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ABSTRACT 

A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are 
based on the second order vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain 
analytical expressions of the electromagnetic fields from the two potentials. However, the scalar decomposition is often 
known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbi-
trary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this 
paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents modelling 
problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough 
interface. This SOVP formulation is derived from the tensor formalism and Maxwell’s equations written in a non-or- 
thogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile. 
 
Keywords: Second Order Vector Potential (SOVP); Curvilinear Coordinate System; Eddy Current Non-Destructive 

Testing (ECNDT) 

1. Introduction 

A great number of semi-analytical models for simulating 
Eddy Current Non-Destructive Testing (ECNDT) of con- 
ductive test pieces have been developed since the re- 
search works of several pioneers [1-7]. Most of canonical 
ECNDT configurations can be simulated today by nu-
merically implementing some closed-form expression of 
the solution of the forward problem to be solved [8,9]. 
Most of these semi-analytical models lead to fast nu-
merical models and are thus very useful for running ana- 
lysis or parametric studies. Most of these semi-analyti- 
cal models are based on the scalar decomposition of the 
electromagnetic field in some specific curvilinear ortho- 
gonal coordinate systems. The numerical models coming 
from these analytical models are therefore limited to ca-
nonical geometries. The purpose of this paper is to pre-
sent a more general scalar potential representation of the 
electromagnetic field which can be applied for a non or-
thogonal coordinate system in order to prepare the de-
velopment of some semi-analytical model which has the 
capability to compute the quasi-static electromagnetic 
fields due to an eddy current probe scanning a conduct-

ing half-space. The shape of the boundary surface is 
complex since two regions are separated by a rough sur- 
face. The framework of this project aims in generalizing 
the previous work [10] which has been firstly introduced 
for 2D eddy current problems. 

The scalarization of the electromagnetic field is well 
known to researchers for a long time [11] and it has been 
extensively used for different applications in electro-
magnetism such as the radiation and scattering theory 
[12,13] and in the analysis of eddy currents [14]. A great 
number of authors have made use of the scalar potential 
formulation of the electromagnetic field since it is the 
starting point which allows to derive some analytical 
expressions of the field arising from specific canonical 
geometries implying an arbitrary time harmonic current 
above a conducting half space [3,7], or above a slab of 
finite thickness [4]. This scalar formulation, also called 
the second order vector potential formulation has been 
also used in the cylindrical coordinate system for an ar-
bitrary current source inside a borehole [15,16] or in the 
spherical coordinate system [17,18]. This paper concerns 
more particularly the calculation of the electromagnetic 
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field in the quasi-static limit when the geometry of the 
separating surface between two homogeneous media is 
described by an arbitrary non-orthogonal coordinate sys-
tem. 

This paper is organized as follows. In Section 2, the 
second-order vector potential formulation is briefly in-
troduced. Since a Laplacian operator is only applied on a 
scalar potential, this formulation can minimize the num-
ber of unknowns and consequently the computer storage 
when calculating the electromagnetic fields in 3D scat-
tering electromagnetic problems and 3D eddy currents 
problems. However, this formulation has been investi-
gated for a finite number of orthogonal coordinates sys-
tems. The third section describes an extended formula-
tion based on the covariant form of Maxwell’s equations. 
The curvilinear coordinate method is summarized for 
obtaining the relationship between the components of the 
electromagnetic field and two longitudinal components. 
In Section 4, the second-order vector formulation is finally 
derived and some examples of different coordinate sys-
tem are given in Section 5 in order to give some illustra-
tion of the formulas. Finally, Section 6 gives the conclu-
sion and future works. 

2. The Second Order Vector Potential  
Formulation for Eddy Current Problems 

In curvilinear coordinate systems, the components of the 
magnetic vector potential cannot be separated due to the 
coupling between them [12]. Thus, the problem of the 
computation of the vector field leads to a great number of 
coupled unknowns since it is not possible to obtain sepa-
rable Helmholtz equations. In order to overcome this 
drawback, it is usual to split the vector field into a longi-
tudinal part and a transversal part. The longitudinal part 
is obtained from the calculation of the gradient of a scalar 
potential, this part is irrotational (rotational free). The 
transversal part is derived from another vector potential; 
this part is called solenoidal (divergence free). 

L T A A A  

with 0L L   A A

2

         (1) 

1 2
with 0T T T T    A A A A        (2) 

This vector potential can also derived from two other 
scalar potentials and a fixed unit vector judiciously chosen 
[11] according to the coordinate system used. The second 
order vector potential results in the separation of the 
Helmholtz equation in several coordinate systems [19].  

 1T W uW u W     A        (3) 

According to this decomposition, the magnetic vector 
potential depends on three scalar quantities 1, W  and 

2 . Since the magnetic vector potential W A  is derived 
from the curl of W , this implies the coulomb gauge. 
This vector potential is also called the Second Order 
Vector Potential (SOVP). The longitudinal part of the 
electromagnetic field is not necessary for representing 
the magnetic flux density since the definition of  

 B A  and   0   . Only two scalar potential 
are finally necessary to represent the magnetic flux den-
sity  B W  and the current density can be  

derived by 
1


 J B . 

In such a way, this formulation has been extensively 
used to derive some analytical solutions for eddy current 
modeling problems. The goal of this paper is to genera- 
lize this formulation for a non-orthogonal curvilinear 
coordinates system which could describe the arbitrary 
shape of a separating rough surface between two regions 
of the space. 

3. Problem Formulation 

Let us consider an isotropic, homogeneous conducting 
half-space characterized by its conductivity   and its 
magnetic permeability   and the permittivity  . The 
global planar surface delimiting this half-space is locally 
corrugated according to a cylindrical surface profile. In a 
Cartesian coordinate system  , , x y z

z


, the surface is as-
sumed to be invariant along the  axis and is described 
by a parametric function . Eddy currents are in-
duced in the conducting region due to 3D arbitrary cur-
rent sources in air above the half-space. The goal of this 
paper is to introduce a generalized scalar potentials for-
malism to build up a fast semi-analytical model which is 
able to compute the electromagnetic fields considering 
the quasi-static regime. This formalism is based on the 
introduction of a curvilinear coordinate system which 
conforms the rough surface. Writing the boundary condi-
tions is thus easier since one of the new system of curvi-
linear coordinates is set to zero for each point on the 
boundary surface. Moreover, the tangential components 
and the normal components of the electromagnetic field 
are easily written by using the covariant and contravari-
ant basis respectively. In the next section, the covariant 
form of Maxwell’s equations governing the electromag-
netic field are summarized and discussed. 

a x

3.1. The Covariant Form of Maxwell’s Equations 

In curvilinear coordinates systems, the Maxwell’s equa-
tion are based on the tensorial formalism. By assuming a 
standard time dependence  i te , the covariant form is 
given by:  
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 

 

0

0 no charge sources

with , , 1, 2,3

j
j

j
j

i
ijk i

j k

i
ijk i i i i

j k s

B

D

B
E i B i j k

t
D

H J J J i D
t

 



 

 


     




     




 (4) 

where ijk  stands for the Lévi-Cività indicator [20] and 
 are the indices associated to the compo-

nents of the fields on the the three coordinate axes. The 
notation 

, , 3i j k 1, 2,

j  means jx  . This formalism is invariant 
to a change of referential. The components  and kE kH  
are the covariant components of the vectors E  and H . 
The components , iB iJ  and  are the contravariant 
components of the vectors , 

iD
B J  and  respectively. 

They are themselves related to the covariant components 
of the vectors 

D

E  and H  by the constitutive relations:  
i i ij ij

j j

i i ij ij
j j

i i ij ij
j j

B H g g H H

J E g g E E

D E g g E E

  

  

  

  

  

  

     (5) 

where ijg  are the contravariant components of the met-
ric tensor of the coordinate system. The covariant com-
ponents of the metric tensor verify the condition  

ik kjg g ij  and  det ijg g . The pseudo-tensors 
ij , ij  and ij  depend on the choice of the metric 

system and they contain the physical and geometrical 
information of the problem. In the quasi-static regime, 
the permittivity of the conducting material is neglected 
and the wave number becomes 2 =ck i . To exhibit a 
symmetry in the Maxwell’s equation, let us introduce 
some notations. The complex impedance of the material 
is defined so that ck Z   and cZ ik   . By de-
noting j jZHG i , Maxwell’s equations may be simply 
written by:  

0

0
ij

c

ij ij
s c

k g g

iZ g g k g g

 
  

 

  

E

B

E G

G J E

     (6) 

The dot product and the cross product are used exactly 
as in the Cartesian case. 

3.2. Boundary Conditions 

The main interest of this approach based on the coordi-
nate transformation is that boundary conditions may be 
written in an analytical form since the boundary surface 
conforms exactly with the curvilinear coordinate system. 
The new system of coordinates is chosen so that one 
variable, at least, is constant for each point conforming 

the interface between the two media. Let us consider the 
coordinates  1 2 3, ,x x x

u

 and let u  a field vector. The 
boundary surface is defined by  for instance. 
Then, the continuity of the tangential components of the 
field vector  may be expressed by the continuity of 
the covariant components  while the continuity of 
the normal component of  may be translated in the 
continuity of the contravariant component . These 
two conditions will be explicitly described in the follow-
ing of this paper. The main goal of this paper is to define 
two scalar potentials, usually the transverse electric and 
the transverse magnetic potentials for solving 3D eddy 
currents problems by using the curvilinear coordinate 
method. 

3 0x

21,u u
u

3u

3.3. The Curvilinear Coordinate Method 

The boundary surface separating two isotropic homoge-
neous regions may be described by some parametric 
equations. Starting from the Cartesian coordinate system 
 , ,x y z , we are looking for a new coordinate system 
such that the boundary surface conforms with one sur-
face of coordinates. The Cartesian coordinates are la-
beled using index notation so that    1 2 3, , , ,x y z x x x . 
Now, let us define a set of curvilinear coordinates 
 31 2, ,   : 

 2 3


 

1 1

2 1 2

3 1 2

, ,

, ,

, ,

x f

x g

x h

3

3

  

  

  







             (7) 

Two natural sets of base vectors are associated with a 
curvilinear system: the covariant vectors i  that are 
tangent to the coordinate lines and the contravariant vec-
tors  that are normal to the coordinate surfaces. 

u

iu
The Jacobian matrix J  defines the transformation 

from the Cartesian coordinates  1 2 3, , x x x  to the curvi-
linear coordinates  1 2 3, ,   : 

1 2 3

1 2 3

1 2 3

.

f f f

x g g g
J

h h h

  

   

  

   
    

               
   

    

       (8) 

In the following of the paper, let us denote i i

F
F




 


.  

The matrix representation of the covariant components of 
the metric tensor is given by:  

T

ij

x x
g

 
                

            (9) 
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and we denote by g  the determinant ijg g . Simi-
larly, the matrix representation of the contravariant 
components of the metric tensor are given by:  

Let us consider a compact form:  

n ij
n c t

n ij
tc n

n ij n
t c n

n ij n
nc t

k g g

k g g

k g g E

Gk g g

    
   

     
     

    
      

I x E

Gx I

x x

x x

  (17) 
T

ijg
x x

                 
          (10) 

Assume that this matrix may be expressed by:  

where  means an identity dyadic operator. The left- 
hand side of (17) may be multiplied by the matrix:  

I11 12 13

21 22 23

31 32 33

ij

g g g

g g g g

g g g

 
    
 
 


            (11) 

n i
n c

n ij
c n

k g g

k g g

j   
 
    

I x

x I
     (18) 

Due to the relationship between these two representa-  

tions of the metric tensors , the deter-  
1ij

ijg g


       such as:  

minant of the matrix ijg    is equal to 1 g  and (see the 
formula below):  

11 12

12 11

n ij
n c

n ij
c n

n ij
n c t

n ij
tc n

c t

c t

k g g

k g g

k g g

k g g

C k C

k C C

   
 
    
     

   
      
   

    
   

I x

x I

I x E

Gx I

E

G

   (19) 

To fit boundary conditions, it is convenient to split the 
electromagnetic field into two components:  

t u

t u

E

G

 

 

E E u

G G u
             (13) 

Any vector  may be chosen for this decomposition 
though there are suitable choices [11]. In what follows in 
the paper,  is a vector in the directions of the coordi-
nates . 

u

, 1,
u

n  2,nx

with  

  2
11

12

n ij n ij
n n c

n ij n ij
n n

C k g g g g

C g g g g

       
           

I x x

x x
 (20) 

3

3.4. Decomposition Transversal/Longitudinal 
Components 

So, in the general case, the transverse fields tE  and 

t  are coupled. Similarly, the right side of (17) is mul-
tiplied by the same matrix (18):  
GLet us consider the longitudinal component u  and u  

and the transversal fields 
E G

tE  and . The nabla opera-
tor can be decomposed:  

tG

11 12

12 11

n ij
n c

n ij
c n

n ij n
t c n

n ij n
nc t

n

n

k g g

k g g

k g g E

Gk g g

EM M

GM M

   
 
    
     

   
      

  
   
   

I x

x I

x x

x x
 (21) 

   
     

n n
t n t n

n n
t t t n n

E

E

      

       

E x E x

tE x x E
 (14) 

By applying the operator  to this equation and 
taking into account Equation (6), one obtains:  

n x

 n
t n n t

n ij n ij
c t c

E

k g g k g g G

     

   

x E E

x G x n
n x

 (15) 

with  
The same equation may be applied to the field vector 
 by substituting G E B  and . These cou-

pled equations may be expressed:  
nE G   

 

2
11

12

n ij n ij
n t c

n ij n ij n
c t n

M k g g g g

M k g g g g

     

      

x x

x x

nx

x
 (22) n

n ij n n ij
t n c n n t c t

n ij n n ij
t n c n n t c t

E k g g G k g g

G k g g E k g g

      

      

x x E x

x x G x

G

E
 (16) In particular, the second term of the right side of the 

matrix 12M  can be transformed:  

11 12 13 22 33 23 32 13 32 12 33 12 23 13 22

1 21 22 23 31 23 21 33 11 33 13 31 13 21 11 23

31 32 33 21 32 31 22 31 12 11 32 11 22 12 21

ij
ij

g g g g g g g g g g g g g g g

g g g g g g g g g g g g g g g g g g

g g g g g g g g g g g g g g g


      
           
      
      
   

        (12) 
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 
 

12
n ij n ij

c t n

n ij n
c t n

n ij
c

M k g g g g

k g g

k g g

      

       

   

x x

x x

x

nx

 (23) 

The first term on the left side of the matrix can be 
written:  

   
    

   

2

2

2

n ij n ij n
n t c

n n ij n ij
n n n c

n ij n ij
n n n c

k g g g g

k g g g g

k g g g g

    

       

          

x x x

x x x

I x x x

n

n

x  (24) 

The first term on the right side of the Equation (24) 
may be translated on the left side so that an extended 
formulation can be obtained for all the components of the 
electromagnetic field in terms of the two longitudinal 
components:  

11 12

12 11

=

c

c

n ij
n c n

n ij
nc n

C k C

k C C

k g g E

Gk g g

   
   

  
       
   
      

E

G

x

x 

 (25) 

Finally, the term  on the left side of (25) may be 
substituted by:  

11C

    n ij n ij n n
ij nng g g g g g      x x F x x F F  

(26) 

and the expressions of the electromagnetic fields may be 
obtained from the longitudinal components by the sim-
plified equation: 

 
 

2
12

2
12

2

2

n n c nn c

c n n c nn

n n ij
n c ij c n

n ij n
nc n c ij

k g k C

k C k g

k g k g g E

Gk g g k g

              
        
   
         

E

G

x x

x x

 (27) 

In the general case, the matrix operator cannot be 
translated on the right side of the equation but this form 
can help us to find a scalar decomposition. This is the 
main goal of the next section. 

4. The Scalar Decomposition 

In the following of the paper, all developments are per-
formed according to the vector  but any vector may 
be chosen. Let us introduce two auxiliary scalar functions 

 and  such that: 

3x

1W 2W
2

1

2
2

n

n

n n ij
c ij c

n ij n
c c ij

k g k g g W

Wk g g k g

                       

x xE

G x

When there is no source term, Maxwell’s equation are 
written in a compact form: 

0

0

ij
c

ij
c

k g g

k g g

      
     

       

I E

GI
     (29) 

so, by introducing (28) in (29), 

2

1

2
2

0

0

n

n

ij
c

ij
c

n n ij
c ij c

n ij n
c c ij

k g g

k g g

k g k g g W

Wk g g k g

  
 

   

                         

I

I

x x

x x

 (30) 

which becomes:  
2

1

2
2

c c

c c

Wk k

Wk k

     
         

a b

b a

0

0
         (31) 

with:  

 2ij n n ij
n c ijg g k g g g      a x x    (32) 

 ij n ij n
ijg g g g g   b x x      (33) 

Since the product of the covariant metric tensor by the 
contravariant metric tensor is equal to identity,  

ij
ij dg g I        and due to the property 

        ,       a b a b b a b a a b    (34) 

the operator  may be transformed:  a

 
 

 

2

2

2

2

ij n n ij
n c

ij n n ij ij
n c n

ij n n ij ij
n c n

ij n
c

g g k g g g

g g k g g g g g

g g k g g g g g

k g g g

      

         

         

  

a x x

x x

x x

x

 

(35) 

Moreover, after some tedious calculations, if 3n x x , 
it is possible to show that:  


x

(28) 

 3 3

21 22 23

11 12 13

3 2 13

3 1 23

2 1 33

 

0 0 0

0

     0

0

ij ij
ij

ij

g g g g g

g g g

g g g g g

g

g

g

   

    
       
  

  

    
       
      

b x x

  (36) 

Since the tensor matric is symmetric, one obtains: 
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33 23 3 23 2 33

33 13 3 13 1 33

23 13 2 13 1 23

2 33 3 23 3 23 2 33

1 33 3 13 3 13 1 33

1 23 2 13 2 13 1 23

0

0

0

0

g g g

g g g

g

g

g g g

g g g g

g g g g

g g g g

    
         
     

        
              
           

b

g

 
 
  

 (37) 

The same result may be also obtained for 1n x x
W

 
and . Finally, the two scalar potentials 1  and 

 are governed by the same propagation equation: 

2n x x

2W

  2 1
0ij

ck g g
g

 
        

 
      (38) 

According to the tensor analysis, the Laplacian opera-
tor of a scalar  may be written:  

2 1
0ij

i j

g g
g  

  
      

      (39) 

So, Equation (38) is the diffusion Helmholtz equation 
expressed in the curvilinear coordinate system. This 
equation will be then described for some examples in 
Section 5. Finally, we can verify if the two first equations 
of Maxwell’s Equation in (4) are satisfied:  

   ijg g
iZ

       B H G       (40) 

By using (36) and (38), after some calculations:  

 
 

1

1 2

ij n n ij
c ij

n n ij
c ij

2g g k g W g g

k g W g g W

     

    

G x x

x x

W
(41) 

Due to the vector identity   0  a , one obtains 
0 B . Likewise, the condition 0 D  is also 

verified. Finally, let us define two scalar potentials so 
that:  

1

2

,

 

W i

W iZ

  

 
             (42) 

we can write the scalar decomposition:  

 
 

2

2 2

n

n

n n ij
c ij

n ij n
c c ij

i k g g g

k g g k g

          

       

E x x

H x x


 (43) 

Since b = 0 in Equation (31), a occurs and by using 
(32), we can write two substitutions:  

 

 

2  

1

n
n

c ij

n ij
ij

k g

g g
g

  

    

x

x

 
1

n ij

n
ij ij

g g

g g
g

 

  

x

x
            (45) 

So, the covariant components of the electromagnetic 
fields are expressed in the scalar potential decomposi-
tion:  

1 n ij n
ij iji g g g g

g
         E x x  (46) 

21 n n ij
ij c ijg k g g g

g
        H x x    (47) 

In the following of the paper, some particular curvi-
linear coordinate systems are introduced in order to ver-
ify the validity of this decomposition with respect to the 
works in the literature. 

5. Examples of Different Curvilinear  
Coordinate Systems 

In this section, several coordinate systems are introduced 
in order to compare the formulation to other calculations 
exciting in the literature on the second order potential. 
Finally, the last Section 5.4 provides a new writing con-
cerning the translation coordinate system. 

5.1. Application to the Planar Coordinate System 

In the Cartesian coordinate system, the tensor metric is 
equal to Identity and the scalar decomposition becomes:  

3 3i       E x x         (48) 

3i 3      x x         (49) 

 2 3 3
ck    H x x           (50) 

This formula may be compared to the equation de-
scribed in [3,11,21].   is often called the Transverse 
Electric (TE) potential while  is the Transverse Mag- 
netic (TM) potential. 



5.2. Application to the Cylindrical Coordinate 
System 

In a cylindrical coordinate system, let us consider 
   1 2 3, , , ,r z    .  

cosx r                 (51) 

siny r                 (52) 

z z                    (53) 

g
        (44) 

The Jacobian matrix J  defining the transformation 
from the Cartesian coordinates system to the cylindrical 
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coordinates system is given by:  

1 2

1 2

1 2

0
cos sin 0

0 sin cos

0 0
1

f f

x g g
J r 0

1
h h

   
 

  

 

  
     

                       
   

0

r  

(54) 

The matrix representation of the covariant components 
of the metric tensor is given by:  

2

1 0 0

0

0 0 1
ijg r

 
    
  

            (55) 

and we denote by g the determinant 2
ijg g r  . The 

matrix representation of the contravariant components of 
the metric tensor are given by:  

22
2

1 0 0
1 0 0

1
0 0 0

0 0 1
0 0 1

ijg g
r

 

0

  
         
    

 

       (56) 

The transverse fields tE  and t  are not coupled 
since the components of the metric tensor does not de-
pend on the variable . From the scalar decomposition, 
the covariant components of the electrical field are given 
by:  

G

3x

 3 31 ij
ij iji g g g g

g
      E x x    (57) 

 2 3 31 ij
ij c ijg k g g g

g
      H x x    (58) 

2

1

1
rE E i

r z



   

      r 
          (59) 

2

2

1
E i

r r z



  

     


           (60) 

2

3 2

1 1
E i r

r r r r



            

        (61) 

The covariant vectors are related to the unit vectors in 
the Cartesian coordinate system:  

1

2

3

x

y

z

t t

t J t

t t

   
      
     

               (62) 

The unit vectors of the cylindrical coordinates are re-
lated to the covariant vectors:  

1
1

2

3

cos sin 0

sin cos 0

0 0 1

1 0 0
cos sin 0

1
sin cos 0 0 0

0 0 1 0 0 1

r x

y

z z

x

y

z

e t

e t

e t

t t

J t t
r

t t



 
 

 
  

     
           
          

 
    
 


      


   

 


       
 



(63) 

and finally 
2

1

2

2

2

3 2

1

1 1

1 1

r

z

E E i
r z r

E E i
r r r z

E E i r
r r r r












   
      

   
      

             

   (64) 

These last equations are similar to those existing in the 
literature [15]. The propagation Equation (38) is given 
by:  

  2
1 1 2 32

1 1
0cr

r r
k                (65) 

This equation is quite similar to the scalar Helmholtz 
equation expressed in the cylindrical coordinate system:  

2 2 0ck                   (66) 

5.3. Application to the Spherical Coordinate  
System 

In a spherical coordinate system, let us consider 
   1 2 3, , , ,r     .  

1 2sin cos sin cosx r 3                (67) 

1 2sin sin sin siny r 3                (68) 

1cos cosz r 3                 (69) 

The Jacobian matrix J  defining the transformation from 
the Cartesian coordinates system to the spherical coordi- 
nates system is given by:  

1 2

1 2

1 2

0

0

1

sin cos sin sin cos

cos cos cos sin sin

sin sin sin cos 0

f f

x g g
J

h h

r r r

r r

 

  

 
    
   
   

  
   

             
  

   


 
   
  

 (70) 

Copyright © 2012 SciRes.                                                                               JEMAA 



Generalization of the Second Order Vector Potential Formulation for Arbitrary Non-Orthogonal  
Curvilinear Coordinates Systems from the Covariant Form of Maxwell’s Equations 

407

The matrix representation of the covariant components 
of the metric tensor is given by:  

2

2 2

1 0 0

0 0

0 0 sin
ijg r

r 

 
      
  

        (71) 

and 2 sing r  . The matrix representation of the 
contravariant components of the metric tensor are given 
by:  

3

2

0

sin
sin

ij r
g

r



 
 
       
  

            (72) 

in this case, we choose a longitudinal orientation along 
. The scalar decomposition is given by: rrr u

 11 ij
ij iji g g g g

g
      E x 1x    (73) 

 2 1 11 ij
ij c ijg k g g g

g
      H x x    (74) 

The covariant vectors are related to the unit vectors in 
the Cartesian coordinate system:  

1

2

3

x

y

z

t t

t J t

t t

   
      
     

             (75) 

The unit vectors of the spherical coordinates are re-
lated to the covariant vectors:  

1
1

2

3

1

2

3

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

1 0 0

1
0 0

1
0 0

sin

re t

e J t

e t

t

t
r

t

r





    
    

 





    
         
        

 
 

  
     
    

 
 

(76) 

and finally  
2 2

1 2 2 2

2

2

2

3

cos 1 1

sin sin

1 1 1

sin

1 1 1

sin sin

rE E i
r rr

E E i
r r r

E E i
r r r






    


   


    

     
       

    
         

    
            

These last equations are rigorously similar to those ex-
isting in the literature [17]. The propagation Equation (38) 
is given by:  

   2
1 1 22 2

2
3 32

1 1
sin sin

sin sin

1 1
0

sinsin c

r
r r

k
r

 
 



2    

      
 

     (78) 

This equation is quite similar to the scalar Helmholtz 
equation expressed in the spherical coordinate system:  

2 2 0ck                 (79) 

5.4. Application to the Translation Coordinate 
System 

Starting from the Cartesian coordinate system  , ,x y z , 
a 2D boundary surface may be described by a parametric 
form  ,a x y  and let us consider the translation coor-
dinate system so that:  

1x x                  (80) 

2y x                  (81) 

3 1,z x a x x  2



            (82) 

The height  of each point  conforming 
the surface is translated in a simplified condition 

z  , ,P x y z
3 0x  . 

The jacobian matrix is given by:  

1 0 0

0 1 0

1x y

A

a a

 
   
   

             (83) 

with  1 ,xa a x  y y and . The metric 
tensor is given by:  

2 ,ya a x 

2

2

1

1

1

x x y x

ij x y y y

x y

a a a a

g a a a a

a a

 
      
 
 

   
   
 

          (84) 

and 
13

23

13 23 33

1 0

0 1ij

g

g g

g g g

 
      
 
 

          (85) 

with:  
13

xg a    



 

(77) 

23
yg a    

33 2 21 x yg a a     

The components of the metric tensor does not depend 
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on the variable . The field vector t
3x E  and tG  are 

not coupled since the operator t  in Equation (20) is 
null. The propagation Equation (38) is given by: 

G

 

 

2 2 2 33 2 13 13
1 2 3 3 1 1

23 23
3 2 2 0

ck g g g

g g

          

    
      (86) 

This last equation may be compared to the equations 
described by [22,23]. 

6. Conclusion and Future Work 

In this paper, a generalized second order potential for- 
mulation (SOVP) is proposed for solving scattering or 
radiation problems described in an arbitrary non-or- 
thogonal curvilinear coordinate system. This formulation 
takes advantages from the tensor analysis but no exper- 
tise is finally required for developing the expressions of 
the electromagnetic field in terms of two scalar potentials, 
usually the transverse electric potential and the transverse 
magnetic potential. For writing the components of the 
electrical field and the magnetic field for any curvilinear 
coordinate system, it is necessary to write the metric 
tensor which is easily defined in the paper and to use the 
vector cross product as usual in a Cartesian coordinate 
system. This SOVP formulation represents the key stone 
for implementing new numerical models dedicated to 
eddy current calculations based on the covariant form of 
the Maxwell’ equations. By using a specific curvilinear 
coordinate system matching the geometry of the bound- 
ary surface, it is possible to write easily and analytically 
the boundary conditions implying the covariant and con-
travariant components of the electromagnetic field. In 
future work, a numerical method will be developed for 
calculating eddy currents induced in a conducting work- 
piece due to a 3D eddy current probe scanning the boun- 
dary surface described by an arbitrary and irregular ge- 
ometry. 
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