
Journal of Software Engineering and Applications, 2012, 5, 823-835
http://dx.doi.org/10.4236/jsea.2012.510095 Published Online October 2012 (http://www.SciRP.org/journal/jsea)

823

A Test Case Prioritization through Correlation of
Requirement and Risk

Miso Yoon, Eunyoung Lee, Mikyoung Song, Byoungju Choi*

Department of Computer Science, Ewha Womans University, Seoul, South Korea.
Email: misoyoon@ewhain.net, ddonggurami@ewhain.net, smk1916@gmail.com, *bjchoi@ewha.ac.kr

Received August 20th, 2012; revised September 22nd, 2012; accepted October 1st, 2012

ABSTRACT

Test case prioritization techniques have been focused on regression testing which is conducted on an already executed
test suite. In fact, the test case prioritization for new testing is also required. In this paper, we propose a method to pri-
oritize new test cases by calculating risk exposure value for requirements and analyzing risk items based on the calcula-
tion to evaluate relevant test cases and thereby determining the test case priority through the evaluated values. Moreover,
we demonstrate effectiveness of our technique through empirical studies in terms of both APFD and fault severity.

Keywords: Test Case Priority; Risk-Based Testing; Requirement Analysis; Risk Exposure

1. Introduction

Exhaustive testing is typically not feasible, except in ex-
tremely trivial cases. In one case, execution of the entire
test suite requires seven weeks for a single software pro-
duct comprised of 20,000 lines of code [1,2]. Thus, a tech-
nique of selecting only a subset of all possible test cases
is required based on one or more coverage criteria. Among
the test case selection techniques which have both effi-
ciency and effectiveness to reduce errors, “Test Case
Prioritization Techniques” provide a more effective test
execution by allowing testers to determine the priority of
test cases and select test cases with the highest priority,
according to the scope of a test suite depending on bud-
get situation, which eventually leads the test cases with
the highest priority to be executed earlier than lower pri-
ority test cases [1,2]. This paper presents a test case pri-
oritization technique and demonstrates its effectiveness
and efficiency through experiments.

Existing prioritization techniques are mainly based on
regression testing. Therefore, they tend to prioritize test
cases on the basis of previously executed test results. These
methods, however, require a prior knowledge of the exis-
tence of faults and of which test cases expose which
faults. A case in point in these methods is optimal priori-
tization. The optimal prioritization [3] is an ideal method
in theory but it requires considering all possible test case
orderings and therefore, must have a worst case runtime
exponential in test suite size. Also, Total fault-exposing-
potential prioritization which determines priority of test

cases based on mutation analysis has constraints since it
must have fault information obtained through past ex-
periences [1,4]. Thus, the abovementioned methods can-
not be applied to initial testing.

This paper proposes a Risk-based test case prioritiza-
tion technique which can be applied to cases with no
additional information obtained through execution results
of test cases. Our Risk Based Testing (RBT) uses product
risks derived from requirements as assessment criteria to
prioritize test cases.

Existing RBT studies can be divided into two types;
one is to employ risk exposure values derived from risk
analysis results as seen in Risk-based Test case Deriva-
tion And Prioritization (Rite DAP) [5], and the other is to
use severity and probability evaluated from test cases
such as safety test [6]. These methods have subjective
evaluation of risk exposure values and can be performed
only when prior fault information exist. Thus, they have
constraints given both need the existence of test results.
In order to maintain objectivity in evaluation of risk ex-
posure values, this paper presents a method to calculate
risk exposure values based on weight given to each re-
quirement item and employ these values to prioritize test
cases.

Our Risk-based test case prioritization method is ad-
vantageous to prioritize test cases when there is no in-
formation gathered in previous runs of existing test case.
We conduct empirical evaluation on our proposed tech-
nique in comparison with previously mentioned existing
techniques, namely, optimal prioritization, safety test,
FEP-Total in order to validate our method’s effectiveness *Corresponding author.

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk 824

by comparing each method’s the frequency of fault de-
tection, Average Percentage of Fault Detection (APFD)
and Risk Severity in terms of Percentage of Fault Detec-
tion.

The next section of this paper describes the existing
studies. Section 3 presents a test case prioritization tech-
nique employing risk exposure values, and Section 4 dis-
cusses the results and analysis of our empirical studies.
Section 5 presents overall conclusions of our study.

2. Related Work

Optimal prioritization [3] is a technique to determine
priority of test cases that offer the greatest fault detection
ability under the assumption that testers know fault in-
formation of a program and the existence of all faults that
can be detected in the test cases. This method is the most
optimal in theory but has a worst case runtime expo-
nential in test suite size since testers must understand
precise fault information and which test cases expose
which faults.

As for methods using software coverage techniques,
there are total statement coverage prioritization total
branch coverage prioritization and total fault-exposing-
potential prioritization (FEP) [1]. Total statement cover-
age prioritization instruments a program to prioritize test
cases in terms of the total number of statements covering
faults by counting the number of statements covered by
each test case, then sorting the test cases in descending
order of that number. While the total branch coverage
prioritization uses test coverage measured in terms of
program branches rather than statements to determine
priority of test cases. FEP determines the priority based
on mutation analysis. FEP (s, t) is the ratio of mutations,
s, killed by test case, t, to the total number of mutations
of s. The test case priority is determined in terms of the
total number of FEP (s, t) covering fault statements. All
of these methods are feasible only under the premise that
fault information exist.

There are existing test case prioritization techniques
employing software risk information. Rite DAP [5] inserts
risk information to Activity Diagram to automatically ge-
nerate priority of test case scenarios. This approach adds
a new risk related stereotype “reaction” to the activity
diagram. The priority of test case scenarios is determined
in order of an entity’s “reaction” having the highest sum
of risk values. This method has disadvantages of having
subjective evaluation of risk values.

Meanwhile, Safety test [6] determines test case priority
by evaluating cost and severity probability of test cases.
The cost of test cases will be taken by the conesquences
of a fault as seen by a customer or a vendor. The severity
probability is calculated by multiplying the Number of
Defects N by Average Severity of Defects S  N S .

This approach, however, has weakness in that the evalua-
tion of cost is subjective and fault information should
exist.

This paper presents an approach to systematically iden-
tify risk items from requirements and determine test case
priority by using risk items, rather than fault information.
We report the results of our empirical studies by com-
paring our method to above mentioned techniques.

3. Risk-Based Test Case Prioritization
Technique

Risk is defined as a probability of the occurrence of harm
or loss. Boehm defined the Risk Exposure [7] as the
probability of an undesired outcome times the expected
loss if that outcome occurs. The basic concept of the
Risk-based Testing is that the more time should be in-
vested in software areas having high risk exposure values.
This paper: 1) Defines the product risk items; 2) Esti-
mates the risk exposure values derived from require-
ments; and 3) Determines test case priority.

3.1. Risk Items

There are three forms of risk that can arise with respect
to software; Project risk, Process risk and Product risk
[8]. This paper is designed to propose test case prioritiza-
tion technique needed to validate “product” quality. Thus,
we will derive “product risk” items by using various ob-
jective documents.

The followings are product risk items suggested by
IEEE1044.1-1995 [9], Wallace [10], Sullivan [11], Jha
[12], Bach [13], Pertet [14].
 IEEE. Std. 1044.1-1995: Standards with regard to soft-

ware anomalies. Refers to user-related risk symptoms
and risk types.

 Wallace: Refers to risk items related to medical equip-
ment software’s failure.

 Sullivan: Refers to risk items with regard to database-
related error type, error trigger and defect type.

 Jha: Risk catalog on known problems or potential prob-
lems in mobile application is derived based on Bach’s
Heuristic Test Strategy Model (Bach, 2006). The risk
catalog is classified into Product Elements, Opera-
tional Criteria, Development Criteria, and Project En-
vironment. Among them, see the product-related risk
items.

 Bach: See the risk catalog analyzed through heuristic
analysis.

Pertet: See risk items with regard to software failure in
web applications.

This paper categorizes product risk items into software,
data, interface, enhancement, platform groups and sub-
categories, based on the above mentioned risk items, as
seen in, to develop test case prioritization technique. For

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk

Copyright © 2012 SciRes. JSEA

825

the relationships between the risk items suggested in Fig-
ure 1 and referred data, see the Appendix attached in this
paper.

quirements can vary by persons. To adjust this problem,
we use average values of risk exposure values provided
by a risk expert and settle pair wise comparison values in
terms of risks among the requirement items.

3.2. Calculation of Risk Exposure Values from
Requirements

For instance, print_tokens have total 18 requirement
items. Table 1 represents the requirements of print_tokens
and the risk weights of each requirement. The risk threat
likelihood (WLi) and risk impact (WIi) are estimated by
applying AHP technique. The risk threat likelihood and
impact values for the first requirement, produced by
using AHP, are 0.080, 0.102, respectively. The risk weight
RE (Reqi) calculated based on the formula suggested in
Equation (1) is 82.

The way to estimate risk exposure values from require-
ments is conducted in the following steps.

3.2.1. Step 1: Determine Risk Weight of Requirements
Risk weight of requirement i, RE (Reqi) is determined by
multiplying the Risk Threat Likelihood by Risk Impact.
Risk Threat Likelihood means the probability that the
requirement will meet failure and Risk Impact is the size
or cost of that loss if the requirement turns into a problem.
Namely, If Reqi = Requirement i, WLi = Weight of Risk
Threat Likelihood of Requirement i, WIi = Weight of
Risk Impact of Requirement i, then

3.2.2. Step 2: Estimate the Risk Exposure Values
Next, risk exposure values are estimated by reflecting
risk weight of requirements by risk item. Amland have
defined risk exposure as the probability of a fault occurr-
ing times the cost if a fault occurs [16]. In order to cal-
culate the probability of a fault occurring, we determine
how many risks are related to requirements and assume
that the more the risk is related to requirements, the
higher probability of the fault occurs. Also, to calculate
the cost when fault occurs, we use the risk weight of the
requirement and assume that the cost is high when risk is
related to the requirements with higher weight occur.

 i i iRE Req WL WI 10000   (1)

In order to estimate relative importance in terms of risk
probability and impact of requirements, Analytic Hierar-
chy Process (AHP) Technique [15] is employed. The AHP
is a process of decision making to consistently determine
weight by selecting factors that can have impact on the
decision making criteria, gradually dividing them into
smaller factors to establish a hierarchy and make judg-
ments based on pair wise comparison of the importance
of these factors. This AHP approach makes it easy to
compare between different characteristics regardless of
units and determine preferences through the comparison.
Thus, it is useful to determine priority of requirement
items in terms of risk. However, the importance of re-

Table 2 is the metric to estimate risk exposure values
of risk items. RMij indicates 1 when the risk item i, ri,
correlates with requirement j and shows 0 when the risk
item i does not correlate with requirement j. RE (ri) rep-
resents risk exposure values of ri The values of RE (ri)
are estimated by using the following mathematical for-
mula.

Figure 1. Product risk items.

A Test Case Prioritization through Correlation of Requirement and Risk 826

Table 1. Risk weight values for requirements of print_tokens.

Requirement Ri WLi WIi RE (Reqi)

Req1 Takes a file name as an input and analyzes all tokens in a file. 0.080 0.102 82

Req2 If the file name doesn’t exist, it will exit from the program. 0.073 0.094 68

Req3
Takes character stream as an input return one character. If the stream is empty then it reads the next line
from the file and returns the character.

0.066 0.094 62

Req4
Checks whether it is end of character stream or not and check whether the last read character is end file
character or not and returns the value according to it.

0.0354 0.0500 18

Req5 The location of the read letter should be identified. 0.0354 0.0560 20

Req6 Takes file name as an input and it gets character stream and returns the token stream. 0.0460 0.0690 32

Req7 Returns the next token from the token stream. 0.0730 0.0980 72

Req8 Checks whether the token is numeric token. 0.0210 0.0300 6

Req9 Checks whether it is EOF or not. 0.0489 0.0200 10

Req10 Checks whether the character is alphabet and number. 0.1620 0.0400 65

Req11 Identify a keyword, if it is not a keyword, output an error message. 0.0386 0.0360 0.0014

Req12 Identify a special character, if it is not a keyword, output an error message. 0.0386 0.0370 14

Req13 Skip the characters until EOF or EOL found. 0.0247 0.0310 8

Req14 Check whether token of string is constant. 0.0891 0.0400 0.0036

Req15 Returns the next state in the transition diagram. 0.0368 0.0520 0.0019

Req16 Checks whether the token is the end of token. 0.0386 0.0560 0.0022

Req17 In the case of keyword, special character, print the type of token and ID of token. 0.0524 0.0620 0.0032

Req18
In the case of identifier, numeric, string and character, prints the actual token and it removes the leading
and trailing spaces and prints the token.

0.0412 0.0340 0.0014

Table 2. Risk exposure metric.

Requirements

Req1 Reqj Reqn

WL1 WLj WLn

WI1 WIj WIn

Risk item

RE (Req1) ··· RE (Reqj) ··· RE (Reqn)

RE (ri)

r1 RM11 ··· RM1j ··· RM1n RE (r1)

··· ··· ··· ··· ··· ··· ···

ri RMi1 ··· RMij ··· RMin RE (ri)

··· ··· ··· ··· ··· ··· ···

rm RMm1 ··· RMmj ··· RMmn RE (rm)

    i jj 1
RE r RE Req RM

n


  ij (2)

Table 3 shows the risk exposure values of print_tokens.
For example, the first requirement of print_tokens, Req1,
as seen in Table 3, correlates with Input problem, Output
problem, Startup/Shutdown, Error Handing among the
software related risk groups. The risk exposure values of
risk items are calculated by using the Equation (2), and
the risk exposure values of input problem risk are

, when calculated
based on the Equation (2).
     82 1 68 1 14 0 150      

3.3. Test Case Prioritization Evaluation

Test Case Priority (TCP) is estimated by using the risk
exposure values of risk items. The criteria of TCP mea-
surement in this paper considers that how many fault can

Table 3. Example of risk exposure values of print_tokens
risk items.

Requirements

Req1 Req2 ··· Req18

0.080 0.073 0.0412

0.102 0.094 0.0340

Risk item ri

82 68 ··· 14

RE (ri)

Input problem 1 1 ··· 0 150

Output problem 1 1 ··· 0 182

Calculations 0 0 ··· 1 191

Startup/Shutdown 1 1 ··· 0 196

Error handing 1 1 ··· 0 228

Interactions 0 0 ··· 0 365

File install 0 0 ··· 0 0

Software

File collision 0 0 ··· 0 0

··· ··· ··· ··· ··· ··· ···

be detected by test case with how much each fault is severe.
Indicator that indicates how many faults can be detected
by test case is evaluated by how many times the area
related to risk item is executed by test case. Also, risk
exposure value of risk item is used for the indicator that
represents how severe the detected fault is. In other
words, in this paper we measure TCP by adding the
product of the number of risk items executed by test case
and the risk exposure value of risk item in terms of each
risk item.

Table 4 is the metric of the evaluation of test case pri-
ority. TMji indicates the number of occurrences of the

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk 827

risk item j when test case i (TCi) was executed. TCP is
the metric representing the number of risk items executed
by test case. The ith test case priority value, TCPi, is as
follows:

 i jj 1
TCP RE r TM

m


  ji (3)

Test case priority is decided in order of test cases hav-
ing the highest TCP values. For instance, Table 5 is part
of the example of a test case prioritization evaluation for
print_tokens.

The total number of test cases in Table 5 is 4130. Test
cases are arranged in order of having the highest TCP
values. TC1 reflects the number of executed risk items,
namely, 4 output problem related risks, 7 calculation risks,
3 startup/shutdown risks, 5 error handing risks and 50
interaction risks, and thus TCP1, based on the Equation
(3), accounts for

         

 

150 0 182 4 191 7 196 3 228 9

265 50 25477

        

   
.

4. Empirical Studies

4.1. Subjects and Goal of the Experiment

4.1.1. Subjects
Siemens programs [17], selected as the subjects of our
empirical study, are C programs developed to study fault
detecting effectiveness of coverage criteria. As seen in
Table 6, the Siemens programs consist of 7 C programs.
The programs are widely used as a subject in the com-
parative experiments for test coverage and test case pri-
oritization technique evaluation.

Table 4. TCP value metric.

Test case
Risk item RE (ri)

TC1 ··· TCi ··· TCn
r1 RE (r1) TM11 ··· TM1j ··· TM1n
 ··· ··· ··· ··· ···

rj RE (rj) TMj1 ··· TMji ··· TMjn
 ··· ··· ··· ··· ···

rm RE (rm) TMm1 ··· TMmj ··· TMmn
TCP TCP1 ··· TCPi ··· TCPn

Table 5. An example of test case prioritization evaluation.

Test case
Risk item RE (ri) TC1 TC2 ··· TC4130

Input 150 0 0 ··· 1
Output 182 4 2 ··· 1

Calculations 191 7 4 ··· 0
Startup/Shutdown 196 3 3 ··· 1

Error handling 228 9 2 ··· 1
Interactions 365 50 16 ··· 0
File install 0 0 0 ··· 0

Software

File collision 0 0 0 ··· 0
··· ··· ··· ··· ··· ··· ···

TCP 25,477 8494 ··· ···

Each program has an original version and a faulty ver-
sion. Each faulty version was designed to precisely esti-
mate how many specific faults are detected in test cases.
Table 6 reflects the number of faulty versions of Sie-
mens programs, the number of functions possessed by
each program and the number of test cases.

4.1.2. Experiment Goal
The followings are test case prioritization techniques used
as the comparative subjects including the test case priori-
tization technique that we propose.
 No prioritization: Select according to the order of ge-

nerating test cases.
 RE (ri): The technique this paper proposes.
 Safety Tests: Select in order of test cases with the

highest risk exposure values.
 Optimal prioritization: Select test cases that can in-

crease fault detection rates.
 FEP-Total: Select in order of having high fault like-

lihood through mutation analysis.
Usually, the purposes of testing are to detect serious

faults as early as possible, fix faults before product re-
lease and find faults as many as possible. In short, how
swiftly faults are detected and how fast the locations of
severe faults are identified is one of the most critical
purposes of testing. We want to present our experiment
results in two aspects to demonstrate the effectiveness of
our proposed method in terms of fault detection.
 Fault detection rate based on “Frequency of Fault De-

tected” and “Average Percentage of Fault Detected”.
 Severity of Fault.

First, we analyze experiment results on faults detected
when testing in the order of test cases generated by test
case prioritization technique. To do that, “Frequency of
Fault Detected” in the execution order when executed
according to test case priority is estimated and then “Ave-
rage Percentage of Fault Detected” (APFD) [18] is mea-
sured to be compared with other techniques. If the num-
ber of faults included in the program to be tested is m, the
number of the total test cases is n, and the first test case
to expose fault i in the test case pool is TFi, then

TF 1ii iAPFD 1 2

m

n m n
    (4)

Second, we analyze our experiment results in terms of
severity of faults detected. Fault types may vary ranging
from severe faults leading to system shutdown or func-
tion halt to faults that cause just slowdown of the system.
The faults by program were categorized according to six
fault types suggested by [19].

If test cases are executed in an order that can detect
severe faults earlier than less severe faults, when testing
in a given period, the test would be significantly efficient.
This paper employs AHP approach to estimate the fault

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk

Copyright © 2012 SciRes. JSEA

828

Table 6. Subject programs.

Fault severity
Programs # of version # of fault

1 2 3 4 5 6
of function # of test case Description

print_tokens 7 10 1 0 3 1 1 4 18 4130 Lexical analyzer

print_tokens2 10 10 0 3 1 3 3 0 19 4115 Lexical analyzer

Schedule 9 10 0 2 2 2 2 2 18 2650 Priority scheduler

Schedule2 10 10 0 1 0 6 1 2 16 2710 Priority scheduler

Tot_info 23 23 8 1 8 1 1 4 7 1052 Information measure

Replace 32 36 1 9 1 9 10 5 21 5542 Pattern replacement

Tcas 41 54 14 6 14 13 1 4 9 1608 Altitude separation

Table 7. Experiment sets. severity and calculate the “Average Severity of Faults

Detected, ASFD” by using Equation (4).
Program

of
versions

of
experiment sets

Print_tokens 7 28

Print_tokens2 10 7

Schedule 9 54

Schedule2 10 70

Tot_info 23 460

Replace 32 110

Tcas 41 155

4.1.3. Experiment Method
Applying test case prioritization techniques means to
select test case pools that can effectively detect unknown
faults. To facilitate this experiment, we established ex-
periment designs to diversely modify known fault infor-
mation.

For instance, the number of faulty versions of print_
tokens, seen in Table 7, is 7. We evaluate test case priority
by using fault information on two faulty versions 1 and 2
and estimate whether faults of the remaining 5 faulty
versions are detected.

the graphs by dividing the test cases by 100.

The first graph in Figure 2 represents the mean value
of faults detected according to the sequence of test case
execution in the entire Siemens programs by each test
case prioritization technique. Our proposed method RE
(ri) is represented with a thick solid line, which suggests
this method outperforms the other techniques. Especially
when we see the first graph, test cases having the higher
test case priority of RE (ri) detect more fault than other
technique and the number of fault detected by test cases
that are executed later due to lower test case priority de-
crease.

We randomly selected two as known faulty versions
out of 7 faulty versions to establish the total 7 sets. We
created 7 sets as gradually expanding the number of faulty
versions. In the case of print_tokens, a total of 28 ex-
periment sets were created. We also established experi-
ment sets for the rest Siemens programs and conducted
experiments relative to 947 sets, as suggested in Table 7.

4.2. Experiment Result and Analysis

4.2.1. Frequency of Fault Detection—Status of
Number of Faults Detected in the Order of Test
Cases with the Highest Priority

4.2.2. Average Percentage of Fault Detected
For each subject program, we applied prioritization tech-
niques to each of the 947 test suits. Table 8 depicts the
APFD values of prioritized test cases by each technique
and by programs. Figure 3 is a diagram indicating the
fault detection rate according to the test progress. The X
axis indicates the execution rates of test cases and Y axis
represents rates of fault detection. RE (ri) is the thick
solid line. RE (ri) technique shows a lower APFD than
optimal prioritization. However, when compared to Safety
Tests, FET-total, which evaluate test case priority by
using fault information, RE (ri) technique exhibits rela-
tively good fault detection rates even if it only employs
exposure values of risk category without using fault in-
formation.

If the number of faults detected in the first test suite is
high, in order to evaluate whether test cases detect many
faults as fast as possible, it indicates the testing has a
high effectiveness.

Figure 2 indicates the number of faults detected accord-
ing to the test case execution sequence by each program
by using each test prioritization technique on 947 ex-
periment sets.

The X axis represents test cases in order of having the
highest test case priority, while Y axis indicates the number
of faults detected by test cases. Since the total number of
test cases by each program was 1052~5542, we drew

ASDF=
sum of undetcted severity sum of detected fault severity

sum of undetected fualt sevirity


 (5)

A Test Case Prioritization through Correlation of Requirement and Risk 829

Figure 2. Number of fault detected according to test case execution sequence.

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk 830

Table 8. APFD (%), data of all in Figure 3.

Programs No prioritization RE (ri) Safety tests Optimal prioritization FET-total

Print_tokens 76 99 99 99 91

Print_tokens2 57 99 99 99 99

Schedule 56 98 86 99 99

Schedule2 30 77 63 90 75

Tot_info 94 95 95 92 93

Tcas 90 88 87 96 81

Replace 89 89 89 89 90

Average 70 92 88 95 90

Figure 4 presents box-plots of the APFD values of the

five categories of prioritized test set for each program
and an all program total. X axis indicates the test case
prioritization techniques and Y axis is fault detection rates.

Table 9 depicts the detailed data of box-plots of the
APFD. The scope of fault detection rates of test cases by
the upper 30% level is indicated in the dark box, by up-
per 50% in the lighter box, and by the upper 70% in the
white box. The below the vertical line of the inside box-
plot represents the minimum fault detection rate when a
one test case is run, while the above the vertical line in-
dicates the maximum fault detection rate. For instance,
the first graph shows the total average of APFD for all
programs.

The minimum fault detection rate of RE (ri) is high
with 19%, following the optimal prioritization technique.
The test cases in the upper 30% level indicate RE (ri) has
a significantly high detection rate, which means the high
probability of fault detection rates in the early stage of
test execution.

4.2.3. Severity of Faulty
Figure 5 is a graph indicating how many severe faults
are detected based on the Equation (5) of Chapter 4.1. X
axis indicates the prioritized test case and Y axis repre-
sents the severity of faults not detected by test cases. The
slope of fault severity indicates how many severe faults
remain, which means the lower of the slope, the less of
the severity of faults remains.

The first graph in Figure 5 indicates the severity of the
entire Siemens programs. RE (ri) is represented with the
thick solid line, which shows a lower slope than other
techniques. This means that RE (ri) can detect serious
faults in the early stage of test execution. Moreover, the
graphs of RE (ri) exhibit consistent degrees of slopes for
all programs. Thus, the graph analysis of RE (ri) can allow
testers to roughly predict the time to terminate the test-
ing.

4.3. Threats to Validity

Risk is largely divided into Project Risk, Process Risk
and Product Risk. We evaluated test case priority by us-

ing the risk exposure values of risk items for product
risks. Thus, we made the evaluation under the assump-
tion that there exist no project or process risks associ-
ated with test cases.

The source size of the Siemens programs which are the
subject of our empirical studies is small. In this sense, we
need to conduct future works to validate whether the ex-
periment results can be held in other experimental situa-
tions including programs which are larger than the source
size of the Siemens program or other types of programs.
Nevertheless, our experiment could have relative objec-
tivity in terms of evaluating number of fault detected,
fault detection rate and the severity of faults since Sie-
mens programs have a set of faulty versions. Moreover,
the programs could be advantageous in that they also
could be used as a subject in other priority techniques to
be compared.

5. Conclusions

We developed a technique to prioritize test cases by em-
ploying risk exposure values calculated in each require-
ment and described the proposed prioritization technique
based on comparative analysis between ours and several
other existing methods. The characteristics of our method
are as follows.

First, our method does not require the pre-executed test
results, unlike other existing techniques. Instead, we de-
velop and use a metric for risk item evaluation. This me-
thod is feasible to be conducted without the previous test
execution results and thus it is expected to have a wide
range of applications. In addition, we specifically defined
product risk items and it is expected to be useful for risk
identification process.

Second, we presented an empirical study comparing
the effectiveness of our approach with other prioritization
approaches. Our empirical study shows our prioritization
technique using risk exposure is promising in terms of
effectives in detecting severe faults and benefits in terms
of time and cost efficiency.

The risk-based test approach we propose somewhat
focus on the functional testing. We plan to expand our
study on test case prioritization technique by employing

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk 831

Figure 3. APFD.

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk 832

Figure 4. APFD box-plox (vertical axis is APFD score).

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk 833

Table 9. Data of all in Figure 4.

 No prioritization RE (ri) Safety tests Optimal prioritization FET-total

Max. 0.97 0.97 0.97 0.98 0.97

70% 0.96 0.96 0.96 0.96 0.96

50% 0.96 0.95 0.96 0.96 0.96

30% 0.70 0.94 0.91 0.94 0.92

Min. 0.01 0.19 0.17 0.20 0.16

Figure 5. Severity of fault.

Copyright © 2012 SciRes. JSEA

A Test Case Prioritization through Correlation of Requirement and Risk

Copyright © 2012 SciRes. JSEA

834

risk metric of performance features.

6. Acknowledgements

This research was supported by the MKE (The Ministry
of Knowledge Economy), Korea, under the ITRC (In-
formation Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion
Agency (NIPA-2012-(H0301-12-3004)).

REFERENCES
[1] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE
Transactions Software Engineering, Vol. 27, No. 10, 2001,
pp. 929-948. doi:10.1109/32.962562

[2] R. Krishnamoorthi and S. A. Mary, “Factor Oriented
Requirement Coverage Based System Test Case Prioriti-
zation of New and Regression Test Cases,” Information
and Software Technology, Vol. 51, No. 4, 2009, pp. 799-808.
doi:10.1016/j.infsof.2008.08.007

[3] S. Yoo and M. Harman, “Regression Testing Minimiza-
tion, Selection and Prioritization: A Survey,” Software
Testing, Verification and Reliability, Vol. 22, No. 9, 2012,
pp. 67-120. doi:10.1002/stvr.430

[4] H. Do and G. Rothermel, “On the Use of Mutation Faults
in Empirical Assessments of Test Case Prioritization
Techniques,” IEEE Transactions on Software Engineering,
Vol. 32, No. 9, 2006, pp. 733-752.
doi:10.1109/TSE.2006.92

[5] H. Stallbaum, A. Metzger and K. Pohl, “An Automated
Technique for Risk-Based Test Case Generation and Pri-
oritization,” Proceedings of the 3rd International Work-
shop on Automation of Software Test, New York, 11 May
2008, pp. 67-70. doi:10.1145/1370042.1370057

[6] Y. Chen, R. Probert and D. P. Sims, “Specification-Based
Regression Test Selection with Risk analysis,” Proceed-
ings of the 2002 Conference of the Centre for Advanced
Studies on Collaborative Research, Toronto, 30 Septem-
ber-3 October 2002, pp. 1-14.

[7] B. W. Boehm, “Software Risk Management: Principles
and Practices,” Software, Vol. 8, No. 1, 1991, pp. 32-41.
doi:10.1109/52.62930

[8] P. Gerrad and N. Thompson, “Risk-Based E-Business
Testing,” Artech House, Norwood, 2002.

[9] Institute of Electrical and Electronics Engineers, IEEE.
Std. 1044.1-1995, “IEEE Guide to Classification for Soft-
Ware Anomalies,” 5 August 1996.

[10] D. R. Wallace and D. R. Kuhn, “Failure Modes in Medi-
cal Device Software: An Analysis of 15 Years of Recall
Data,” Reliability, Quality and Safety Engineering, Vol. 8,
No. 4, 2001, pp. 301-311.

[11] M. Sullivan and R. Chillarege, “A Comparison of Soft-
ware Defects in Database Management Systems and Op-
erating Systems,” Digest of Papers FTCS-22, The 22nd Inter-
national Symposium on Fault Tolerant Computing, Boston,
8-10 July 1992, pp. 475-484.

[12] A. Jha, “A Risk Catalog for Mobile Applications Com-
puter Sciences,” Florida Institute of Technology, Mel-
bourne, 2007.

[13] J. Bach, “Heuristic Risk-Based Testing,” Software Test-
ing and Quality Engineering Magazine, Vol. 1, No. 6,
1999, pp. 96-98.

[14] S. Pertet and P. Narasimhan, “Causes of Failure in Web
Applications,” Parallel Data Laboratory, Carnegie Mellon
University, 2005.

[15] T. L. Saaty, “How to Make a Decision: The Analytic
Hierarchy Process,” European Journal of Operational
Research, Vol. 24, No. 6, 1990, pp. 9-26.
doi:10.1016/0377-2217(90)90057-I

[16] S. Amland, “Risk-Based Testing: Risk Analysis Funda-
mentals and Metrics for Software Testing Including a Fi-
nancial Application Case Study,” Journal of Systems and
Software, Vol. 53, No. 3, 2000, pp. 287-295.
doi:10.1016/S0164-1212(00)00019-4

[17] “Siemens Program,” 2012.
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects/

[18] S. Elbaum, A. G. Malishevsky and G. Rothermel, “Test
Case Prioritization: A Family of Empirical Studies,”
IEEE Transactions Software Engineering, Vol. 28, No. 2,
2002, pp. 159-182. doi:10.1109/32.988497

[19] D. Jeffrey and N. Gupta, “Test Case Prioritization Using
Relevant Slices,” Proceedings of the 30th Annual Inter-
national Computer Software and Applications Conference,
Chicago, 17-21 September 2006, pp. 411-420.

http://dx.doi.org/10.1109/32.962562
http://dx.doi.org/10.1016/j.infsof.2008.08.007
http://dx.doi.org/10.1002/stvr.430
http://dx.doi.org/10.1109/TSE.2006.92
http://dx.doi.org/10.1145/1370042.1370057
http://dx.doi.org/10.1109/52.62930
http://dx.doi.org/10.1016/0377-2217(90)90057-I
http://dx.doi.org/10.1016/S0164-1212(00)00019-4
http://dx.doi.org/10.1109/32.988497

A Test Case Prioritization through Correlation of Requirement and Risk 835

Appendix

Comparison between the proposed risk items and referred risk items.

Copyright © 2012 SciRes. JSEA

