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ABSTRACT

Numerical simulation and theoretical analysis of seawater intrusion is the mathematical basis for modern environmental
science. Its mathematical model is the nonlinear coupled system of partial differential equations with initial-boundary
problems. For a generic case of a three-dimensional bounded region, two kinds of finite difference fractional steps pro-
cedures are put forward. Optimal order estimates in 1> norm are derived for the error in the approximation solution.
The present method has been successfully used in predicting the consequences of seawater intrusion and protection

projects.
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1. Introduction

Seawater intrusion refers to the invasion of salt water
into the groundwater in coastal areas caused by the
changes in natural water environment and social and
economic development. In recent years, it has occurred
in many countries in the world such as USA, Netherlands,
Israel and Japan. After 1970s, the northern coastal area of
our country, especially economic zones around Bohai
such as Shandong, Hebei and Liaoning, is getting more
and more seriously affected by this problem with Shan-
dong province standing out. It leads to the great decrease
in industrial and agricultural production, making people’s
living conditions, especially their drinking water, poorer
and poorer. Therefore, it is urgent that seawater intrusion
be completely tackled.

The mathematical model consists of water head equa-
tion and salt concentration equation. Because of the
compressibility of porous media and that of the fluid, the
change in fluid density with the salt concentration, and
with the consideration of the fact that the salt is in the
moving state in porous media, there may occur convec-
tion-dominated diffusion. While water is moving in the
water-bearing stratum, it carries salt. The movement of
this solute with underground water is called solute con-
vection. Since salt is inhomogeniously distributed in the
whole solution, it always diffuses from places with high-
er concentration to places with lower concentration even
if the solution does not move.
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I> Norm Estimate; Numerical

1.1. Water Head Equation

With Darcy’s law, Euler method and Huyakorn’s lin-
earization method, the water head equation is obtained
[1.2].

55—68':' -V (K(VH —nce,))
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=-yn—+-—0q,(x,y,2) €eQted=(0,T]|,
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where S, is the specific retention, H =p/(p,g)-2z is
water head function, p stands for pressure, p, repre-
sents the density of reference water (fresh water), g is
gravitational acceleration, z is the height of water con-
taining layer, o is density and depends only on the
concentration of salt ¢, Hugakorn’s linearization
p=p,(1+ec/c,) is adopted. C; is the concentration
corresponding to the maximum density, and ¢ is the
density difference ration &=(p,—p,)/p). K=Kpg/u,
u is viscosity of the fluid, n=¢/c, is the density
coupling coefficient. e; = (0,0,1)", y is the porosity, q
is source or sink term, and the permeability is noted by

K. 0 0
K= 0 K, 0
0 0 K,

1.2. Salt Concentration Equation

The movement of CI° dissolved in the fluid causes
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convection and diffusion of Cl” in porous media. From
Fick’s law and mass conservation law we have the fol-
lowing concentration Equation [1,2].

&@zv-(WDVc)—ch
p ot ()
+q(C* —c),(x, y,z)T eQitel,
where ¢ stands for the concentration of ClI”, C’ is the

salt concentration near the source well. Darcy’s velocity
and the diffusion matrix are denoted by

u:—&K(VH —1ncey)
P

and
D, D, D;
D=|D, D, Dy|
Dy, Dy, Dy

1.3. Initial Boundary Value Conditions

To make a complete system, appropriate initial boundary
value conditions are necessary in addition to the above
equations. The initial value condition is

H(xy,2,0)=H,(x,y,2),c(x,Y,z,0)
=, (X, ¥,2),(x,y,2)e Q.

There are three kinds of boundary value conditions.
When concentration and water head are known, the first
kind of boundary value condition can be given as

H(xy,z,t)=h(xy,zt),c(xy,zt)
=g(x,¥,2t),(x,y,z)el,ted.

(€))

(4a)

The second kind of boundary value condition can be
given to non-flow boundary:

u-n=0,DVc-n=0,(x,y,z)el,,tel (4b)

where n is the unit vector in outer normal direction. A
kind of Stefan boundary condition is for free surface

boundary.
The boundary condition of water heat equation:
H=-z (x,y,z)el,
oH (4¢)

E+%(u—w)~V(H+Z)=O, (x,y,2)eTy,teld.

The boundary condition of salt concentration equation:
wDVe-n=(1-4,)(u-w)-n(c—c'),
(x,y,2)el,,teld.

where W is the permeated fluid flow rate in a unit area
and c' is the concentration of Cl™ in permeated fluid.
In the study of seawater intrusion miscible model, for
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the miscible fluid Henry suggested an analytic solution
under the simplified boundary condition and with the
steady-state flow in the homogeneous medium [3]. Segol,
Pinder, Grug, Heinrich and others studied the two-
dimensional cut plane problem [4,5], and Huyakorn,
Gupta and Yapa studied the solving process of the three-
dimensional problem [5,6]. However, their calculations
are made in specifically assumed conditions; therefore,
they can not truly reflect seawater intrusion.

For plane incompressible two-phase displacement
which is assumed to be Q -periodic, Jim Douglas,
Ewing, Russell, and others have published famous papers
on the characteristic finite difference method and finite
element method to solve the convection-dominated dif-
fusion problems with finite difference method, and to
overcome oscillation and faults likely to occur in the
traditional methods [7-12]. For compressible two-phase
displacement problem, Douglas and others have con-
tributed much to the mathematical model of “infinitesi-
mal compressibility”, numerical method and analysis
[13-16]. Douglas and Yuan discarded periodic conditions,
put forward a new modified characteristic finite dif-
ference method and finite element method, and obtained
optimal order estimation in I norm [17-20]. Special
treatment is needed for characteristic lines because the
method of characteristics asks for interpolation and they
may go through the boundaries near the solution regions.
It is necessary to find out the intersection point of cha-
racteristic lines and mesh boundaries and calculate their
corresponding functional values. While such calculation
is designed, we must determine whether characteristic
lines really go through the boundaries in order to decide
whether time steps lengths should be changed. In a word,
the practical calculation is quite complicated [19,20].

For the convection-dominated diffusion problems,
Axelsson, Ewing, Lazarov and others proposed upwind
finite difference method [21-23] to overcome oscillation
and to avoid computation complexity of the characteristic
differential method near boundary meshes. Douglas and
Peaceman applied the alternating-direction method to
numerical reservoir simulation [24,25]. By using Fourier
analysis, they succeeded in proving the stability and con-
vergence according to the constant coefficient [26,27].
This paper, starting from the actual case, puts forward the
modified method of upwind with finite difference frac-
tional steps procedure for seawater intrusion. It can over-
come oscillation and diffusion and computative comp-
lexity. At the same time it can convert a three-dimen-
sional problem into three successive one-dimensional
problems, reducing computation complexity and making
computation practical. Moreover, it increases the space
calculation accuracy to the second order. Some tech-
niques, such as calculus of variations, energy method,
operator-splitting, upwind method, commutative law of
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multiplication of difference operators, decomposition of
high order difference operators, the theory of prior
estimates and techniques are adopted. Optimal order
estimates in | norm are derived to determine the error
in the approximate solution. Thus the difficult problem
has been solved [16,28].

Generally, this is a positive definite problem:

0<K. <K (c)<K",[0K, (c)/or’| < K",i =123,
0<D,<D(XY,z,t)<D,0<¥.<¥(x,y,2)< V¥,

(&)

where K,, K", W¥,, ¥ are constants.
Our assumptions on the regularity of the solution of
(1)-(5) are denoted collectively by

H.ce (W )nw' (w'),
O*H/ot’,o%c/or’ e L (L7).

In this paper M and & express general positive
constant and general positive small constant respectively,
and have different meanings.

S, (K (Chn )5><Hr?+l)ijk =h” [K (C“n )M/z,jk (H

’ |:K (C':1 )i,j+1/2,k (H

‘<‘Q{)
—
A
—_—
)
~——
e
I
72
=
Il
=

5 (K (Cr)a.Hy )ijk =’ [K ( )ij,k+1/2 (H
(

vo(K(Cr)vH") =6

ijk

K(Cp)aH)

1

Let Hpy and Cl, be the finite difference solu-

tions of H (X;,,t") and c¢(Xy,t") , respectively. If

the finite difference solutions C; and H, are known,

we find the finite difference solutions C/*', H/' at

tn+1
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2. The Upwind Finite Difference Fractional
Steps Procedure

For brevity we consider only the first kind of boundary
value problem and the diffusion matrix D(X,y,z) of
diagonal form. In order to get the solution by using finite
difference method we use mesh region €, instead of
region Q. On space (X, Y, ), let step lengths be h;, x; =
ih], y_' = jhz, Iy = kh3,

i, (J.k)<i<i,(j.k)
Q, = (Xi’yj’zk) jl(i’k)<j<jz(i’k) :
k (i, J)<k <k, (i, ])

Let 0Q, stands for the boundaries of €, , Xix = (ihy,
jhakhy)", t'=nAt, W(XGe, t) = Wi . Let

K (Cr? )M/“k = [K (xijk»cr?,ijk )+ K (xi+1,jkﬂcl:,i+l,jk )]/29
K (Cr? )i,j+1/2,k = [K (xijk ’Cr?,ijk ) +K ( Xi,j+1,k»cr?,i,j+1,k )]/2,

K (Cr? )ij,k+1/2 = [K (Xijk s Chik )"‘ K (Xij,k+1’Cr?,ij,k+1 )]/2’

g Hi )~ (HI - HEL ) | (60)
e~ M)~ (M - HEL) | (6)
o~ i)~ (HE A (69
k+59(K(C£)5thn+l)uk +5E(K(C£)§ZHQ*1)W. )

2.1. The Second Order Upwind Finite Difference
Fractional Steps Scheme

First, compute the approximate Darcy’s velocity
U"=(U7,Us,Uf)  as follows:

U1n __5 [KI(C;)} Hr?,i+1,jk _Hr?,ijk +
i+1/2, jk

Uzn __Po [KZ (C'?)] Ht?,i,j+l,k _Hrr\],ijk +
i j1/2.k

K1 (Cr:] )— Hr?,ijk B Hr?,i—l,jk
y L p(C,:') Jici2, i ’
K(C)] I HL
h, L 'D(C;‘]) Ji,j-12, " ’
K3 (Cr? )— I'T,ijk - Hl:,ij,k—l

2

U}” __F5 [K3 (Cg)} Hf?,ij,kJrl_HfT,ijk .
ij,k+1/2

p(Cr) h,

For salt concentration Equation (2), the modified

Copyright © 2012 SciRes.

L ’O(C'?) Jij,k—l/z ,

method of upwind with finite difference fractional steps
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scheme is given by
n+1/3 n
Ch,ijk _Ch,ijk

A(Ch )~

:(1+%|U1”

[ jj; 5, (Dis,Cy” )uk

+(l + h—22|U2" D. jl S (Bzéycr? )

ijk

ik (8a)

+(l+h—23|U3”

BQIJI 5, (D5,
j

ik ijk

_5U1n’XCI:‘,ijk _5U2n’ycl:,ijk _5U3n‘zct?,ijk
05 (Cofi = Cige )i (1K) <i <y (1K),
CrTTJLB = girj]lrl’ X € 0CY,, (8b)
where S(C)=yp,/p,Di =D, i=1,2,3.

ET AL. 975

C n+2/3 C n+1/3

ﬂ(cr:],ijk) h.ijk ~ h.ijk

h2 n| /7! - ~ n+2/3 n
=(1+?|u2 D> ji,-k 5;(Das, (1 =Cl)) . Ow)
Ji (LK) < j < J (0, k),
Cf?:;}iB = girj]kH: Xij € 0LY,, (9b)
2\ Criie ~ Chik
ﬂ(ch,ijk)T
_ h3 n| =t . N n+l n
(142t jijk s (Bea(cr-ct)), . (0a
k (i, J) <k <k, (i, ]),
CrTTJL = girj]l:l’ Xij € 0€3,, (10b)
where

S, C, = Ulrjijk [ﬁ(UEUk )Bl_lljk 'Bl,i—l/z,jké‘; -i-(l—ﬁ(Uln’ijk ))Bl_}jk '51,i+1/2,jk5x]cijk,

Ul x ijk
us,

U3,z

— 1,2>0,
and H(z)= 0.2<0.

Next, for fluid Equation (1) the fractional steps sinite
difference scheme is given by

Seiic W =5 (Kl (C: )§XH;+1/3 )ijk
+5§ (KZ (C'?)é‘ny?)ijk +9; (K3 (C;)azH;)ijk

i n (11a)
v, Criik ~Crik . p(Ch,ijk ) 0
ijk At 20 ijk
405 (K (CT)CR ) i (1K) <i <y (1K),
n+1/3 n+l
Hh,ijk = hijk > xijk €0, (11b)
H ;Tji/s _H rTTJLB
Ss ik - a
=5,(K.(C7)3, (H* = 7).« (12a)
(k)< i<, (ik),
Hoc =hiic's X €09, (12b)
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) ,Cik :UQ"‘ijk [E(U;ij )B;,lijk ~52,i,j—1/2,k§9 +(1—ﬁ(U;ijk ))B;,lijk ~52,i,j+1/2,k5y:|cijks

O 0 Cix =U 1 [ﬁ(U;ijk )Bgluk 'B3,ij,k—1/252 +(1 —H(U;’ijk ))B;]k '53,ij,k+1/252:|cijk,

n+l1 n+2/3
Hh,ijk -H

Ss,ijk " h.ijk

=5, (k,(cr)s, (Hp" —H,?))ijk, (13a)
k (i, )<k <k, (i, ),

Hiie = hic', Xy € 093, (13b)

The initial approximation reads
Cr?,ijk =G (xijk ), Hr?,ijk =H, ( Xijk )» Xijk Q). (14)

The algorithm for a time step is as follows: Assuming
the Approximate solution {C,?,ijk, H;’ijk} at time t" is
known, it is needed to find out the approximate solutions
at the next time level. First, compute Darcy’s velocity

U", from schemes (8a), (8b), and method of speedup is

used to get the solution of transition sheaf {ijm

along X direction. Secondly, from schemes (9a), (9b) we

obtain the solution of transition sheaf {C;;ﬁ“} . Thirdly,
from schemes (10a), (10b) we obtain solution {CQ’I'JL} .
Next, from (11a), (11b), by using method of speedup, we

get the solution of transition sheaf {H;‘lek/}} along X
direction; from (12a), (12b) we obtain the solution of
transition sheaf {H;Tji”} Finallf, from schemes (13a),

(13b) we obtain solution {H:Tllk . So a complete time
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step can be taken. At last, it is because of the positive
condition that this finite difference solution exists, being
the sole one.

2.2. The First Order Weighted Upwind Finite
Difference Fractional Steps Scheme

For salt concentration Equation (2), the first order up-
wind finite difference fractional steps scheme is given by

n+1/3 n
Ch,ijk -C

,B(C,:'”k) n hik _ 5 (D 5Cn+1/3)

+6§ (52§VC: )ijk * 52 (5351C: )ijk (8a)

ijk

_E‘UF-XCr?ijk _EU»" yChn Jijk _EU?sZC:,ijk
+qil;k( hljk C:uk) (jﬁk)<i<i2(j’k)>
C:lekn = gi?ljl» Xijk €00, (8b)’

n+2/3 Cn+1/3
~ “hiijk

plci) 2 5 (B, (0 -c)

ik ” (9a)’
§(iLk)< i<, (ik),
Coii” =03 Xy €0, (9by’
Nl _ 2
B(Cl )W =% (5352 (ci-cr ))i,-k > (10a)
k(i §) <k <k, (i, j),
C;TJL gu;l, Xij € 0%, (10b)’

where
SuaCy =AU, [ﬁ(ufijk)a; +1-H (U, ))ﬂcijk
+(1=a)U e (e =G )/2h1 ,
and 8u3.,Cy,0U.2Cy, are defined similarly with a con-

stant « € [0,1] .
The algorithm is similar to that of Scheme (8)-(13).

3. Convergence Analysis

For brevity we assume Q= {[0, 1]}3 l/N

Xy =(ih, jh,kh)", t"=nAt, W (xuk, ")=Wi, . Let
n=H-H,,§=c-C,, where H and c are the exact
solutions of this problem (1) - (5), and Hy and C;, are the
difference solutions of the schemes (8) - (13). ( ), {| and
|| || denote the inner product and the norms on the dis-
crete spaces 1(Q) and h'(Q) corresponding to L*(Q) and
H'(Q) [19,20,29]. First consider the second order scheme.

Theorem I. Suppose that the exact solutions of prob-
lem (1)-(5) satisfy condition:

H,ceW™ (W)L (w*),
(W) (w)

oH/at,oc/at e L (W), 0°H /ot ,o°c/at’ e L (L),

Copyright © 2012 SciRes.

Adopt the modified method of upwind procedures (8)-

(13). Let the dissectible satisfy relation: At:O(hz).
Then the following error estimates hold:
hIIC” (3:0h h E”(J;h)+||d H H ” (3:7)
+||d (c-C,) ||L o) <M’ (At+h? )

N 2
n
where [ol o 0 { St
Constant M" depends on H,c and their derivatives.
Proof. First consider the concentration equation. For
Equations (8)-(13), dispel C!*"* and C[**”, and we
get the following equivalent form:

n CPTTJIK _Cr?,ijk hy =1 ! _ .
ﬂ(Ch’ijk)T— (1+5|U1 > jijk 5;(D15)(Ch )iik
h —\!
n N D n+l
+[1+2 ;|D2 jijko"y(Dzsych ),
h —\!
n N Ia) n+l1
+(1+2 7|Ds jijkaz(Dgfszch )i,-k}

5 C:uk 5 Chnuk 5 " Cr?ijk +qi?k( h uk Cl:uk)

-1
: 1+ﬂ|u;|5;1 D:5,d,C7)
2
+(1+h
2
~(1+h
2
+(1+h
2
h n| 7! - ~ n
{131z 5,(Dss,d.Cy)
h —Y!
+(At)3(1+E|U1”|D1) s,

ijk
-1
-{Bla{ﬂl(c;)(ug ;B;‘j 5,(D2,

1[5 & (Baac: )m |

" Bll]l 5 (Dlax (5" ch")
ij

iik

(
"D, )1 5, (Do, dCy )N
ijk
1

ijk

amy(; . h
Vij (Ch)(l+2

1<i, k<N -1,
(16a)
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Cf:Hlilk glj|:1’ Xl]k € agzh (16b)

From Equation (2) (t =t"") and (16) we have the concentration error equations.

1n 51—1]1 (D15 §n+1 )i-
]

n gt?ﬂ( é:hlk
ﬁ(ch,ijk) J AL : {(1+2 .

] n+l h n| ! - n+l
j_ (Dzé‘f )ijk+(1+2 5| Ds jijk ( 30,8, )ijk}

n+l n n+1 n n+l1
5U{‘ huk n+l X uk :| |:5 Ch Jjk 63” y ik :| |:5 Ch Jijk é‘ml Zcuk :|

Il
—— 1

+ KH ur! IIJ (1+ ji& (D5
ijk ijk i
+Kl+ ug*! (1+ j } D ) C”“)
ijk tk
+|:(1+ ut! l i (1+ h j :| D3§ C””) }
ijk 2 ik
+{q| h Ijk |Tl:1) quk ( h Ijk CI? ijk )}

n+1 n+1

h
—(At)’]]]1
(a0 |1+
—(1+h

2
(l+h
2

h Y = —1 ( A+l
+(A ){(1+2 D jijk(sx(Dlax(,B (c )(1+2

h Y = 0 hp a1 )
| 1+2{ur”|Da | & (Das,dic”) ~[1+=juror | &
2 ’ 2 ijk g
ijk

-1
.[5@ {ﬂl(cg)(ngw; |5£1j 5. (Bzayﬂl(ch“)(ngw; |5§1j

Dlljl 5, (B@ (,B (c ”“)(H; Dzljl 5. (525ydtcn)j]
iik ijk
1 -1 ]

" BIIJW 5 [Blax [ﬂ-l (ch”)(ng ;B?J 5, (D26,d,C )D

ijk |
D, ‘j 5 [Dlﬁ [ﬁ (c™ (1+
ijk

Jlé'y(ﬁzé'ydtcr?)J .. ++[]

n+1

ijk

h

n+1

D: jl 5.(D26,47 (™)

n+1

-1

5 (Do ,dC )))))Uk}”ﬁi’l i jksN-L, (17a)
i
(;T;l =0, X;, €09, 1Th Next, consider the fluid equation. For Equations
(17) (11)-(13), dispel H™'" and H**”?, and we get the
h n+1 < M h2 h h
where & (A“' ) following equivalent form:

Copyright © 2012 SciRes. 13G
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1
s Hyik — Hii
s,ijk At
1 n
Cr?,?jk _Ct?,ijk N p(ch‘ijk)

At Po

—(At)? {@ (Kl (cr)a (s, (K, (Cﬁ)éydtHQ))) (18a)

_{5?(K1(C'?)5XH*TH)UK*%(Kz(CQ)%Hﬁ“)i_ +5. (K, (Cr)aHp)

jk ijk

=NV qi?k + 7752 (K3 (Crr‘] )Crr‘] )ijk

ijk

(K (cr)au (s (<, (cr)and))) +a; (K (e)a, (s (k. (c)aar)) |

ijk ij

+(At) 6;(K1 (ch)s, (SS‘5y(K2(c;)5y(ss‘5Z(K3(c;)5zdtH;))))D J<i j k<N -1,

ijk

Hii =i Xy €09, (18b)

tn+1

From Equation (1) (t =t"" ) and (18) we have the fluid error equations.

n+l1 n

S, ””th””k—{@ (Ki(er)oa), +o,(Ku(cr)am), +6, (K, (c])om™ )i,-k}

U]

g o (o
-V, (|:K (Cn+l)_ K (C; )j|VhH n+1)ijk —NWy Sk m Siik _"{p(:uk ) qlr;lzrl _ p(ph Jijk ) qi,;k]
o 0

k(e )e), - (K (e)er),
_(At)z{[ax(Kl(c"“)ax(Ssﬁy(Kz(C”*‘)%dtH")))m

- (k€)oo ) (5, (e
(koo (s e)oama))) [+ o (< () (50 (k. ) sam)
_5Y(K2<c:>ay(sssz(&(oﬁ)@dﬁﬁ)))uj}

R Y e B R N ER R CA LN B EE )
_5X(Kl(c;)(sx(s;(sy(Kz(c:)éy(SJ@(Kz(Ch”)@dtHh”)))))uk}”gﬁlk o

1<i, jk<N-1,

ijk

ijk

n =0, X, €09, (19b)  where

nl?

I

2 2
" +||Vh1t"
0,00

T

where |g;’|'11k|£ M At+h )
We shall introduce the induction hypothesis: We consider fluid error Equatlon (19). Test error Equa-

} tion (19) against S =nj' —m;, and summing it up
1,00

=0 (h’At) =0, (@0) by parts, we have

1,00 ,00

n ij

sup max{”n"”1 IE
00

0<n<L

Copyright © 2012 SciRes. 13G
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<Ssdt7t”,d " At+ {R n+1,5x7t”+1>+<K2 (C}?)é'yn"+l,5y7tn+l>
+<K CM6,a™ é'nn”ﬂ [< 511 ,om" >< 2<C£)5ynn,§ynn>+<K3(C}?)5Znn,5znn>:|}
\%

{
1

””) (C )j|V HM) >At_77<(//dt§”,dtnn>At

(K
) g _PLCH) dtnn> A
Po

Po

p(

<5E(Ks(Cnﬂ)CM)—5E(K3(Cﬁ)Cﬁ),dtn”>At
(o (e s s, (s ) 07

Gy ) X( s y( ( )5dH”))),dtn”>At+~--}

ol
B

—5;(KI(CQ)§X(SSI%( (Cﬁ)§y(8;1§z(K3(Cr':)5ZdtHrT))))),dtn”>At+<g£‘“,dtn”>At. Q1)
N timate the t the right-hand side of n+l c"
(21).0W we estimate the terms on the right-hand side o < p(;o )qml —p(poh )q”,dtn” Al .
<V, ([K(e™)=K(Ch)]V,H™).da" > at < M{ " 2+(At)2}
i 2 " (22a)
<M {"V +(At)} At-‘ré'”dtﬂf || At, 77<5;(K3 (Cn+l)Cn+l)—5E(K3 (C;)Cg),dtﬂin>At -
“n{yd&".da”) At 22b) <M {||v I+ 2+(At)2}At+g||dtn” " At
=M | ! For the fifth term on the right-hand side of (21).
~(at) <5;(K1(c”“)5x Slay( (e ”“)5y(8;15E(K3(c”“)5zd[H”))))]
_5;(}(, (cr)s, (s;l(sy K,(Cr)s, (ss-lag(K3 (CQ)&ZdtH{“))))),dtn” > At
:—(At)3{ 6;(K1(C,?)SX(S;lé'y(Kz(C,?)éydtn”))),dtn”> (23)
+<5X(Kl(C;‘)&X(Ss’l&y([Kz(c””) K:(Cr)]s,d.H ))) d >
+<5; ([ (e) =k, (e0) ] (87, (o (c™) 5,0H7 ) ) >}
For the first term on the right-hand side of (23), though Noting that
the operators —5;(K5X),—5y(K5y)~- are self-conjugate, 5,0, =5,0,0,0,=5:5,,5.0, = 6,0.,8.5. = 5.5,
positive definite and bounded, space region is cubic. YROTRTY Ty ey Y Iy
However, their products are generally incommutative. we have

Copyright © 2012 SciRes. 13G
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_(At)3{ 5, (K] (CHEAEATS (C;)éyd[n”))),dtn">

N
3 i Zk‘il{ ( )|+1/2 ik K, <Cn)| j+1/2,k S, 'Jk [5 5 d n"k] [Kz (C;‘] )i,i+1/2 k 0 (SS Ak (C': )i+1/2,jk)é"‘(j“n:ir}k
+S, 'lel( :)Huz ik 5, 2( ) i, j+1/2,k '5Ydtn;k +K, <C'? )i,j+1/2,k K, (C"n )|+1/2 ik 5,8, 'Jk}g 9 d n'lk (24)
+[5 K <C )I j+/2.k 0 (SS 'le (C )|+1/2,jk)+ K, <C;)i,j+1/2,k.

g (5 Soin- K <C )|+1/2,jk )]éxdtn;}k '5ydtnir}k}h3'

x%s,ijk

From induction hypothesis (20) we learn that
K, (C}?), K, (C,?), oK, (Ct?),é'y (S;IK] (C}?)) are

bounded. To the first and second terms of expression

(24), the positive definite property of K,,K,,S;" should
be applied, and high-order difference term 5 o,d ”.Jk
should be separated. By using Cauchy 1nequa11ty to
eliminate the terms concerned, we can get

N
_(At)3 Z {{K1<C'?)i+l/2,jk K2( n)u 412k S i [55dn”d [ (C:)ivﬂ”z’k

1
'5V (S-;ilik K1 (Chn )i+]/2,jk )5Xd T ikt SS 'JkK (C':] )i+]/2,jk ' XK2 (C*? ). Lj+/2.k '6Vd‘ngk
(25a)
+K, (Cy )M_Mk K(Ch).0 PR ,Jk}s s,d n”k} h' < —%KZ( ) (at) Zkl[a s,d nuk]
i,
M{ d, }(At) <1 Kz( VY [5,6,4,, ] h3+M{||V s }At.
i,j.k=1
For the third term of (24), we have
N
- At)3 i jzk:] {I:éx K2 (Cr? )i.j+1/2,k .5)’ (S K (C )|+1/2,jk ) + K2 (C: )i,j+1/2,k
5 (5Xss LK) k)}a d, -8, nuk}h (25b)
<M {||vhn”*1 o }At.
Similarly, for the other terms, we can obtain
[ (). 5210 K () o)) - K, () (55 (K. () i) i)+
(26)

+<59(K2 (c"“)ay(s;‘(g(Kz(c"“)5ZdtH"))),--->}s M {7,

n 2
+||th +

’ +(At)2}At.

Now, we consider the sixth term of the right-hand side of (21).

(At)' <5X (Kl ()5, (s,;‘ay (K2 (c"“)ay (858, (K, (c™")8,d H )))))

—&(K ( :

X y
Ty
2

x“y¥z
i,j.k=1
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5,(k.(c 52(K3(Cﬁ)5zdtH,§‘))))),d[n“> @7
KX (s)) (a0 Y [6.6,6.d, T M v

’ +(At)2}At.

+||Vh7t
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For the last term on the right-hand side of (21).

(. da")At <M {Lvhn"“f+||v I +

’ +(At)2} At. 28)

From (21)-(28) we can obtain

%{<K (C; )th”” ,th””>—<K (C;)th”,vhn”»

n

29

2 2 2 2
SM{"th”“ +||Vh1r” +||E +||V "

+(At)2} At+ e o’ At

Next, consider the concentration error equation. Test ing it up by parts, we have

n+l ff.,"?l _ ‘:Kunk and sum-
D j (é””—e‘”)D

error Equation (17) against 0,
Dzlj (§n+1 _én ):|>+<53525n+l’52 |:(1+ Bllj (§n+1 _fn ):|>

n n n ~ n+ h
<ﬂ(Ch)dt‘§ ,d,é& >At+{<D15X§ LS, {(Hz
<§U o .d § > <5U;,ycr?_5u§‘,ycn+1,dt§n>+<5u3”,zcr?_§U§vzcn+l’dt§n> }At

A
e Jopasciac)
<[<£ n( Jue >}m

]
o)
~C").d¢")a

—<Mf%<@+“ e

)

Pla
5, {5@ {,b’“ (cr )[ —|u? _ljl S, [Bﬁy (ﬁ" (ch")(
+(&™,dg") At

First, we estimate the second term on the left-hand side of (30).

n n+l h n| /! - n+1 n n+l h
<D15X§ ,5{(1+5u] D, ) (em-¢ )D {<D5§ (1+
_<515X5n,[1+ o) §X§”>}—M e
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n+1

§n+l 5 n+l g u;H—]

n+1

n+l

n+1

1+

j <515zdr5”)D,dt§">+..}
s ) o (Bsazdtfn)mﬁ..} -

I’H~1

]lj S §n+1>
(31a)

n+l1

h
Pl

At—g| ¢
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o)

Similarly,

<525y§"+‘ .5, Kl +

h
—|uy*
2

(31b)
{<D 5,Em, (1+h T 5y§"“> < 255 u;“ 21] 5§>}—M||vh§"“zm—g [
~ n+l h nel | R N n+l n
<D352§ ,5{(1+5|u3 |D3j (™ -¢ )D
(31¢)
2{<D 5,EM (1+h urt JJ 55"“> <53525”,(1+hu““ 31) 5§>}—M"Vh§”“2m—g t

Now, we estimate the terms on the right-hand side of (30). In induction hypothesis (20) U" is bounded, so we have

(8,00 -8, 07 a8 at<m {Jur Ce(at)' At [d, (32a)
Similarly,
{<5 Cn nld§><5 Cn n]d§>}
(32b)
sl\/l{u2n “+ur +(At)}At+g| t
For the second term on the right-hand side of (30), we have
h nl -1 - h n| /! - N n+l n
1+l D | - 1+ (D 5, (D5 Cy" ), d&" )+
(33)
h n] -1 B h n| /! - n n+1 n n n|f? 2
te2fur[D | [ 1e2i[Ds | (6 (Dioci)dg ) pat<m { U +(at) }At+g| t
For the third term, we have
<q”“(C*’””—c””)—q"(C*’”—C”),dt§”>Ats M{ " 2}At+g t (34)

We consider the fourth term, and we have

_(At)3{<[ oy Bl‘jla{ﬁl5x[ﬁl(c:)(1+g BZ‘Jlay(Bzaydg“)H,dg">

N[ — —
- At)3 Z {Dl,iﬂ/z,jk Dz,i,j+l/2,kﬁ71( ik (l+ |U1uk|D“‘kJ (
kel

U,

hi . 2! n\2
=Yk Dz,ijk} (5Xé'ydt§ijk)

i,jk=

_ _ ) hy o =1 ) —
+|:D2,i,j+1/2,k5x Daijiaxf ( ik (1 +— |U2 IJk| D2 ukj (1 +E|U1,ijk| Dl,ijk\J 0,d,&j + Daijunk

n -1 n h n|R_C! B h n R/ h n 3
8,| Drisvzi B (Cly) 1+§|U2,ijk|D2,i,»k 1+E|Ulqijk|D1,uk S Eh 4o |8,8,d. &0+ h.

Copyright © 2012 SciRes. 13G



Y.R.YUAN ET AL.

On positive definite condition:

w.D.<Di<y'D"0<B.<p(C)<f.0<(p) <p'(C)<(p) .

In induction hypothesis (20) U" is bounded, so we h

—(At)’ {<(1 +g

< —(Azt)3 (w.D.Y (') b2

u’

2
+

6,0,d,&"

Thus, for the fourth term we can obtain
-1
3 h —-I —=  {~n h
~(At) {<[1+5 Di J ax[lesx [/3 (e )(1+E
-1
+<K1+D Bl_lj —[1+E
2 2

<- (Azt)s (w.D.Y (') B2

u’

n+l1
u]

U/

0,0,d,&"

gy {||vh§"+‘

Similarly, for the fifth and sixth terms we have

—(At)3{<(l+g

<oy (s) 0]

Yy {||vh§”*1

u’

2

5,0,d,&"

+

5,0,0i¢

2
|

2 2 2
+||vh§n + §n+1

+

gn

For the seventh term we have

(at)’ {<(1+g
h

5, (Dzﬁyﬂl (ch")(uE

u’

A

<- (A;Y (w.D.)Y (5) 0

5,5,5,d,&"

x“yYz

For the last term
<51”“, dt§">At < g”dtef”

For error Equation (30), from (31)-(37) we can obtain
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~! B n -1 n h
Dlj 5X[D15{,B (ch)(uE

D/ jl}ax (5@ ( B (c™ )(1 +g

Dlj 5X£D15{ﬂl(ch’“)(l+5

Blljl 5, (5@ (,B‘ (co )(1 +g
Ds j_l 5. (Bgazdg")j]] ,dt§“>+

gy {||vh§"+1

ave (1+h/2

Un

U,

M (8t)' {|v, 8"

U,

n+l
u2

2 2 2
+||Vh§” +[EM +

h

A

n

"5,

)

U,

—1 -
0 |

e\

P At+M {(At)2 +h4}.

“tfag

gn

2
+

|

§n+l

2

J’_

B;IJ‘ 5, (Bzfsydlgn)ﬂ,dtg“>+...
D. jl 5, (D25, dc" )D,d[5">}

2
|

gn

i\l
D. ) >b, >0,a=1,2,3,

D:' Jl 5,(D:5,d.8" )D,dg">

Ds j_] 5. (Bgazdg“)n,d1§“>+--}

2
.
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(352)

(35b)

(36)

(37
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1{]:<D15 £ [ % llj 5. 1> <525y§n+1’(

n+1

U,

n+1| /! - n+l
—|U, D2 5y§

<D35 & 1+ ur Dslj 5Z§"*1>}[<515X§”,(1+ﬂ T Bllj 5X§”>
2 (38)

< u”“ 21j 5" > <53525",[1+; ur'|D J) 5,E" ﬂ}

u u" +||Vh§” a +||V e +]er 2+(At)2}At+g E at

For fluid error Equation (29), summing over 0 <n<L and noting that n° =0, we have

(K(Cr)vya ", vym=)=(K(C))V,n', V')

L

Z"d o

(39)
<Z<[ (Cn)-K(Cr)]v,m". vy )+ o -u" R A N A e e e IR P
n=0
For the first term on the right-hand side of (39) we have
S{[K(er)-K (e v,Envi) seXfae | atem Y v 0
n=lI
By
2 2
u"-u" ﬁM{(;:n }, (41)
we have
o] ats e[ < {Z[h 2+””1N+MW+W} *2)

For concentration error Equation (38), summing over 0<n<L and noting that £° =0, we can obtain

{KDéf“ (1+ |u“|D1J 5X§L+‘>
Dzlj 5y§L+1> <D 5§L+1 [1+2 Dslj 5Z§L+l>:|
KDl(sf l+—|u D ) 5X§°>+<525y§°,(1+g|u3|52j_ 5y§°>+<535Z§°,[1+g|u3|531j 5Z§°>}}
R N h Y "
52{<D15§ l:( j (1+2 D1 ) :|§Xf >
- ! h S
+<D25y§“,{(1+— ; j (1+2 Dzj }5y§”>
Ds5,&" £1+ ’ _'1)_] (1+h fj {i“
! ’ 2 n=0

E 3
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Then,
: n|? /= L+l hi Lo - L+l
> |lde A+ (D, 1+§|u1 D | 5¢
n=0
B L+1 hy Lo - L+l ~ L+l hy L= - L
+( D25, &, 1+E|u2 D> | 8¢5 )+(Dss g, 1+5|u3 D: | 6, (43)
L
<M {Z["th" e ?]At+(At)2+h4}At.
n=0
Combining (42) with (43) it yields
N d n2 d n2 L+12 L+12<M - n2 n+12 2 h4 44
Z(;[" & +[dm }At+||§ [ < Z(;[n e IJAH(A'[) +h* LAt (44)
Applying discrete Gronwall inequality, we have
- n|? n|)? P P 2
;["dlé +||dln ]At+||§L il +||TI:L I, =™ {(At) +h4}. (45)

It remains to check induction hypothesis (20). First,
for n=0,since n’=¢&°=0,(20) is correct. If
1<n<L, (20) holds. From (45) we have
"nL” o +||§L”||lm <Mh"? | then induction hypothesis
holds for n=L+1.

For the first order weighted upwind finite difference
fractional steps scheme, we have the following theorem.

Theorem II. Suppose that exact solutions of problem
(1)-(5) satisfy condition:

H.ceW! (W™ )N (W),

oH /et oc/ote " (W), 0°H/at* ,o°c/at’ e L (7).

Adopt the first order weighted upwind procedures
(8)-(10), (11)-(13). Then the following error estimates
hold:

|H - Hh"t‘”u;hl) +[e-C,

+[|d,(H —H,)

L”(3;h) ' (3:2) (46)

+||dt(c—Ch)|| <M7(At+h).

T2 (3:1%)

4. Numerical Simulation Results and
Analysis

Considering the complexity of problem, we select Huang-

heying area of Longkou city as the model area which has
3-dimensional observation grid. This area is on the left
bank of Huangshui River neighboring with Bohai in the
north and Huangshui River in the east. Its length is 3000
meters and the width is 700 meters. Its average thickness
is about 17 or 18 meters. In the upper part of the wa-
ter-containing layer there is relatively fine sand, and in
the lower part—coarse sand with gravel which contains
one, two or three layers of mild clay and sludge of dif-
ferent thickness. We decompose this area into three parts
according to the permeability. The section graph and
plane graph are listed in Figures 1 and 2, respectively.
The geological parameters are listed in Table 1, where
No., CP, RWS, SY, DD and ICP denote zone number,
coefficients of permeability, rate of water, specific yield,
dispersion degree and infiltration coefficient of precipita-
tion.

Let h,=20m,h, =30m,h, =1m. We compare our
results, real values and the results of others. A represents
the results of Nanjing University [30], and B represents
our results. The comparison of graphs of water head and
concentration are listed in Figures 3 and 4, respectively.
The section graphs for water and concentration are listed
in Figures 5 and 6.

Table 1. The geological parameters.

No. CP (m/d) RWS (m ) SY DD (m) P
K. =K, K, S, S, a, a;
A 17 15 8.0x 107 0.075 8.3 0.001 0.3
B 103 22 12x10* 0.13 8.3 0.001 0.3
C 7 7 5.0x%x107° 0.04 0.08 0.0004 0.3
D 63 17 1.0x10* 0.11 0.08 0.0004 0.3
Copyright © 2012 SciRes. 13G
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Figure 1. The section graph.
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Figure 5. Section graph of water level computation in September.
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Figure 6. Section graph of CI” concentration in September.

From the above we can see that the computation re-
sults are exact, and the algorithm given in this paper is
stable and can be used as the algorithm for the simulation
of large-scaled problems.

5. Consequences of Protection Projects and
Applied Modular Form of Project
Adjustment

5.1. Consequences of Projection Projects

The main water conservancy works against seawater in-
trusion include projects for water saving, Yellow River
regulation, water retaining and artificial precipitation.
Their ultimate goals are to increase water supplies and to
decrease the extraction of underground water the produc-
tion of human and animal needed, so that the descent of
underground water level will be slowed down and even
underground water be increased. All this is very effective.
Up to now, the protection project results are mainly em-
pirical and qualitative. We have not seen publications
both in China and abroad about the real salt water and
fresh water movement changes after the projects are si-
mulated with computers. There are no publications on the
quantitative and comprehensive predictions of vari- ous
projects. Now we take watersaving project as an example
to discuss the predictive result of the projects.

Scheme: Keep the present precipitation level. Take
into consideration the effects of water-saving project on
seawater intrusion. Take the average precipitation amount

Copyright © 2012 SciRes.

in many years (Refer to “Comprehensive Control Plan
Against Seawater Intrusion in Laizhou Bay Area of
Shandong Province™). Simulate water levels and changes
of salt concentration two months after the peak period
(July-August) in the following four conditions: the pre-
sent pumping out, saving water 10%, saving water 20%
and saving water 30%. Water heads and concentrations
of some wells at initial time are listed in Table 2. The
calculation and comparison results are listed in Tables 3
and 4. The predictive sections at water saving 20% are
listed in Figures 7 and 8.

From the above we can see the consequences of water
saving projects are remarkable. During raining seasons
the underground water level rises again quickly. In dry
seasons, its descent is slowed down. So the projects slow
down the migration of salt concentration to fresh water

Table 2. The initial values of water head and concentration.

Well No. Water head (m) Salt concentration (mg/L)
1-2 -1.01 3667
2-2 -2.20 3000
3-2 -2.77 377
4-2 -3.10 400
5-2 -3.13 98
6-2 -2.87 100

1JG



988 Y.R.YUAN ET AL.

Table 3. The effects of water saving projects on water head.

Well number, Water head

Saving water
1-2 2-2 3-2 42 5-2 6-2

0 045 -1.75 204 242 -232 -2.16
10% -034 -152 -180 -2.14 207 -193
20% -023 -131 -1.56 -1.87 -1.81 -1.71
30% -0.12 -1.10 -133 -1.60 -1.55 -148

Table 4. The effects of water saving projects on salt concen-
tration.

Well number, Water head

Saving water
1-2 2-2 3-2 4-2 5-2 6-2

0 3871 3044 1521 101 98 99
10% 3753 3088 1507 101 98 99
20% 3725 3032 1493 101 98 99
30% 3696 3027 1479 100 98 100

0 200 400/m

2 m isoplethic curves
of water level

1 well | Extractive well

Figure 7. The water head prediction at 20% water saving in
July-August.

0 200 400m

100 mg/L isoplethic curves
of CI” level

Extractive well 100

Figure 8. The salt concentration prediction at 20% water
saving in July-August.

areas.

5.2. Predicting the Consequences of
Underground Dam and Tidal Barrage
Projects

Underground dams and reservoirs are built with the aim
to regulation underground water and prevent seawater
intrusion. Underground cut-off walls are built to stop

Copyright © 2012 SciRes.

undercurrent and seawater, since water head is low and
the dams are located under the ground, so the stability
and safety are high. We can say that the seepage control
ability of dams is the key point. Our practice indicates
the following four effects. Firstly, underground dams
stop undercurrent and increase water supply, playing the
role of saving and regulating water. Secondly, they raise
underground water level and increase artificial preci-
pitation supply coefficient, playing the role of retaining
and supplying water. Thirdly, the upper reaches dams in
seawater invaded regions retain and regulate under-
ground water, increase the height of the fresh water
heads in upper reaches, relieving the present seawater
intrusion and thus playing an important role for seawater
invaded regions in lower reaches. Finally, the dams in
lower reaches (near the coast) prevent seawater intrusion.
Tidal barrages are usually composed of two parts: the
part on the ground and the underground base. Our
analysis indicates that both parts are very useful. The
on-the-ground part prevents seawater coming in with
windstorms, while the underground part prevents sea-
water intrusion in common situations because of its small
permeability. The advantages of tidal barrages especially
obvious in of windy period.

There usually are two kinds of anti-percolator, namely:
lower reaches dam in seawater invaded region, and upper
reaches dam in seawater invaded region.

Lower reaches dams should be built on rivers which
empty into the sea, or in other places where both salt and
fresh water move freely. If a large amount of under-
ground water is pumped out in coastal areas, water level
goes down rapidly. When underground water level is
lower than the average tidal level, seawater intrusion
happens. This is because of the continuity between inland
fresh water and seawater. Underground dams reduce
greatly or completely stops the permeability of auto-
chthonous layer. Therefore, cut-off walls can reduce the
possibility of the seawater in lower reaches intruding
inland. Moreover, they can retain and regulate the
drainage of underground water. They stop seawater
intrusion thanks to the combined actions of their own and
fresh water curtain. Underground dams should be located
far from the upstream of tides with the consideration of
tide actions. Otherwise, tidal barrages should he built
whose upper part is barrage and the lower part is
underground dam.

As for the upper reaches dams in seawater intruded
areas, since the intrusion has occurred, the underground
walls must be built at the head of these areas with the
aim to retain underground water and increase the fresh
water head from upper reaches and to make seawater
intrusion stable. This is also useful for inland fresh water
areas far from the coast because these dams prevent the
decrease of fresh water amount going into the sea, and

1JG
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thus prevent the descent of underground water level in
the upper area of intruded areas. The descent of under-
ground water level accelerates seawater going into the
inner part of fresh water areas.

We predicted the effects of the dams on both upper
and lower reaches on seawater intrusion. We chose the
above-mentioned calculation regions. The results are
shown in Table 5. Figure 9 shows the calculated
concentration comparison curve. Where A is the depth of
the lower reaches dam 0 m. water level of the upper
reaches is —1.5 m. B is the depth of lower reaches dam
2m. Water level of the upper reaches is —1 m. C is the
depth of lower reaches dam 4 m. Water level of upper
reaches is —0.5 m. D is the depth of the lower reaches
dam 6 m. Water level of upper reaches is 0 m.

5.3. Applied Modular Form of Project
Adjustment

We should also apply numerical simulation to make
underground water mechanics serve our goal. As for
water supply, we should study how to make the limited
underground water resources exert the most social and
economic benefits, how to limits underground water
level descent within our control and how make water
supply reach the utmost. As for the protection of natural
resources, we should study how to control pollutant
discharge and prevent underground water being polluted,
and how to keep water quality within the permission of
hygienic standards. Here we propose the optimal

Table 5. CI" concentration computation with the effect of
upper reaches and lower reaches dams (after two months).

Computation Observation point

condition

1 2 3 4 5 6
A 0.103 0.186 2.148 4.019 10.900 15.046
B 0.103 0.184 2.142 3999 10.678 14.800
C 0.103 0.182 2.136 3.987 10.460 14.531
D 0.103 0.180 2.132 4.006 10.325 14.358
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Figure 9. Curves of concentration comparison (two months).
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method (linear programming) and numerical method. By
their combined efforts the modular form is optimized and
controlled. Namely, we take underground water vari-
ables (water level, discharge, concentration and so on) in
differential equations as the decision variables, use dif-
ference method change them into linear algebraic equa-
tion groups and introduce them into linear programming
model as the constraint conditions.

Now we perform numerical simulation of a real pro-
ject. Assume that there are two pumping wells lying in
some area, whose quantities of pumping water are 4940
m/d and 4227 m/d, respectively. Taking some observed
well A near pumping wells as a new observed well and
applying previous methods, we optimize and study ad-
justed project modes under different cases.

Let it be supposed that the maximum quantity of
pumping water of each well is never more than 5000
m’/d during winter without any rain. Three cased are
considered here to optimize the quantity of each well
with adjusted computation. The first case is that the
groundwater level of observed well doesn’t decrease
(Case 1). The second case is that the increase of the level
is less than 0.1 m (Case 2). And the last case is that the
increase of the level is more than 0.1 m (Case 3). Nu-
merical data under three cases described above are illus-
trated in Table 6.

With three cases considered above, prediction for
seawater intrusion problems is shown in Table 7, and the
salt concentration of Case 1 is shown in Figure 10.

From the data in tables, it is easily seen that the second
pumping well affects more heavily than the first one as
for the level of observed wells. Thus, we can draw the
following conclusions.

1) For the fixed pumping well and observed well, the

Table 6. Adjusted mode of water saving project (m*/d).

Pumping well number

Quantity
1 2 3
Case 1 5000 1840 6840
Case 2 5000 1620 6620
Case 3 5000 2050 7050

Table 7. Changes of salt concentration in soil under differ-
ent conditions (mg/L).

Observation point

Water head
1-1 2-2 3-2 4-2 5-2 6-2
Case 1 3875 3043 1494 101 98 100
Case 2 3870 3042 1491 101 98 100
Case 3 3924 3056 1526 101 98 99
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Figure 10. The salt concentration of Case 1.

first pumping well can work in the usual form while the
second one should be strictly restricted by applying some
water saving rules nearby.

2) Needs of the second pumping well should be firstly
considered in Yellow River Diversion Project.

If the locations of pumping wells and observation
points are different, the regulation modular forms are
different too. With the establishment of ecological and
environmental control projects, it is possible to get the
timely and accurate observation data about seawater in-
trusion. Therefore, the established control model can do
control model calculation for all projects in the entire
region.
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