. The Weighted Average  
Normally-Distributed Arithmetic  
Crossover (NADX) 

The blending of genes, which is typically used to 
mathematically approximate the occurrence within the 
crossover operation, is not an accurate biological analogy 
as this process does not provide for the equivalent to the 
recessive genes that parents can pass on their children. 
This work proposes a method that is closer to the true 
biological analogy by allowing a specific “gene value” 
from a crossover to be outside the limited physical 
bounds of the two parents, therefore mimicking the 

diversity of the genes that a parent could pass on. This 
method is labeled as the weighted average normally- 
distributed arithmetic crossover (NADX). 

The proposed crossover creates individuals based on a 
normal distribution defined by the two parents.A stan- 
dard normal distribution is centered upon each of the two 
parents, which is used as the basis for the weighted 
average parameter. Arandom number multiplier,l,which 
hasa mean of 0, a varianceof σ2 = 1, and a standard 
deviation of σ = 1 is introduced. l is restricted to an affine 
combination, where the sum of the multipliers is equal to 
one. The resulting crossover is governed by: 

 rand 1N                 (8) 

where,    and randN is a normally distributed 
random number that is restricted to be a real number with 
mean, variance, and standard deviation, as described 
above. 

The two children (C1 and C2) are generated by 
crossing over two randomly-chosen parents (P1 and P2) 
from the selected population as follows: 

   1 1 1C P    2P           (9) 

   2 11C P    2P          (10) 

NADX genetic distributions can be compared to com- 
mon techniques that use a uniformly distributed para- 
meter, such as convex combination (see Section 3) and 
SBX crossover [2]. SBX crossover is designed to pro- 
duce children that are evenly distributed around the pa- 
rentsby using a transformed uniform distribution: 

 

 

1

1

1

1

1
2

2

1 1

2 1 2

B r r

B r
r









 

 
    

        (11) 

where, r is a uniformly distributed random number {0, 1} 
andhis a constant that is equal to 2 . 

When the SBX is used, the children (C1 and C2), are 
generated by crossing over two randomly-chosen parents 
(P1 and P2) from the selected population as follows: 

    1 1

1
1 1

2
C B P B    2P        (12) 

    2 2

1
1 1

2
C B P B    1P        (13) 

When comparing the behavior and distribution of off- 
spring of these three crossover algorithms, aunivariate 
exampleis where two parents with values of {−100, 100} 
are chosen. The three crossover techniques are performed 
10,000 times with these parents to produce 20,000 chil- 
dren. Figure 1 compares the results of using these three  
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Figure 1. Histogram of offspring values based on percentage of total population. 
 
algorithms. The results show that the NADX produces a 
distribution of children with the highest percentage of 
children located at the average value of the two parents. 
However, NADX generates a higher percentage of indi- 
viduals in the regions outside the one that is between the 
parental values. On the other hand, the convex combina- 
tion crossover produces children with values only be- 
tween −100 and 100. SBX has a more distributed popula- 
tion; however, SBX also creates a large percentage of 
population with values that are close to those of the par- 
ents. Therefore, NADX creates a greater variety of indi- 
viduals by increasing the “genetic diversity” of the po- 
pulation while still maintaining adequate coverage of the 
ranges near and between the parents. 

5. Twinkling Crossover Operation 

The objective of this section is to explore ways for in- 
corporating twinkling within a genetic algorithm. While 
twinkling can be added in any of the stages of a genetic 
algorithm,this paper proposes applying twinkling during 
the crossover phase. Twinkling is used to choose the 
variables, within each of the generated children that the 
crossover is applied to. This section shows that the 
twinkling operator behaves in a manner that exploits the 
search space of the two parents by allowing certain gene 
values of a parent to pass to the offspring, which in- 
creases the likelihood that a “good” gene survives. Two 
variations of this approach are presented. 

5.1. Crossover Operation Using the Twinkling 
Dimension 

Crossover starts by introducing a “twinkling dimension” 

after all pairs of parents are chosen. This twinkling 
dimension is used to determine the number of variables 
that are crossed over: 

1 Random Integer 1, n           (14) 

Next, a unique random array is chosen of integers, t, of 
length nwith values between [1, 2, ···, n]. A twinkling 
array whose length is t1 is created as follows: 

 2 1t 1                   (15) 

In order to avoid stagnation of the population around a 
local minimum, both twinkling dimensions are randomly 
generated for every pair of parents, rather than having a 
single set of twinkling dimensions at the onset of every 
generation. The reason for this decision is to prevent the 
children of a particular generation from being biased 
towards the selected twinkling genes, which can affect 
the overall direction of search. The kth variable of either 
child (C1 or C2) is generated by crossing over two 
randomly chosen parents (P1 and P2) as follows: 

1, 1, 2if   k kC P k           (16) 

2, 2, 2if   k kC P k           (17) 

If 2k  , use a crossover technique to generate the 
variables of the children. 

5.2. Crossover Operation Using the Twinkling 
Dimension and the Choice Operator 

The genetic diversity of children can be further enhanced 
by adding a choice operator to the procedure of the 
previous section. Thischoice operator can be usedto 
determine the number of children who will be bred from 
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a parental pairing. Therefore, the genetic diversity of the 
resulting population can be enhanced by potentially 
increasing the number of parental pairings. At each 
crossover operation, a choice operator, S, is randomly 
generated as follows: 

   rand 1, 2, 3S I I         (18) 

Thus, one of the following three breeding scenarios is 
chosen randomly to generate children based on the value 
of S. Either child, with a preference to one of the two 
parents, is created. Alternatively, two children are created 
according to Section 5.1. The process is repeated for 
every parental pairing until the new population is com- 
pleted. In each of the three cases, twinkling is used to 
generate the kth variable of a child (C) if k is of the set t2; 
otherwise the crossover is performed: 

Case 1 (S = 1): A single child with preference to P1 

1, 2if   k kC P k           (19) 

If 2k  , use a crossover technique to generate the 
variables of the children. 

Case 2 (S = 2): A single child with preference to P2 

2, 2if  k kC P k           (20) 

If 2k  , use a crossover technique to generate the 
variables of the children. 

Case 3 (S = 3): Two children with no preference to 
either parent.Children are generated as in Section 5.2. 

It may be of interest to contrast this approach with the 
macro-mutation approach of [24]. Macro-mutation is a 
mutation of many bits instead of limited number, where a 
contiguous sequence of positions is taken and then 
replaced with a random string. The objective of twinkling 
is to maintain good genes within the search. Therefore, 
some variables of the children are randomly selected in 
the twinkling crossover. Using the proposed twinkling 
approach, children will either be copies of their parents 
or will be the result of crossover. 

6. Outline of the Twinkling Genetic  
Algorithm 

This section presents the outline of the proposed ap- 
proach as follows: 
1. Input the number of strings (variables), n. 
2. Input the population number, m. 
3. Input the maximum number of generations, G. 
4. Input the bounds for each string, ximin and ximax (i = 

1, ···, n). 
5. Input the fraction of the population that will be the 

parents in the crossover operation, p. 
6. Input the mutation rate, m. 
7. Randomly the initialize population within the ranges 

of the variables. 
8. For g = 1 to G 

8.1. Evaluate the fitness (function value) of the 
population. 

8.2. Select pm of the population with best fitness. 
8.3. Perform the crossover operation using parents 

randomly selected from the pm parents selected 
in Step 8.2 to generate new members of the 
population. For each pairing of parents, carry 
out the choice of crossover and twinkling op- 
erations. 

8.4. Perform mutation operation on the population 
using Equation (7). 

8.5. Replace old population by the new one. 
8.6. Go back to Step 8. 

Fifty percent crossover and one percent mutation ratio 
are used for all examples in the remainder of this work. 

Various versions of the algorithm are considered: 
 SGA (Simple genetic algorithm with the NADX 

crossover) 
 TGA (Genetic algorithm with the NADX crossover 

and the twinkling dimension) 
 TGASO (Genetic Algorithm with the NADX cross- 

over and the twinkling dimension and the choice 
operator) 

 SGAU (Simple genetic algorithm with the convex 
combination crossover) 

 TGAU (Genetic algorithm with the convex com- 
bination crossover and the twinkling dimension) 

 TGASOU (Genetic algorithm with the convex com- 
bination crossover and the twinkling dimension and 
the choice operator) 

7. Assessment of the Influence of the Various 
Components of the Proposed Algorithms 

The Multi-Peak Problem [25], (Figure 2), is used to 
assess the contribution of the crossover method and of 
twinkling operators to the proposed algorithm. This 
problem can be stated as follows: 

     
2 2

1 20.01 10 0.01 15

1Minimize, ( ) 10 e sin
x x

f x x
    

   
 

 (21) 

10 30ix    

The minimum of the function within these bounds is 
−9.5585 at [7.896 15]T. The function has a sequence of 
four narrow valleys with extremely steep slopes that are 
surrounded by flat regions as Figure 2 shows. These 
valleys are located at: 0 < x1 < 3, 6 < x1 < 10, and 12.5 < 
x1 < 15.5, and 19 < x1 < 22. The Multi-Peak Problem is 
used to test the SGAU, SGA, TGAU, and TGA algo- 
rithms using a population of 20n. The same initial popu- 
lation, Figure 3 is used in all four cases. 

While all algorithms are able to reach within 10−4 of 
the known minimum, the average number of function 
evaluations needed to reach this minimum varies  
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Figure 2. Multi-Peak Problem. 
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Figure 3. Population of a typical run for the Multi-Peak 
Problem (this population is used for the SGAU, SGA, 
TGAU, and TGA algorithms). 
 
significantly. The results of Figure 4 indicate that, after a 
brief movement away from the minimum,the TGA 
reaches the minimum after less than 334 function 
evaluations. The TGA is followed by the TGAU after 

355 function evaluations. The SGAis able to reach the 
minimum after 565 function evaluations. The SGAU 
stagnates for several generations. However, it is able to 
reach the minimum after 3610 function evaluations.The 
increase in genetic diversity of the twinkling genetic 
algorithms, described in Section 4, is due to their ability 
to explore the search space more quickly. 

The above results can be confirmed by observing 
thepopulation number at each of the four narrow valleys 
of the Multi-Peak problem. In the case of the SGA, as 
Figure 5 shows, most of the population is equally 
distributed among the fourcritical regions for the first 
three generations. After that,the population becomes 
concentrated in the 6 < x1 < 10 region, which has the 
global minimum. However,the SGA is not able to reach 
the minimum for many generations, as can be seen in 
Figure 6. These results may be attributed to the use of 
the convex combination and the lack of twinkling 
operators. Both factors limit the diversity of the po- 
pulation. 

Figure 7 shows that the SGA produced more diversity 
as the population is almost equally distributed among the 
first three valleys for the first eight generations. After 
that, most of the population becomes concentrated in the 
6 < x1

 < 10 region, as can be seen in Figure 8. This 
indicates that theNADX crossover produces a more 
diverse population. 
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Figure 4. Results of using the initial population of Figure 3 on the proposed algorithms for the Multi-Peak Problem. 
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Figure 5. Progression of population number at each of the critical regions when using the SGAU to solve the Multi-Peak 
Problem. 
 

The results of Figure 9 indicate that the TGAU con- 
centrates the majority of the population in the 6 < x1 < 10 
region after the tenth generation. Similar behavior is ob- 
served in Figure 10. The results of Figure 11 show the 
population at the 20th generation when using the TGA 
algorithm. The results point to the combined effective- 
ness of using the twinkling and the NADX crossover. 

To further verify the above observations, all six 
algorithms are tested two hundred times by using the 
same initial population in each case. The above conditions 

are maintained except when using a population size of 
40n. Table 1 lists the results of testing the six algorithms 
hundred times, using the same initial population in each 
case. While all algorithms are able to reach values that 
are very close to the minimum (−9.5585), the final 
function values and standard deviations are significantly 
lower when using the NADX crossover. It is also noted 
that SGAU has the highest standard deviation value. 
Comparing the averagesand standard deviations in Table 
1 can lead to the following observations: 
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Figure 6. Population of the Multi-Peak Problem when the 
SGAU algorithm is used (20th generation). 
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Figure 8. Population of the Multi-Peak Problem when the 
SGA algorithm is used (20th generation). 
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Figure 7. Progression of population number at each of the critical regions when using the SGA to solve the Multi-Peak Prob-
lem. 
 
 The algorithms that use the NADX crossover con- 

sistently outperform those that use the uniformly 
distributed crossover. 

 In the case of the uniformly distributed crossover, the 
twinkling algorithms consistently produce better results 
than the simple genetic algorithm. 

 The two variations of twinkling presented in this 
work have about the same level of effectiveness, 
regardless of which crossover operator is used. 

8. Evaluation and Design Examples 

To further evaluate the performance of the proposed 
algorithm, several mathematical test functions and 
engineering design examples are explored in this section. 
Mathematical test functions often have simple bounds on 
the variables as well as a large number of local minima. 
On the other hand, engineering design problems typically 
have many nonlinear constraints and hyper-planes, where  
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Figure 9. Progression of population number at each of the critical regions when using the TGAU to solve the Multi-Peak 
Problem. 
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Figure 10. Progression of population number at each of the critical neighborhoods when using the TGA to solve the 
Multi-Peak Problem. 
 
the value of the objective function changes slowly before 
reaching the minimum. This section compares the per- 
formance of the six genetic algorithms introduced in 
Section 6. At each run, the same initial population is used 
for all algorithms in order to allow objective comparison. 
The reported results represent one hundred runs for all 
algorithms. 

8.1. The Sine Function 

The Sine function [8], can be expressed as: 

   
2

210

1

Minimize, sin sin

m

i
i

i

i x
f x x





  
    

   
  (22) 

0 ix    

When m is equal to 100, this problem becomes 
notoriously difficult because of its large number of local 
minima, which are equal to 100!. In this case, the known 
global minimum is equal to −9.655.Some of the best 
results for this Sine function uses the 57% Simplex-GA 
hybrid algorithm, which reaches the global minima in  
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Figure 11. Population of the Multi-Peak Problem when the 
TGA algorithm is used (20th generation). 

1.32e+5 function evaluations. 
A population size of 40n is used, and allalgorithmsare 

run for 50n generations. Figure 12 shows typical runs of 
the proposed algorithms. In this case, all algorithms 
follow the same trend toward the minimum. However,the 
SGA and the SGAU fails to reach the minimum. The 
TGAis able to reach the minimum after 105 function 
evaluations.TGASO, TGAU, and TGASOU stopped at 
−9.642 (0.13% from the minimum) after 9.30e+4, 8.13e 
+4, and 1.10e+5 function evaluations,respectively. 

Generally, these results are consistent with those of 
testing by conducting 100 runs of each algorithm, listed 
in Table 2. While all algorithms are able to reach the 
neighborhood of the minimum, the results indicate that 
the twinkling consistently produces better solutions than 
the simple genetic algorithms irrespective of the cross- 
over method, which has a limited effect for this case. The 
standard deviation values of these algorithms lead to the 
same conclusion. These results may be explained by the 
fact that the function contains a large number of local 
minima, which may limit the contribution of the cross- 
over method while emphasizing the importance of twin- 
kling as it helps free the search from local minima. 

 
Table 1. Results of testing the Multi-Peak function. 

 SGA TGA TGASO SGAU TGAU TGASOU 

Best function value −9.5585 −9.5585 −9.5585 −9.5585 −9.5585 −9.5585 

Average final function value −9.5581 −9.5581 −9.5581 −9.5516 −9.5577 −9.5575 

Standard deviation of final function value 0.000278 0.000281 0.000276 0.0784 0.0024 0.0056 

Average number of function evaluations to 
reach within 10−4 of the known minimum 

846 763 740 1023 861 847 

 

0 2 4 6 8 10 12 14

x 10
4

-10

-9

-8

-7

-6

-5

-4

-3

-2

Function Evaluations

B
es

t 
F

itn
es

s

 

 

SGA
TGA

TGASO

SGAU

TGAU
TGASOU

 

Figure 12. A typical run of the proposed algorithms for the Sine function (m = 100). 
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8.2. Nonlinear Quadratic Test Function 

The Nonlinear Quadratic Test Functionproblem has been 
solved by various techniques to handle the effect of 
nonlinear constraints [26]. This problem has ten variables 
and eight nonlinear constraints. Genetic algorithms can 
be adapted for constrained minimization problems in the 
form of: 

 
 

Minimize,

subject to 0i

f x

g x 
          (23) 

The problem can be transformed into an unconstrained 
one by including the constraints in the objective function 
as penalty terms [27]. Constraints can be incorporated in 
the objective function using the bracket function. The 
modified function is: 

 

   
 

1

2

Minimize,

if 0

if 0 0

m

i
i

i i i

i i

FC f x

g x R g x

g x



  

  

  



     (24) 

R is equal 10e+8 for all constrained problems con- 

sidered in this work unless otherwise specified. The 
known minimum of the nonlinear quadratic functionis 
24.3062. Two out of five algorithms used in [26] yielded 
best results of 25.486 and 25.653, using a population of 
70 over 5000 generations. 

A population size of 100n is used. All algorithms are 
run for 50n generations. Figure 13 show typical runs of 
the proposed algorithms. The results of this case show 
that the algorithms that use the convex combination 
stopped around a function value of 30. On the other hand, 
the algorithms using the NADX crossover showed 
steadier progression towardsthe minimum. Out of these 
three algorithms, the TGA andthe TGASO converged 
toward the minimum at a significantly faster rate. 

The average numbers of function evaluations needed 
to reach the minimum after 100 runs of the six algo- 
rithms are listed in Table 3. The results of this table 
confirm the conclusions reached for the multi-peak 
problem considered in Section 7. 

8.3. Minimum Cost of a Welded Beam 

The second design example involves the minimum cost  
 

Table 2. Results of testing the Sine function (m = 100). 

 SGA TGA TGASO SGAU TGAU TGASOU 

Best function value −9.640 −9.655 −9.655 −9.630 −9.654 −9.655 

Average final function value −9.301 −9.632 −9.633 −9.425 −9.625 −9.626 

Standard deviation of final function value 0.2123 0.0272 0.0253 0.1472 0.0262 0.0254 

Average number of function evaluations to 
reach within 10−4 of the known minimum 

120,160 111,971 114,098 120,160 120,160 119,514 
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Figure 13. A typical run of the proposed algorithms for the nonlinear quadratic test function. 
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of a welded cantilever beam [28] (Chapter 1). It has four 
variables and five nonlinear constraints. The minimum 
value is 2.3403 at [0.2536, 7.1405, 7.1052, 0.2536]T. 

A population size of 50n is used in this example. All 
algorithms are run for 50n generations. Figure 14 shows 
typical runs of the proposed algorithms. The behavior of 
the algorithms closely follows those at the Nonlinear 
Quadratic test function of the previous section. In this 
case, the TGASO was able to reach minimum after 
15,000 function evaluations. Both the SGA and the TGA 
progressed more slowly toward the minimum and 
stopped at 2.3470 function value at the end of last ge- 

neration. 
Table 4 shows the results of 100 runs, which indicate 

the consistency of the observations in Section 7 re- 
garding the choice of crossover and twinkling. The TGA 
and the TGASO were able to reach a value of 2.3403. 
Standard deviations for the cases of the NADX crossover 
are significantly less than those using the convex 
combination. 

This problem was solved by using an improved 
particle swarm optimizer that handles constraints to 
maintain feasible solution [29]. The same problem was 
solved using the ranking selection-based particle swarm 

 
Table 3. Results of testing the nonlinear quadratic test function. 

 SGA TGA TGASO SGAU TGAU TGASOU 

Best function value 24.3693 24.3274 24.3288 26.5072 24.9213 26.137 

Average final function value 24.9332 24.5949 24.564 30.591 30.1962 30.407 

Standard deviation of final function value 0.5983 0.3294 0.2867 2.0758 2.2116 2.1364 

Average number of function evaluations to 
reach within 10−3 of the known minimum 

300,400 296,596 292,804 300,400 300,400 300,400 
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Figure 14. A typical run of the proposed algorithms for the minimum cost of a welded beam problem. 
 

Table 4. Results of testing the minimum cost of a welded beam problem. 

 SGA TGA TGASO SGAU TGAU TGASOU 

Best function value 2.3404 2.3403 2.3403 2.3652 2.3673 2.3478 

Average final function value 2.3431 2.3411 2.3414 2.7461 2.7318 2.7298 

Standard deviation of final function value 0.0030 0.0015 0.0041 0.2516 0.2113 0.2217 

Average number of function evaluations to 
reach within 10−4 of the known minimum 

21,423 18,428 18,396 21,692 21,692 21,692 

Copyright © 2012 SciRes.                                                                                  AM 



G. S. LADKANY, M. B. TRABIA 1232 

 
algorithm [30]. The results of Table 5 indicate the ability 
of the proposed algorithms to reach the minimum with a 
significantly lower number of function evaluations. 

8.4. Minimum Cost of a Pressure Vessel 

The minimum cost problem of a pressure vessel was used 
by many researchers to test various optimization algo- 
rithms. For example, in order to adapt the penalty factors 
of a fitness function, it was used to test a genetic algo- 
rithm with co-evolution [31]. An improved particle swarm 
optimizer for solving mechanical design problems was 
used to solve this problem [29]. The characteristics of 
particle swarm optimization for global optimization and 
its application to the mixed discrete nonlinear problems 
(MDNLP) is suggested as a method to solve this problem 
[32]. This problem was solved using a hybrid particle 
swarm optimization with a feasibility-based rule for con-
strained optimization [33]. Alternatively, a ranking selec-
tion-based particle swarm algorithm was applied to solve 
the same problem [30]. 

This problem has four variables and eleven con- 
straints. Two of the four variables are discrete. A popula- 
tion size of 100n is used in this example. All algorithms 
are run for 25n generations. Figure 15 presents typical 
runs of the proposed algorithms using the same initial 
population. In this case, the SGA is able to reach the 
minimum within 18,000 function evaluations. This algo- 
rithm is followed by the TGASO and the TGASOU, 
which that stagnate close to the known minimum of 6059. 
The TGA and the TGAU stopped in the neighbor- hood 
of 6400. 

Table 6 lists the results obtained running the six 
algorithms for a hundred times. These results indicate 
that the algorithms that use the NADX crossover out 
perform those using the convex combination. This 
represents the only case where the result of using the 
SGA is slightly better than the two twinkling algorithms 
(TGA and TGASO) whenusing the NADX crossover. 
However, when using theconvex combination, twinkling 
algorithms perform better than the simple genetic algo- 
rithm. 

 
Table 5. Comparison between the results of testing the minimum cost of a welded beam problem using the twinkling genetic 
algorithms with two particle swarm algorithms. 

 [29] [30] TGA TGASO 

Best function value 2.3810 2.3810 2.3403 2.3403 

Average final function value 2.3819 2.3810 2.3411 2.3414 

Standard deviation of final function value 0.0052 1.14e−5 0.0015 0.0041 

Average number of function evaluations 30,000 30,000 18,428 18,396 

Number of runs 100 30 100 100 
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Figure 15. A typical run of the proposed algorithms for the minimum cost of a pressure vessel problem. 
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Table 7 lists the results of these researchers along with 

the results of the SGA, TGA, and TGASO of Table 6. 
The results indicate that the proposed algorithms were 
able to converge to the same neighborhood of the mini- 
mum as other researchers. The proposed algorithms pro- 
duced a lower number of function evaluations. 

9. Conclusions 

Genetic algorithms provide the means for global op- 
timization. The simplest form of a genetic algorithm 
shares some resemblance to these two biological opera- 
tions: crossover and mutation. Combining these two 
operations over multiple generations helps reach the 
optimal point. However, asimplegenetic algorithm suffers 
from slow convergence. Also, itmay stagnate at a local 
extremum, especially in the case of a problem with 
nonlinear constraints. The objective of this paper is to 
address the limitations of typical genetic algorithms: a 
slow rate of convergence and the final accuracy. This is 
accomplished by introducing bio-mimetic behavior in the 
form of a NADX crossover, which increase the genetic 
diversity, and twinkling operators, which allow the 
retention of desirable solutions between generations. 

Thispaperintroduces two modifications to the simple 
genetic algorithm. The first change involvesusing the 
normally distributed arithmetic crossover (NADX). This 
crossover techniquemimics the greater diversity of the  

genes that parents can pass on to their children. NADX is 
closer to a true biological analogy because it allows a 
specific “gene value” from a crossover to be outside the 
limited bounds of the two parents. The second changeis 
to incorporate twinkling operatorsinto the genetic algorithm. 
Twinkling introduces a deviation from the standard 
practice of any optimization algorithm by only allowing 
a random subset of the variables to undergo the heuristic 
decisions of the optimization algorithm. The remaining 
variables carry identical information to the previous 
iteration or generation. This process has been shown to 
increase the likelihood of finding the global minimum by 
maintainingthe “good genes” within a population. Another 
variation on incorporating the twinkling is introduced 
using a choice operator, which randomly determines the 
number of children that are bred from a parental pairing. 

To assess the proposed ideas, NADX and twinkling 
are incorporated into the simple genetic algorithm to 
produce the following algorithms: 
 SGA (Simple genetic algorithm with the NADX 

crossover) 
 TGA (Genetic algorithm with the NADX crossover 

and the twinkling dimension) 
 TGASO (Genetic Algorithm with the NADX 

crossover and the twinkling dimension and the choice 
operator) 

 SGAU (Simple genetic algorithm with the convex 
 

Table 6. Results of testing theminimum cost of a pressure vessel problem. 

 SGA TGA TGASO SGAU TGAU TGASOU 

Best function value 6059.7 6059.7 6059.7 6120.2 6096.6 6090.7 

Average final function value 6094.1 6150.2 6167.1 6655.7 6472.1 6442.2 

Standard deviation of final function value 89.1 121. 3 143.7 193.5 173.7 184.9 

Average number of function evaluations to 
reach within 10−4 of the known minimum 

19,989 21,665 21,689 21,784 21,784 21,784 

 
Table 7. Comparison between the results of testing the minimum cost of a pressure vessel problem using the NADX simple 
and twinkling genetic algorithms with those of other algorithms. 

 [31] [29] [32] [33] [30] SGA TGA TGASO

x1 (shell thickness) 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 

x2 (head thickness) 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 

x3 (head radius) 42.3239 42.0984 42.3700 42.0984 42.09845 42.101 42.101 42.101 

x4 (shell length) 200.0000 176.6366 173.4200 176.6366 176.7456 176.6048 176.6048 176.6048

Best function value 6288.7 6059.7 6029.87 6059.7 6059.7 6059.7 6059.7 6059.7 

Average final function value 6293.8 6289.9 6064.5 6099.9 6099.9 6094.1 6150.2 6167.1 

Standard Deviation of final function value 7.4 305.8 30.0 86.2 13.3 89.1 121. 3 143.7 

Average Number of function evaluations 900,000 30,000 22,500 81,000 30,000 19,989 21,665 21,689 

Number of runs 11 100 10 30 30 100 100 100 
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combination crossover) 

 TGAU (Genetic algorithm with the convex com- 
bination crossover and the twinkling dimension) 

 TGASOU (Genetic algorithm with the convex com- 
bination crossover and the twinkling dimension and 
the choice operator) 

By using a typical test problem, the effects are com- 
pared of the weighted average of the normally distributed 
arithmetic crossover as well as the twinkling on simple 
genetic algorithms. In addition, the distribution of popu- 
lation in various critical regions of the search space of 
this problem is explored. The results indicate the com- 
bined effectiveness of using both the NADX crossover 
and the twinkling; the combined use of these two tech- 
niques rapidly concentrates the population closer to the 
global minimum. 

Extensive evaluation of a variety of mathematical and 
engineering design problems is presented along with the 
results of earlier researchers. Statistical results show that 
the proposed algorithms are consistently able to reach the 
neighborhood of the global minima with competitive 
speeds of convergence. The following general observation 
can be presented: 
 Algorithms that use the NADX crossover consistently 

outperform those using the uniformly distributed 
crossover. 

 The twinkling algorithms consistently produce better 
results than the non-twinkling algorithms. The only 
exception is the compressed air storage tankproblem, 
where the SGA producesa slightly better average final 
function value and average number of function evalu- 
ations than the two twinkling algorithms (TGA and 
TGASO). The advantage of using twinkling becomes 
apparent in multimodal problems that havea large 
number of local minima, for example, the Sine 
Function (Section 8.1). 

 The two variations of twinkling presented in this 
work have about the same level of effectiveness, 
regardless of which crossover operator is used. 

It may be of interest to contrast the proposed algorithm 
with the hybrid genetic algorithms, where a genetic 
algorithm is combined with some form of optimization 
search algorithm. The proposed twinkling genetic algo- 
rithms differ from typical hybrid algorithms in the sense 
that it is still a global optimization problem, and unlike 
hybrid algorithms, no local searches take place. Thus,the 
goalof the proposed algorithms is to find the global 
minimum of the problem under consideration. 

There is a significant potential for future work on this 
area. For example, the effect of the size of the twinkling 
dimension on the performance of the proposed algo- 
rithms should be considered. The incorporation of twin- 
kling into hybrid genetic algorithms can result income- 
bining the advantages of the local search with the ability 

of twinkling to accelerate the search globally. Lastly, in 
order to vary the total and the parental population sizes at 
each generation, it is desirable to study the use of twin-
kling in a semi-adaptive fashion within a genetic algo-
rithm. By using NADX crossover, increased emphasis on 
exploration may result. Assuredly, by combining these 
two techniques, the success and efficiency of the global 
search will increase. 
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