
Applied Mathematics, 2012, 3, 1220-1235
http://dx.doi.org/10.4236/am.2012.330178 Published Online October 2012 (http://www.SciRP.org/journal/am)

A Genetic Algorithm with Weighted Average
Normally-Distributed Arithmetic Crossover and Twinkling

George S. Ladkany, Mohamed B. Trabia*
Department of Mechanical Engineering,University of Nevada, Las Vegas, USA

Email: *Mohamed.Trabia@unlv.edu

Received May 24, 2012; revised June 24, 2012; accepted July 2, 2012

ABSTRACT

Genetic algorithms have been extensively used as a global optimization tool. These algorithms, however, suffer from
their generally slow convergence rates. This paper proposes two approaches to address this limitation. First, a new
crossover technique, the weighted average normally-distributed arithmetic crossover (NADX), is introduced to enhance
the rate of convergence. Second, twinkling is incorporated within the crossover phase of the genetic algorithms. Twin-
kling is a controlled random deviation that allows only a subset of the design variables to undergo the decisions of an
optimization algorithm while maintaining the remaining variable values. Two twinkling genetic algorithms are pro-
posed. The proposed algorithmsare compared to simple genetic algorithms by using various mathematical and engi-
neering design test problems. The results show that twinkling genetic algorithms have the ability to consistently reach
known global minima, rather than nearby sub-optimal points, and are able to do this with competitive rates of conver-
gence.

Keywords: Genetic Algorithms; Crossover Techniques; Twinkling; Engineering Design; Global Optimization

1. Introduction

Genetic algorithms [1] are global optimization algorithms
based on observing the rules of biological evolution. A
simple genetic algorithm (SGA) employs two main
operations for a sequence of generations: crossover and
mutation. The objective of an SGA is to improve the
overall fitness of the population while avoiding being
trapped ata local extremum. In general, SGAssuffer from
their inability to guide the search in a well-controlled
fashion. Thus, they often need to perform a very large
number of function evaluationsin order to achieve the
objective of the search. They also have the tendency to
stagnate at sub-optimal solutions, including but not
limited to localminima.

To address these limitations, many researchers have
observed that using a combination of uniformly distributed
random numbers in the crossover process limits the
potential “genetic diversity” of the population, which
either slows the pace of progression toward the solution
or else causes the search to stagnate. To address this
issue, a number of alternatives were proposed. For
example, a specialized weighted average crossover was
proposed [2]. This technique, which was labeled the
Simulated Binary Crossover (SBX), is a variation of the
affine hull, which combines a random number multiplier

with a normal distribution. Aunimodal normal distribution
crossover that generates two “children” from a region of
a normal distribution defined by three “parents” was
introduced [3]. To avoid premature convergence due to
lack of diversity, a new crossover operator was presented
[4], based on fuzzy connectives for real-coded genetic
algorithms. Additionally, a comprehensive survey of the
crossover operators was presented [5].

Hybrid genetic algorithms that can incorporate local
search techniques in conjunction with the genetic algo-
rithms were created in order to improve the performance
of genetic algorithms. For example, a solution was pro-
posed for the problem of flowshop scheduling with fuzzy
due dates, using a hybrid genetic algorithm that com-
bineda genetic algorithm with a neighborhood search
composed of multi-start descent, taboo search, and simu-
lated annealing [6]. A hybrid interval algorithm was in-
troduced that starts by using interval arithmetic to deter-
mine a possible range for the minimum [7]. A hybrid
method was proposed that combined a genetic algorithm
with the simplex method [8]; this algorithm reflected 
points out of N +  simplex points instead of reflecting
one point only, as in the classical simplex algorithm. A
genetic algorithm was used at the second stage of the
search, and this process occurred concurrently along with
an elitist genetic algorithm. In order to avoid being
trapped in a local minimum, another method incorpo- *Corresponding author.

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1221

rated a genetic algorithminto a modified form of the
Powell method [8]. The output of a genetic algorithm
was used as an input to a Quasi-Newton algorithm [10]
wherethe difference between Darwin-inspired and La-
marck-inspired strategies was discussed. A solution was
proposed for the minimum cost expansion pattern of new
reactive power sources to be installed in power systems
[11], where each iterationof the algorithm started with a
simulated annealing followed by a genetic algorithm.
Simplex and genetic algorithms were combined [12].
Thisalgorithm started by choosing N + 1 random pairs
from the population. After applying the crossover and
mutation operations, the simplex algorithm was used on
these points for k iterations. The points with the lowest
function values replaced those with the highest function
values in the original population. A hybrid Nelder and
Mead simplex genetic algorithm for the shape optimiza-
tion of a solid C-frame cross-section was suggested by
[13]. A hybrid genetic algorithm/sequential linear pro-
gramming (SLP) algorithm was presented [14]. This al-
gorithm used two metrics for evaluating the modality of
the design space: the variance in the fitness of the popu-
lation and the error associated with fitting a response
surface to the designs. These two metrics were used to
switch between the genetic and the SLP algorithms. A
hybrid fuzzy simplex genetic algorithm that used a fuzzy
simplex search was developed to improve the fitness of
the individuals before they are reintroduced for the
crossover and the mutation operations [15].

Global optimization presents many challenges. For
example, an evolutionary algorithm for efficient global
minimization of an expensive black-box function was
developedthat utilizes information from local-searches to
efficiently bias its domain exploration [16]; analysis of
the population density clusters was incorporated in the
algorithm. Otherresearchers approach the problem of
global optimization through stochastic strategies, manya-
dopting a global stochastic strategy consisting of global
and local search phases [17]. During the global phase,
random points are drawn from the domain of search
according to a uniform distribution. During the local
phase, a set of drawn points is transformed by means of
local optimization methods to obtain approximatesof the
global and local extremes.

Twinkling strategy presents an alternative philosophy
to approach optimization problems. The concept of
twinkling, introduced to improve the optimization search
moves [18], canreduce the evaluation effort needed to
reach a pseudo-optimal solution of the Traveling Salesman
Problem. The application of twinkling to gradient search
techniques (steepest descent and conjugate gradient) has
been presented with an application to the problem of
numerical identification of two dimensional shapes by
non-uniform rational B-Splines [19]. Several aspects of

the simplex search also use the twinkling technique [20].
Additionally, twinkling was incorporated in a naive
random search algorithm [21]. This approach demonstrated
certain advantages in terms of number of function
evaluations, when compared to several techniques including,
genetic algorithm, simulated annealing, particle swarm,
and random search algorithms.

The objective of this paper is to explore the possibilities
of incorporating twinkling within genetic algorithms.
Thiswork is divided as follows. Section 2 explains the
twinkling paradigm, anda brief overview of the simple
genetic algorithm is presented in Section 3. The weighted
average normally-distributed arithmetic crossover (NADX)
is introduced in Section 4. Section 5 describes the
process of incorporating twinkling in the SGA crossover
operation. The steps of the algorithms proposed in this
paper are presented in Section 6. A detailed assessment
of the influence of the various components of the pro-
posed algorithms on the search progression is discussed
in Section 7. Evaluation of the proposed algorithms using
various benchmark test functions and engineering design
problems is included in Section 8. Finally, conclusions
and recommendations for future work are provided in
Section 9.

2. The Twinkling Paradigm

In principle, twinkling introduces a deviation from the
standard practice of any algorithm by allowing only a
random subset of the variables to undergo the heuristic
decisions of an optimization algorithm. The remaining
variables maintain their values as in the previous iteration
or generation.In describing the twinkling operation, con-
sider a point g under consideration within an optimi-
zation algorithm,

 1,2, ,g gX X n 

The twinkling operation starts by introducing a
“twinkling dimension,” t1, which is a randomly chosen
integer between 1 and n. Twinkling dimensions are used
to determine the number of variables that undergoes the
change. A “twinkling array,” t2, is then created. The size
of this array is equal to t1. Each element in this array is
randomly chosen to be a number between 1 and n. The
values of the twinkling array, t2, are unique and non-
repeating numbers. The elements in t2 represent the
random subset of variables that will be subject to
twinkling. The two operations described here can be
represented as follows:

 
   

1

2 1

rand 1,

rand 1, 1,2, ,

n

j n j



 



  
 (1)

Thus, twinkling can be applied to any standard op-
timization algorithm to update Xg as follows:

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1222

   1 if g gX i X i i 2  

2

 (2)

    1 if g gX i A X i i    (3)

where, A(X) is the optimization algorithm of choice.

3. Simple Genetic Algorithm

Simple genetic algorithms have several variations that
differ slightly. The algorithm described in this section
follows that of [22]. The following discussion assumes
that the algorithm is used to find the minimum of a
problem.

A simple genetic algorithm begins by randomly ge-
nerating an initial population of m individuals, or “chro-
mosomes”. Each individual is a string composed of n
variables using real values. The algorithm selects a
percentage of the population p with the best fitness,
lowest function value, as “parents”, as well as members
of the next generation. The “children”, which are the
remainder of the population, are generated by crossing
over two randomly chosen parents (P1 and P2) from the
selected population by using a weighted average operator
to create two children (C1 and C2) as follows:

 rand 0,1  (4)

   1 1 1C P    2P

2P

 (5)

   2 11C P    (6)

The above formulation is known as a convex com-
bination in the presence of the non-negative conditions
[23].

A random number of variable values are mutated in
each generation:

Mutated Number mn (7)

where, m is the mutation rate from [0,1]. The positions of
the mutated variables are chosen randomly from a unique
array of random integer numbers [1, 2, ···, mn]. In the
remainder of this work,this algorithm is labeled SGAU
(simple genetic algorithm with theconvex com- bination).

4. The Weighted Average
Normally-Distributed Arithmetic
Crossover (NADX)

The blending of genes, which is typically used to
mathematically approximate the occurrence within the
crossover operation, is not an accurate biological analogy
as this process does not provide for the equivalent to the
recessive genes that parents can pass on their children.
This work proposes a method that is closer to the true
biological analogy by allowing a specific “gene value”
from a crossover to be outside the limited physical
bounds of the two parents, therefore mimicking the

diversity of the genes that a parent could pass on. This
method is labeled as the weighted average normally-
distributed arithmetic crossover (NADX).

The proposed crossover creates individuals based on a
normal distribution defined by the two parents.A stan-
dard normal distribution is centered upon each of the two
parents, which is used as the basis for the weighted
average parameter. Arandom number multiplier,l,which
hasa mean of 0, a varianceof σ2 = 1, and a standard
deviation of σ = 1 is introduced. l is restricted to an affine
combination, where the sum of the multipliers is equal to
one. The resulting crossover is governed by:

 rand 1N  (8)

where,   and randN is a normally distributed
random number that is restricted to be a real number with
mean, variance, and standard deviation, as described
above.

The two children (C1 and C2) are generated by
crossing over two randomly-chosen parents (P1 and P2)
from the selected population as follows:

   1 1 1C P    2P (9)

   2 11C P    2P (10)

NADX genetic distributions can be compared to com-
mon techniques that use a uniformly distributed para-
meter, such as convex combination (see Section 3) and
SBX crossover [2]. SBX crossover is designed to pro-
duce children that are evenly distributed around the pa-
rentsby using a transformed uniform distribution:

 

 

1

1

1

1

1
2

2

1 1

2 1 2

B r r

B r
r









 

 
    

 (11)

where, r is a uniformly distributed random number {0, 1}
andhis a constant that is equal to 2 .

When the SBX is used, the children (C1 and C2), are
generated by crossing over two randomly-chosen parents
(P1 and P2) from the selected population as follows:

    1 1

1
1 1

2
C B P B    2P (12)

    2 2

1
1 1

2
C B P B    1P (13)

When comparing the behavior and distribution of off-
spring of these three crossover algorithms, aunivariate
exampleis where two parents with values of {−100, 100}
are chosen. The three crossover techniques are performed
10,000 times with these parents to produce 20,000 chil-
dren. Figure 1 compares the results of using these three

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA

Copyright © 2012 SciRes. AM

1223

Uniform X
NADX
SBX
Parental Values

-6000 -4000 -2000 0 2000 4000 6000
Offspring Values

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

[F
re

qu
e

nc
y

of
 V

a
lu

es
/T

ot
al

 O
ffs

pr
in

g]

Figure 1. Histogram of offspring values based on percentage of total population.

algorithms. The results show that the NADX produces a
distribution of children with the highest percentage of
children located at the average value of the two parents.
However, NADX generates a higher percentage of indi-
viduals in the regions outside the one that is between the
parental values. On the other hand, the convex combina-
tion crossover produces children with values only be-
tween −100 and 100. SBX has a more distributed popula-
tion; however, SBX also creates a large percentage of
population with values that are close to those of the par-
ents. Therefore, NADX creates a greater variety of indi-
viduals by increasing the “genetic diversity” of the po-
pulation while still maintaining adequate coverage of the
ranges near and between the parents.

5. Twinkling Crossover Operation

The objective of this section is to explore ways for in-
corporating twinkling within a genetic algorithm. While
twinkling can be added in any of the stages of a genetic
algorithm,this paper proposes applying twinkling during
the crossover phase. Twinkling is used to choose the
variables, within each of the generated children that the
crossover is applied to. This section shows that the
twinkling operator behaves in a manner that exploits the
search space of the two parents by allowing certain gene
values of a parent to pass to the offspring, which in-
creases the likelihood that a “good” gene survives. Two
variations of this approach are presented.

5.1. Crossover Operation Using the Twinkling
Dimension

Crossover starts by introducing a “twinkling dimension”

after all pairs of parents are chosen. This twinkling
dimension is used to determine the number of variables
that are crossed over:

1 Random Integer 1, n   (14)

Next, a unique random array is chosen of integers, t, of
length nwith values between [1, 2, ···, n]. A twinkling
array whose length is t1 is created as follows:

 2 1t 1   (15)

In order to avoid stagnation of the population around a
local minimum, both twinkling dimensions are randomly
generated for every pair of parents, rather than having a
single set of twinkling dimensions at the onset of every
generation. The reason for this decision is to prevent the
children of a particular generation from being biased
towards the selected twinkling genes, which can affect
the overall direction of search. The kth variable of either
child (C1 or C2) is generated by crossing over two
randomly chosen parents (P1 and P2) as follows:

1, 1, 2if k kC P k   (16)

2, 2, 2if k kC P k   (17)

If 2k  , use a crossover technique to generate the
variables of the children.

5.2. Crossover Operation Using the Twinkling
Dimension and the Choice Operator

The genetic diversity of children can be further enhanced
by adding a choice operator to the procedure of the
previous section. Thischoice operator can be usedto
determine the number of children who will be bred from

G. S. LADKANY, M. B. TRABIA 1224

a parental pairing. Therefore, the genetic diversity of the
resulting population can be enhanced by potentially
increasing the number of parental pairings. At each
crossover operation, a choice operator, S, is randomly
generated as follows:

   rand 1, 2, 3S I I  (18)

Thus, one of the following three breeding scenarios is
chosen randomly to generate children based on the value
of S. Either child, with a preference to one of the two
parents, is created. Alternatively, two children are created
according to Section 5.1. The process is repeated for
every parental pairing until the new population is com-
pleted. In each of the three cases, twinkling is used to
generate the kth variable of a child (C) if k is of the set t2;
otherwise the crossover is performed:

Case 1 (S = 1): A single child with preference to P1

1, 2if k kC P k   (19)

If 2k  , use a crossover technique to generate the
variables of the children.

Case 2 (S = 2): A single child with preference to P2

2, 2if k kC P k   (20)

If 2k  , use a crossover technique to generate the
variables of the children.

Case 3 (S = 3): Two children with no preference to
either parent.Children are generated as in Section 5.2.

It may be of interest to contrast this approach with the
macro-mutation approach of [24]. Macro-mutation is a
mutation of many bits instead of limited number, where a
contiguous sequence of positions is taken and then
replaced with a random string. The objective of twinkling
is to maintain good genes within the search. Therefore,
some variables of the children are randomly selected in
the twinkling crossover. Using the proposed twinkling
approach, children will either be copies of their parents
or will be the result of crossover.

6. Outline of the Twinkling Genetic
Algorithm

This section presents the outline of the proposed ap-
proach as follows:
1. Input the number of strings (variables), n.
2. Input the population number, m.
3. Input the maximum number of generations, G.
4. Input the bounds for each string, ximin and ximax (i =

1, ···, n).
5. Input the fraction of the population that will be the

parents in the crossover operation, p.
6. Input the mutation rate, m.
7. Randomly the initialize population within the ranges

of the variables.
8. For g = 1 to G

8.1. Evaluate the fitness (function value) of the
population.

8.2. Select pm of the population with best fitness.
8.3. Perform the crossover operation using parents

randomly selected from the pm parents selected
in Step 8.2 to generate new members of the
population. For each pairing of parents, carry
out the choice of crossover and twinkling op-
erations.

8.4. Perform mutation operation on the population
using Equation (7).

8.5. Replace old population by the new one.
8.6. Go back to Step 8.

Fifty percent crossover and one percent mutation ratio
are used for all examples in the remainder of this work.

Various versions of the algorithm are considered:
 SGA (Simple genetic algorithm with the NADX

crossover)
 TGA (Genetic algorithm with the NADX crossover

and the twinkling dimension)
 TGASO (Genetic Algorithm with the NADX cross-

over and the twinkling dimension and the choice
operator)

 SGAU (Simple genetic algorithm with the convex
combination crossover)

 TGAU (Genetic algorithm with the convex com-
bination crossover and the twinkling dimension)

 TGASOU (Genetic algorithm with the convex com-
bination crossover and the twinkling dimension and
the choice operator)

7. Assessment of the Influence of the Various
Components of the Proposed Algorithms

The Multi-Peak Problem [25], (Figure 2), is used to
assess the contribution of the crossover method and of
twinkling operators to the proposed algorithm. This
problem can be stated as follows:

     
2 2

1 20.01 10 0.01 15

1Minimize, () 10 e sin
x x

f x x
    

   
 

 (21)

10 30ix  

The minimum of the function within these bounds is
−9.5585 at [7.896 15]T. The function has a sequence of
four narrow valleys with extremely steep slopes that are
surrounded by flat regions as Figure 2 shows. These
valleys are located at: 0 < x1 < 3, 6 < x1 < 10, and 12.5 <
x1 < 15.5, and 19 < x1 < 22. The Multi-Peak Problem is
used to test the SGAU, SGA, TGAU, and TGA algo-
rithms using a population of 20n. The same initial popu-
lation, Figure 3 is used in all four cases.

While all algorithms are able to reach within 10−4 of
the known minimum, the average number of function
evaluations needed to reach this minimum varies

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA

Copyright © 2012 SciRes. AM

1225

-10
-5

0
5

10
15

20
25

30

-10

0

10

20

30

-15

-10

-5

0

5

10

x2

x1

-8

-6

-4

-2

0

2

4

6

8

Figure 2. Multi-Peak Problem.

x
1

x 2

-10 -5 0 5 10 15 20 25 30
-10

-5

0

5

10

15

20

25

30

Figure 3. Population of a typical run for the Multi-Peak
Problem (this population is used for the SGAU, SGA,
TGAU, and TGA algorithms).

significantly. The results of Figure 4 indicate that, after a
brief movement away from the minimum,the TGA
reaches the minimum after less than 334 function
evaluations. The TGA is followed by the TGAU after

355 function evaluations. The SGAis able to reach the
minimum after 565 function evaluations. The SGAU
stagnates for several generations. However, it is able to
reach the minimum after 3610 function evaluations.The
increase in genetic diversity of the twinkling genetic
algorithms, described in Section 4, is due to their ability
to explore the search space more quickly.

The above results can be confirmed by observing
thepopulation number at each of the four narrow valleys
of the Multi-Peak problem. In the case of the SGA, as
Figure 5 shows, most of the population is equally
distributed among the fourcritical regions for the first
three generations. After that,the population becomes
concentrated in the 6 < x1 < 10 region, which has the
global minimum. However,the SGA is not able to reach
the minimum for many generations, as can be seen in
Figure 6. These results may be attributed to the use of
the convex combination and the lack of twinkling
operators. Both factors limit the diversity of the po-
pulation.

Figure 7 shows that the SGA produced more diversity
as the population is almost equally distributed among the
first three valleys for the first eight generations. After
that, most of the population becomes concentrated in the
6 < x1

 < 10 region, as can be seen in Figure 8. This
indicates that theNADX crossover produces a more
diverse population.

G. S. LADKANY, M. B. TRABIA 1226

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-9.6

-9.55

-9.5

-9.45

-9.4

-9.35

-9.3

-9.25

-9.2

-9.15

-9.1

Function Evaluations

B
es

t
F

itn
es

s

SGAU

SGA
TGAU

TGA

Figure 4. Results of using the initial population of Figure 3 on the proposed algorithms for the Multi-Peak Problem.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Generation

P
op

ul
at

io
n

N
um

be
r

0<x1<3

6<x1<10

12.5<x1<15.5

19<x1<22

Figure 5. Progression of population number at each of the critical regions when using the SGAU to solve the Multi-Peak
Problem.

The results of Figure 9 indicate that the TGAU con-
centrates the majority of the population in the 6 < x1 < 10
region after the tenth generation. Similar behavior is ob-
served in Figure 10. The results of Figure 11 show the
population at the 20th generation when using the TGA
algorithm. The results point to the combined effective-
ness of using the twinkling and the NADX crossover.

To further verify the above observations, all six
algorithms are tested two hundred times by using the
same initial population in each case. The above conditions

are maintained except when using a population size of
40n. Table 1 lists the results of testing the six algorithms
hundred times, using the same initial population in each
case. While all algorithms are able to reach values that
are very close to the minimum (−9.5585), the final
function values and standard deviations are significantly
lower when using the NADX crossover. It is also noted
that SGAU has the highest standard deviation value.
Comparing the averagesand standard deviations in Table
1 can lead to the following observations:

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1227

x
1

x 2

4 6 8 10 12
10

11

12

13

14

15

16

17

18

19

20

Figure 6. Population of the Multi-Peak Problem when the
SGAU algorithm is used (20th generation).

x
1

x 2

4 6 8 10 12
10

11

12

13

14

15

16

17

18

19

20

Figure 8. Population of the Multi-Peak Problem when the
SGA algorithm is used (20th generation).

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Generation

P
op

ul
at

io
n

N
um

be
r

0<x1<3

6<x1<10

12.5<x1<15.5

19<x1<22

Figure 7. Progression of population number at each of the critical regions when using the SGA to solve the Multi-Peak Prob-
lem.

 The algorithms that use the NADX crossover con-

sistently outperform those that use the uniformly
distributed crossover.

 In the case of the uniformly distributed crossover, the
twinkling algorithms consistently produce better results
than the simple genetic algorithm.

 The two variations of twinkling presented in this
work have about the same level of effectiveness,
regardless of which crossover operator is used.

8. Evaluation and Design Examples

To further evaluate the performance of the proposed
algorithm, several mathematical test functions and
engineering design examples are explored in this section.
Mathematical test functions often have simple bounds on
the variables as well as a large number of local minima.
On the other hand, engineering design problems typically
have many nonlinear constraints and hyper-planes, where

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1228

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Generation

P
op

ul
at

io
n

N
um

be
r

0<x
1
<3

6<x
1
<10

12.5<x
1
<15.5

19<x
1
<22

Figure 9. Progression of population number at each of the critical regions when using the TGAU to solve the Multi-Peak
Problem.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

Generation

P
op

ul
at

io
n

N
um

be
r

0<x
1
<3

6<x
1
<10

12.5<x
1
<15.5

19<x
1
<22

Figure 10. Progression of population number at each of the critical neighborhoods when using the TGA to solve the
Multi-Peak Problem.

the value of the objective function changes slowly before
reaching the minimum. This section compares the per-
formance of the six genetic algorithms introduced in
Section 6. At each run, the same initial population is used
for all algorithms in order to allow objective comparison.
The reported results represent one hundred runs for all
algorithms.

8.1. The Sine Function

The Sine function [8], can be expressed as:

   
2

210

1

Minimize, sin sin

m

i
i

i

i x
f x x





  
    

   
 (22)

0 ix  

When m is equal to 100, this problem becomes
notoriously difficult because of its large number of local
minima, which are equal to 100!. In this case, the known
global minimum is equal to −9.655.Some of the best
results for this Sine function uses the 57% Simplex-GA
hybrid algorithm, which reaches the global minima in

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1229

x
1

x 2

4 5 6 7 8 9 10 11 12

11

12

13

14

15

16

17

18

19

Figure 11. Population of the Multi-Peak Problem when the
TGA algorithm is used (20th generation).

1.32e+5 function evaluations.
A population size of 40n is used, and allalgorithmsare

run for 50n generations. Figure 12 shows typical runs of
the proposed algorithms. In this case, all algorithms
follow the same trend toward the minimum. However,the
SGA and the SGAU fails to reach the minimum. The
TGAis able to reach the minimum after 105 function
evaluations.TGASO, TGAU, and TGASOU stopped at
−9.642 (0.13% from the minimum) after 9.30e+4, 8.13e
+4, and 1.10e+5 function evaluations,respectively.

Generally, these results are consistent with those of
testing by conducting 100 runs of each algorithm, listed
in Table 2. While all algorithms are able to reach the
neighborhood of the minimum, the results indicate that
the twinkling consistently produces better solutions than
the simple genetic algorithms irrespective of the cross-
over method, which has a limited effect for this case. The
standard deviation values of these algorithms lead to the
same conclusion. These results may be explained by the
fact that the function contains a large number of local
minima, which may limit the contribution of the cross-
over method while emphasizing the importance of twin-
kling as it helps free the search from local minima.

Table 1. Results of testing the Multi-Peak function.

 SGA TGA TGASO SGAU TGAU TGASOU

Best function value −9.5585 −9.5585 −9.5585 −9.5585 −9.5585 −9.5585

Average final function value −9.5581 −9.5581 −9.5581 −9.5516 −9.5577 −9.5575

Standard deviation of final function value 0.000278 0.000281 0.000276 0.0784 0.0024 0.0056

Average number of function evaluations to
reach within 10−4 of the known minimum

846 763 740 1023 861 847

0 2 4 6 8 10 12 14

x 10
4

-10

-9

-8

-7

-6

-5

-4

-3

-2

Function Evaluations

B
es

t
F

itn
es

s

SGA
TGA

TGASO

SGAU

TGAU
TGASOU

Figure 12. A typical run of the proposed algorithms for the Sine function (m = 100).

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1230

8.2. Nonlinear Quadratic Test Function

The Nonlinear Quadratic Test Functionproblem has been
solved by various techniques to handle the effect of
nonlinear constraints [26]. This problem has ten variables
and eight nonlinear constraints. Genetic algorithms can
be adapted for constrained minimization problems in the
form of:

 
 

Minimize,

subject to 0i

f x

g x 
 (23)

The problem can be transformed into an unconstrained
one by including the constraints in the objective function
as penalty terms [27]. Constraints can be incorporated in
the objective function using the bracket function. The
modified function is:

 

   
 

1

2

Minimize,

if 0

if 0 0

m

i
i

i i i

i i

FC f x

g x R g x

g x



  

  

  



 (24)

R is equal 10e+8 for all constrained problems con-

sidered in this work unless otherwise specified. The
known minimum of the nonlinear quadratic functionis
24.3062. Two out of five algorithms used in [26] yielded
best results of 25.486 and 25.653, using a population of
70 over 5000 generations.

A population size of 100n is used. All algorithms are
run for 50n generations. Figure 13 show typical runs of
the proposed algorithms. The results of this case show
that the algorithms that use the convex combination
stopped around a function value of 30. On the other hand,
the algorithms using the NADX crossover showed
steadier progression towardsthe minimum. Out of these
three algorithms, the TGA andthe TGASO converged
toward the minimum at a significantly faster rate.

The average numbers of function evaluations needed
to reach the minimum after 100 runs of the six algo-
rithms are listed in Table 3. The results of this table
confirm the conclusions reached for the multi-peak
problem considered in Section 7.

8.3. Minimum Cost of a Welded Beam

The second design example involves the minimum cost

Table 2. Results of testing the Sine function (m = 100).

 SGA TGA TGASO SGAU TGAU TGASOU

Best function value −9.640 −9.655 −9.655 −9.630 −9.654 −9.655

Average final function value −9.301 −9.632 −9.633 −9.425 −9.625 −9.626

Standard deviation of final function value 0.2123 0.0272 0.0253 0.1472 0.0262 0.0254

Average number of function evaluations to
reach within 10−4 of the known minimum

120,160 111,971 114,098 120,160 120,160 119,514

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

20

30

40

50

60

70

80

Function Evaluations

B
es

t
F

itn
es

s

SGA
TGA

TGASO

SGAU

TGAU
TGASOU

Figure 13. A typical run of the proposed algorithms for the nonlinear quadratic test function.

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1231

of a welded cantilever beam [28] (Chapter 1). It has four
variables and five nonlinear constraints. The minimum
value is 2.3403 at [0.2536, 7.1405, 7.1052, 0.2536]T.

A population size of 50n is used in this example. All
algorithms are run for 50n generations. Figure 14 shows
typical runs of the proposed algorithms. The behavior of
the algorithms closely follows those at the Nonlinear
Quadratic test function of the previous section. In this
case, the TGASO was able to reach minimum after
15,000 function evaluations. Both the SGA and the TGA
progressed more slowly toward the minimum and
stopped at 2.3470 function value at the end of last ge-

neration.
Table 4 shows the results of 100 runs, which indicate

the consistency of the observations in Section 7 re-
garding the choice of crossover and twinkling. The TGA
and the TGASO were able to reach a value of 2.3403.
Standard deviations for the cases of the NADX crossover
are significantly less than those using the convex
combination.

This problem was solved by using an improved
particle swarm optimizer that handles constraints to
maintain feasible solution [29]. The same problem was
solved using the ranking selection-based particle swarm

Table 3. Results of testing the nonlinear quadratic test function.

 SGA TGA TGASO SGAU TGAU TGASOU

Best function value 24.3693 24.3274 24.3288 26.5072 24.9213 26.137

Average final function value 24.9332 24.5949 24.564 30.591 30.1962 30.407

Standard deviation of final function value 0.5983 0.3294 0.2867 2.0758 2.2116 2.1364

Average number of function evaluations to
reach within 10−3 of the known minimum

300,400 296,596 292,804 300,400 300,400 300,400

0 0.5 1 1.5 2 2.5

x 10
4

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Function Evaluations

B
es

t
F

itn
es

s

SGA
TGA

TGASO

SGAU

TGAU
TGASOU

Figure 14. A typical run of the proposed algorithms for the minimum cost of a welded beam problem.

Table 4. Results of testing the minimum cost of a welded beam problem.

 SGA TGA TGASO SGAU TGAU TGASOU

Best function value 2.3404 2.3403 2.3403 2.3652 2.3673 2.3478

Average final function value 2.3431 2.3411 2.3414 2.7461 2.7318 2.7298

Standard deviation of final function value 0.0030 0.0015 0.0041 0.2516 0.2113 0.2217

Average number of function evaluations to
reach within 10−4 of the known minimum

21,423 18,428 18,396 21,692 21,692 21,692

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1232

algorithm [30]. The results of Table 5 indicate the ability
of the proposed algorithms to reach the minimum with a
significantly lower number of function evaluations.

8.4. Minimum Cost of a Pressure Vessel

The minimum cost problem of a pressure vessel was used
by many researchers to test various optimization algo-
rithms. For example, in order to adapt the penalty factors
of a fitness function, it was used to test a genetic algo-
rithm with co-evolution [31]. An improved particle swarm
optimizer for solving mechanical design problems was
used to solve this problem [29]. The characteristics of
particle swarm optimization for global optimization and
its application to the mixed discrete nonlinear problems
(MDNLP) is suggested as a method to solve this problem
[32]. This problem was solved using a hybrid particle
swarm optimization with a feasibility-based rule for con-
strained optimization [33]. Alternatively, a ranking selec-
tion-based particle swarm algorithm was applied to solve
the same problem [30].

This problem has four variables and eleven con-
straints. Two of the four variables are discrete. A popula-
tion size of 100n is used in this example. All algorithms
are run for 25n generations. Figure 15 presents typical
runs of the proposed algorithms using the same initial
population. In this case, the SGA is able to reach the
minimum within 18,000 function evaluations. This algo-
rithm is followed by the TGASO and the TGASOU,
which that stagnate close to the known minimum of 6059.
The TGA and the TGAU stopped in the neighbor- hood
of 6400.

Table 6 lists the results obtained running the six
algorithms for a hundred times. These results indicate
that the algorithms that use the NADX crossover out
perform those using the convex combination. This
represents the only case where the result of using the
SGA is slightly better than the two twinkling algorithms
(TGA and TGASO) whenusing the NADX crossover.
However, when using theconvex combination, twinkling
algorithms perform better than the simple genetic algo-
rithm.

Table 5. Comparison between the results of testing the minimum cost of a welded beam problem using the twinkling genetic
algorithms with two particle swarm algorithms.

 [29] [30] TGA TGASO

Best function value 2.3810 2.3810 2.3403 2.3403

Average final function value 2.3819 2.3810 2.3411 2.3414

Standard deviation of final function value 0.0052 1.14e−5 0.0015 0.0041

Average number of function evaluations 30,000 30,000 18,428 18,396

Number of runs 100 30 100 100

0 0.5 1 1.5 2 2.5

x 10
4

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

Function Evaluations

B
es

t
F

itn
es

s

SGA
TGA

TGASO

SGAU

TGAU
TGASOU

Figure 15. A typical run of the proposed algorithms for the minimum cost of a pressure vessel problem.

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1233

Table 7 lists the results of these researchers along with

the results of the SGA, TGA, and TGASO of Table 6.
The results indicate that the proposed algorithms were
able to converge to the same neighborhood of the mini-
mum as other researchers. The proposed algorithms pro-
duced a lower number of function evaluations.

9. Conclusions

Genetic algorithms provide the means for global op-
timization. The simplest form of a genetic algorithm
shares some resemblance to these two biological opera-
tions: crossover and mutation. Combining these two
operations over multiple generations helps reach the
optimal point. However, asimplegenetic algorithm suffers
from slow convergence. Also, itmay stagnate at a local
extremum, especially in the case of a problem with
nonlinear constraints. The objective of this paper is to
address the limitations of typical genetic algorithms: a
slow rate of convergence and the final accuracy. This is
accomplished by introducing bio-mimetic behavior in the
form of a NADX crossover, which increase the genetic
diversity, and twinkling operators, which allow the
retention of desirable solutions between generations.

Thispaperintroduces two modifications to the simple
genetic algorithm. The first change involvesusing the
normally distributed arithmetic crossover (NADX). This
crossover techniquemimics the greater diversity of the

genes that parents can pass on to their children. NADX is
closer to a true biological analogy because it allows a
specific “gene value” from a crossover to be outside the
limited bounds of the two parents. The second changeis
to incorporate twinkling operatorsinto the genetic algorithm.
Twinkling introduces a deviation from the standard
practice of any optimization algorithm by only allowing
a random subset of the variables to undergo the heuristic
decisions of the optimization algorithm. The remaining
variables carry identical information to the previous
iteration or generation. This process has been shown to
increase the likelihood of finding the global minimum by
maintainingthe “good genes” within a population. Another
variation on incorporating the twinkling is introduced
using a choice operator, which randomly determines the
number of children that are bred from a parental pairing.

To assess the proposed ideas, NADX and twinkling
are incorporated into the simple genetic algorithm to
produce the following algorithms:
 SGA (Simple genetic algorithm with the NADX

crossover)
 TGA (Genetic algorithm with the NADX crossover

and the twinkling dimension)
 TGASO (Genetic Algorithm with the NADX

crossover and the twinkling dimension and the choice
operator)

 SGAU (Simple genetic algorithm with the convex

Table 6. Results of testing theminimum cost of a pressure vessel problem.

 SGA TGA TGASO SGAU TGAU TGASOU

Best function value 6059.7 6059.7 6059.7 6120.2 6096.6 6090.7

Average final function value 6094.1 6150.2 6167.1 6655.7 6472.1 6442.2

Standard deviation of final function value 89.1 121. 3 143.7 193.5 173.7 184.9

Average number of function evaluations to
reach within 10−4 of the known minimum

19,989 21,665 21,689 21,784 21,784 21,784

Table 7. Comparison between the results of testing the minimum cost of a pressure vessel problem using the NADX simple
and twinkling genetic algorithms with those of other algorithms.

 [31] [29] [32] [33] [30] SGA TGA TGASO

x1 (shell thickness) 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125

x2 (head thickness) 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375

x3 (head radius) 42.3239 42.0984 42.3700 42.0984 42.09845 42.101 42.101 42.101

x4 (shell length) 200.0000 176.6366 173.4200 176.6366 176.7456 176.6048 176.6048 176.6048

Best function value 6288.7 6059.7 6029.87 6059.7 6059.7 6059.7 6059.7 6059.7

Average final function value 6293.8 6289.9 6064.5 6099.9 6099.9 6094.1 6150.2 6167.1

Standard Deviation of final function value 7.4 305.8 30.0 86.2 13.3 89.1 121. 3 143.7

Average Number of function evaluations 900,000 30,000 22,500 81,000 30,000 19,989 21,665 21,689

Number of runs 11 100 10 30 30 100 100 100

Copyright © 2012 SciRes. AM

G. S. LADKANY, M. B. TRABIA 1234

combination crossover)

 TGAU (Genetic algorithm with the convex com-
bination crossover and the twinkling dimension)

 TGASOU (Genetic algorithm with the convex com-
bination crossover and the twinkling dimension and
the choice operator)

By using a typical test problem, the effects are com-
pared of the weighted average of the normally distributed
arithmetic crossover as well as the twinkling on simple
genetic algorithms. In addition, the distribution of popu-
lation in various critical regions of the search space of
this problem is explored. The results indicate the com-
bined effectiveness of using both the NADX crossover
and the twinkling; the combined use of these two tech-
niques rapidly concentrates the population closer to the
global minimum.

Extensive evaluation of a variety of mathematical and
engineering design problems is presented along with the
results of earlier researchers. Statistical results show that
the proposed algorithms are consistently able to reach the
neighborhood of the global minima with competitive
speeds of convergence. The following general observation
can be presented:
 Algorithms that use the NADX crossover consistently

outperform those using the uniformly distributed
crossover.

 The twinkling algorithms consistently produce better
results than the non-twinkling algorithms. The only
exception is the compressed air storage tankproblem,
where the SGA producesa slightly better average final
function value and average number of function evalu-
ations than the two twinkling algorithms (TGA and
TGASO). The advantage of using twinkling becomes
apparent in multimodal problems that havea large
number of local minima, for example, the Sine
Function (Section 8.1).

 The two variations of twinkling presented in this
work have about the same level of effectiveness,
regardless of which crossover operator is used.

It may be of interest to contrast the proposed algorithm
with the hybrid genetic algorithms, where a genetic
algorithm is combined with some form of optimization
search algorithm. The proposed twinkling genetic algo-
rithms differ from typical hybrid algorithms in the sense
that it is still a global optimization problem, and unlike
hybrid algorithms, no local searches take place. Thus,the
goalof the proposed algorithms is to find the global
minimum of the problem under consideration.

There is a significant potential for future work on this
area. For example, the effect of the size of the twinkling
dimension on the performance of the proposed algo-
rithms should be considered. The incorporation of twin-
kling into hybrid genetic algorithms can result income-
bining the advantages of the local search with the ability

of twinkling to accelerate the search globally. Lastly, in
order to vary the total and the parental population sizes at
each generation, it is desirable to study the use of twin-
kling in a semi-adaptive fashion within a genetic algo-
rithm. By using NADX crossover, increased emphasis on
exploration may result. Assuredly, by combining these
two techniques, the success and efficiency of the global
search will increase.

REFERENCES
[1] D. Goldberg, “Genetic Algorithms in Search, Optimiza-

tion, and Machine Learning,” Addison-Wesley Reading,
Boston, 1989.

[2] K. Deb and R. Agrawal, “Simulated Binary Crossover for
Continuous Search Space,” Complex Systems, Vol. 9,
1995, pp. 115-148.

[3] I. Ono and S. Kobayashi, “A Real Coded Genetic Algo-
rithm for Function Optimization Using Unimodal Normal
Distribution Crossover,” Proceedings of the 7th Interna-
tional Conference on Genetic Algorithms, Vol. 14, No. 6,
1997, pp. 246-253.

[4] F. Herrera, M. Lozano and J. Verdegay, “Fuzzy Connec-
tives Based Crossover Operators to Model Genetic Algo-
rithms Population Diversity,” Fuzzy Sets and Systems,
Vol. 92, No. 1, 1997, pp. 21-30.
doi:10.1016/S0165-0114(96)00179-0

[5] F. Herrera, M. Lozano and A. Sanchez, “Taxonomy for
the Crossover Operator for Real-Coded Genetic Algo-
rithms: an Experimental Study,” International Journal of
Intelligent Systems, Vol. 18, No. 3, 2003, pp. 309-338.
doi:10.1002/int.10091

[6] H. Ishibuchi, N. Yamamoto, T. Murata and H. Tanaka,
“Genetic Algorithms and Neighborhood Search Algorithms
for Fuzzy Flowshop Problems,” Fuzzy Sets and Systems,
Vol. 67, No. 1, 1994, pp. 81-100.
doi:10.1016/0165-0114(94)90210-0

[7] D. Sotiropoulos, E. Stavropoulos and M. Vrahatis, “A
New Hybrid Genetic Algorithm for Global Optimiza-
tion,” Nonlinear Analysis, Vol. 30, No. 7, 1997. pp.
4529-4538. doi:10.1016/S0362-546X(96)00367-7

[8] J. Yen, J. Liao and D. Randolph, “A Hybrid Approach to
Modeling Metabolic Systems Using a Genetic Algorithm
and Simplex Method,” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 28, No. 2, 1998, pp. 173-191.
doi:10.1109/3477.662758

[9] M. Okamoto, T., Nonaka, S. Ochiai and D. Tominaga,
“Nonlinear Numerical Optimization with Use of a Hybrid
Genetic Algorithm Incorporating the Modified Powell
Method,” Applied Mathematics and Computation, Vol. 91,
No. 1, 1998, pp. 63-72.
doi:10.1016/S0096-3003(97)10007-8

[10] J. Renders and S. Flasse, “Hybrid Methods Using Genetic
Algorithms for Global Optimization,” IEEE Transactions
on Systems, Man and Cybernetic, Vol. 26, No. 2, 1999,
pp. 243-258.

[11] W. Jwo, C. Liu and C. Liu, “Large-Scale Optimal VAR

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.1016/S0165-0114(96)00179-0
http://dx.doi.org/10.1002/int.10091
http://dx.doi.org/10.1016/0165-0114(94)90210-0
http://dx.doi.org/10.1016/S0362-546X(96)00367-7
http://dx.doi.org/10.1109/3477.662758
http://dx.doi.org/10.1016/S0096-3003(97)10007-8

G. S. LADKANY, M. B. TRABIA 1235

Planning by Hybrid Simulated Annealing/Genetic Algo-
rithm,” International Journal of Electrical Power & En-
ergy Systems, Vol. 21, No. 1, 1999, pp. 39-44.
doi:10.1016/S0142-0615(98)00020-9

[12] M. Musil, M. Wilmut and N. Chapman, “A Hybrid Sim-
plex Genetic Algorithm for Estimating Geoacoustic Pa-
rameters Using Matched-Field Inversion,” IEEE Journal
of Oceanic Engineering, Vol. 24, No. 3, 1999, pp. 358-
369. doi:10.1109/48.775297

[13] A. Nassef, H. Hegazi and S. Metwalli, “A Hybrid Genetic
Direct Search Algorithm for Global Optimization of Solid
C-Frame Cross Sections,” Proceedings of the 26th Design
Automation Conference, Baltimore, 11-13 September
2000.

[14] K. Hacker, J. Eddy and K. Lewis, “Tuning a Hybrid Op-
timization Algorithm by Determining the Modality of the
Design Space,” Proceedings of the 27th Design Automa-
tion Conference, Pittsburgh, 9-12 September 2001, pp.
773-782.

[15] M. Trabia, “A Hybrid Fuzzy Simplex Genetic Algorithm,”
Journal of Mechanical Design, Vol. 126, No. 6, 2004, pp.
969-974. doi:10.1115/1.1803852

[16] Y. Tenne and S. Armfield, “A Novel Evolutionary Algo-
rithm for Efficient Minimization of Expensive Black-Box
Functions with Assisted-Modelling,” IEEE Congress on
Evolutionary Computation, Vancouver, 11 September
2006, pp. 3220-3226.

[17] H. Telega, “Two-Phase Stochastic Global Optimization
Strategies,” Studies in Computational Intelligence, Vol.
74, 2007, pp. 153-197. doi:10.1007/978-3-540-73192-4_6

[18] M. Mekhilef, “A Twinkling Technique for Brownian
Moves in Optimization,” Proceedings of the 25th Design
Automation Conference, Las Vegas, 12-16 September
1999.

[19] M. Mekhilef, “Introducing the Twinkling Technique in
Non-Linear Optimization,” Proceedings of the 26th De-
sign Automation Conference, Baltimore, 10-13 September
2000.

[20] M. Mekhilef and M. Trabia, “Successive Twinkling Sim-
plex Search Optimization Algorithms,” Proceedings of
the ASME 27th Design Automation Conference, Pittsburgh,
9-12 September 2001.

[21] M. Mekhilef, “Twinkling a Random Search Algorithm for
Design Optimization,” ASME 31st Design Automation
Conference, Long Beach, 24-28 September 2005, pp.
321-330.

[22] Z. Michalewicz, “Genetic Algorithms/Data Structure =
Evolutionary Programs,” Springer-Verlag, New York,
1994.

[23] M. Gen and R. Cheng, “Genetic Algorithms & Engineer-
ing Optimization,” Wiley Interscience, New York, 2000.

[24] R. Kasat and K. Gupta, “Multi-Objective Optimization of
an Industrial Fluidized-Bed Catalytic Cracking Unit
(FCCU) Using Genetic Algorithm (GA) with the Jumping
Genes Operator,” Computers and Chemical Engineering,
Vol. 27, No. 12, 2003, pp. 1785-1800.
doi:10.1016/S0098-1354(03)00153-4

[25] M. Arakawa, T. Mayashita and H. Ishikawa, “Genetic
Range Genetic Algorithms to Obtain Quasi-Optimum
Solutions,” ASME 29th Design Automation Conference,
Chicago, 2-6 September 2003, pp. 927-934.

[26] Z. Michalewicz, “Genetic Algorithms, Numerical Opti-
mization, and Constraints,” Proceedings of the 6th Inter-
national Conference on Genetic Algorithms, Pittsburgh,
15-19 July 1995, pp. 151-158.

[27] S. Rao, “Engineering Optimization: Theory and Practice,”
Wiley-Interscience, New York, 1996.

[28] V. Rekalitis, A. Ravindaran and K. Ragsdell, “Engineer-
ing Optimization: Methods and Applications,” Wiley In-
terscience, New York, 2006.

[29] S. He, E. Prempain and Q. Wu, “An Improved Particle
Swarm Optimizer for Mechanical Design Optimization
Problems,” Engineering Optimization, Vol. 36, No. 5,
2004, pp. 585-605. doi:10.1080/03052150410001704854

[30] J. Wang and Z. Yin, “A Ranking Selection-Based Particle
Swarm Optimizer for Engineering Design Optimization
Problems,” Structural Multidisclinary Optimization, Vol.
37, No. 2, 2008, pp. 131-147.
doi:10.1007/s00158-007-0222-3

[31] C. Coello, “Use of a Self-Adaptive Penalty Approach for
Engineering Optimization Problems,” Computers in In-
dustry, Vol. 41, No. 2, 2000, pp. 113-127.

[32] S. Kitayama, M. Arakawa and K. Yamazaki, “Penalty
Function Approach for the Mixed Discrete Nonlinear
Problems by Particle Swarm Optimization,” Structural
Multidisclinary Optimization, Vol. 32, No. 3, 2006, pp.
191-202. doi:10.1007/s00158-006-0021-2

[33] Q. He and L. Wang, “A Hybrid Particle Swarm Optimi-
zation with a Feasibility-Based Rule for Constrained Op-
timization,” Applied Mathematics and Computation, Vol.
86, No. 2, 2007, pp. 1407-1422.
doi:10.1016/j.amc.2006.07.134

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.1109/48.775297
http://dx.doi.org/10.1115/1.1803852
http://dx.doi.org/10.1007/978-3-540-73192-4_6
http://dx.doi.org/10.1016/S0098-1354(03)00153-4
http://dx.doi.org/10.1080/03052150410001704854
http://dx.doi.org/10.1007/s00158-007-0222-3
http://dx.doi.org/10.1007/s00158-006-0021-2
http://dx.doi.org/10.1016/j.amc.2006.07.134

