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ABSTRACT 

Introduction: It is a common finding that despite high levels of specificity and sensitivity, many medical tests are not 
highly effective in diagnosing diseases exhibiting a low prevalence within a clinical population. What is not widely 
known or appreciated is how the results of retesting a patient using the same or a different medical or psychological 
test impacts the estimated probability that a patient has a particular disease. In the absence of a ‘gold standard’ special 
techniques are required to understand the error structure of a medical test. Generalizability can provide guidance as to 
whether a serial Bayes model accurately updates the positive predictive value of multiple test results. Methods: In or-
der to understand how sources of error impact a test’s outcome, test results should be sampled across the testing condi-
tions that may contribute to error. A generalizability analysis of appropriately sampled test results should allow re-
searchers to estimate the influence of each error source as a variance component. These results can then be used to 
determine whether, or under what conditions, the assumption of test independence can be approximately satisfied, and 
whether Bayes theorem accurately updates probabilities upon retesting. Results: Four hypothetical generalizability 
study outcomes are displayed as variance component patterns. Each pattern has a different practical implication re-
lated to achieving independence between test results and deriving an enhanced PPV through retesting an individual 
patient. Discussion: The techniques demonstrated in this article can play an important role in achieving an enhanced 
positive predictive value in medical and psychological diagnostic testing and can help ensure greater confidence in a 
wide range of testing contexts. 
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1. Introduction 

When a medical disease’s prevalence and a medical 
test’s specificity and sensitivity are known, an equations 
based on Bayes Theorem provides useful information 
related to the diagnostic power of a medical test. It is a 
common finding that despite high levels of specificity 
and sensitivity, many medical tests are not highly effec-
tive in diagnosing diseases with a low prevalence within 
a clinical population [1]. Since a large number of dis-
eases occur only in a small proportion of the population 
(i.e. have low prevalence), the low positive predictive 
value (PPV) of medically diagnostic tests is of obvious 
concern to physicians attempting to identify the presence 
of a low prevalence disease. To provide an example, let’s 

suppose a physician is attempting to determine whether a 
patient has a disease that occurs in 1% of a defined pa-
tient population. When the test is performed on patients 
with the disease, it yields a positive test result indicating 
the presence of the disease in 90% of the patients (sensi-
tivity equals .90). When the test is performed on patients 
without the disease, it correctly identifies 98% of those 
patients as disease free (specificity equals .98). An equa-
tion based on Bayes Theorem can be used to calculate 
the probability that a patient with a positive test result 
actually has the disease. The simple equation for calcu-
lating this probability is: 

P (A | B) = P (B | A) * P (A) / P (B)       (1) 

Equation (1) describes the probability that a patient 
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has the disease given a positive test result [P (A | B)], and 
equals the probability of a positive test result given the 
patient has the disease [P (B | A) - sensitivity] multiplied 
by the probability of the disease [P (A) - prevalence] 
divided by the overall probability of a positive test result 
within the population [P (B)]. The denominator in Equa-
tion (1), the overall prior probability of a positive test 
result, is derived as shown in Equation (2), where j is 1, 
2… and takes on as many values as there are hypotheses. 
In the case being discussed in this example problem, 
there are just two possible hypotheses (Ho1: the patient 
has the disease – Ho2: the patient does not have the dis-
ease) and hence in this example the sum is taken over 
just two levels. Hence, the overall probability of a posi-
tive test result is the sum of the probabilities of a positive 
test in those with (sensitivity) and without (1 – specificity) 
the disease each multiplied by their prevalence in the 
population. 

P ( B ) = [Σ j P ( B | A j ) P ( A j )]          (2) 

Equation (3) displays the calculation using the levels 
of specificity, sensitivity and prevalence discussed in our 
example. Despite high levels of specificity and sensitiv-
ity, the patient with a positive test result has only a 31% 
chance of actually having the disease. This is a common 
and well known type of finding related to medical testing 
designed to detect low prevalence diseases. 

P ( A | B ) = .90 * .01 / ((.90 * .01) + (.02 * .99)) = .31 
(3) 

What is not widely known or appreciated is how the 
results of retesting a patient using the same or different 
test will impact the estimated probability that the patient 
has the disease. There is little guidance in the medical or 
psychological literature regarding whether or how the 
results from serial testing improve the ability to diagnosis 
disease when the structure or cause of the dependence 
between tests is uncertain. However, it is clearly impor-
tant for clinicians to understand how the PPV changes 
when a patient is administered a second or third medical 
or psychological test. When the assumption of test inde-
pendence applies, a serial Bayes model may provide 
guidance within contexts like those presented in the ex-
ample just discussed. 

When probabilities from a previous Bayes calculation 
are used to update estimates of the prior probability [P 
(A)], and when independence is confirmed, we can use a 
Bayes serial calculation to derive the probability that a 
patient has the disease given a second test result. Equa-
tion (4) presents the next step in the context of our ex-
ample using a Bayes serial calculation for a second con-
secutive positive test under the assumption that the two 
tests are independent. With a second positive result, the 
probability of having the disease goes from .31 to .95, 

and our confidence in the diagnosis appears to improve 
dramatically. It should be noted that under the assump-
tion of independence, parallel testing may also yield an 
outcome similar to serial testing. So, although the focus 
of this paper is on sequential or serially administered 
tests, when time or the occasion of the test is not an im-
portant factor in determining test independence, what is 
reported and discussed here may also apply to parallel 
testing. 

P ( A | B ) = .90 * .31 / ((.90 * .31) + (.02 * .69)) = .95 
 (4) 

From the outcome presented in Equation (4), it appears 
that the PPV of tests used to detect low prevalence dis-
eases may be dramatically improved simply by adminis-
tering the test a second or third time. However as men-
tioned, such positive outcomes rely on an independence 
assumption that is critical to the valid application of the 
serial Bayes probability model and implies that the error 
rate for each test is independent. Therefore, to determine 
whether an enhancement of PPV can be achieved by re-
testing, it is necessary to first establish the primary 
source(s) of test error and whether, or under what condi-
tions, each medical test can be regarded as independent. 

When a “gold standard” is available for determining 
the accuracy of a fallible test, establishing the independ-
ence between two test administrations is straight forward. 
One needs simply to twice calculate the specificity and 
sensitivity for the second test administration, once for the 
group of patients who test positive on the first test and 
once for the group of patients who tested negative on the 
first test. If the two calculations are in close agreement, 
the assumption of independence is satisfied. Unfortu-
nately, a “gold standard” method for checking test accu-
racy is often not available, and other procedures are re-
quired. 

Independence between test results can be achieved 
when clinicians randomly sample from the test-related 
variables that contribute to error and when each disease 
positive patient is equally likely to display a false nega-
tive test result and when each disease negative patient is 
equally likely to display a false positive test result. In-
deed, when the conditions leading to test independence 
are understood, the utility of testing in a low prevalence 
disease context can often be dramatically enhanced by a 
simple random replication of a testing process that sam-
ples from the variables contributing to error. To ascertain 
under what conditions an independence assumption is 
satisfied, researchers must first investigate and under-
stand the error structure of medical or psychological test 
outcomes. Given the potential for dramatically enhanced 
diagnostic accuracy, such research is critically important 
in improving the utility of certain tests with low PPV. 

Within many testing contexts, it is often not possible 
to establish the accuracy of a fallible test by comparing it 
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to a more accurate “gold standard” testing methodology 
[2,3]. Although methods for estimating disease preva-
lence with the use of multiple tests, none of which are 
gold standard, have been developed [4], and latent class 
analysis has been used to estimate prevalence, specificity 
and sensitivity in the absense of a gold standard [5-7], 
there is little guidance for revising diagnostic predictions 
for a specific patient when evaluating multiple fallible 
test results. When a “gold standard” test procedure is 
unavailable, too risky, too invasive, and/or a violation of 
ethical research standards, an alternate and efficient 
method for establishing a test’s error structure and the 
appropriateness of a serial Bayes-based revision of dis-
ease probability can be achieved using Generalizability 
(G) analysis [8]. The strength of G theory analysis is that 
it requires only a record of the fallible test outcomes and 
does not require “gold standard” testing. When outcomes 
for the fallible test are appropriately sampled and ana-
lyzed, precise quantification of relevant sources of error 
can be achieved. 

Generalizability analysis is by far the most powerful 
method for quantifying sources of measurement error. In 
order to determine if, or under what conditions, a serial 
Bayes calculation is appropriate, a G study can analyze 
sampled test results and quantify and describes the error 
structure of a test. For example, in the context of medical 
testing, sources of error might be attributable to the 
laboratory, the clinician administering the test (e.g. psy-
chiatric diagnosis), the occasion on which the test was 
administered, or some unobservable but consistent at-
tribute of the patient. Each of these error sources can 
potentially lead to dependence between two tests results 
performed on a single patient and hence can be a source 
of dependent error leading to a violation of the inde-
pendence assumption on which a Bayes serial testing 
model depends. To conduct a G study analysis, it is nec-
essary to first collect test outcomes for randomly sam-
pled administrations of the test. It is important to ran-
domly sample across variables which naturally vary in 
the administration of a specific test and which might 
contribute to error in the test results. Such studies allow 
researchers to estimate each specified error source and 
establish whether, or under what conditions, a serial 
Bayes probability model appropriately updates patient 
probabilities upon retesting. 

2. Methods 

To illustrate how a G theory-based analysis might im-
prove testing accuracy, let’s further develop our example 
of the hypothetical medical test. Suppose that the medical 
test in the example problem involves a laboratory analy-
sis of a specimen provided by a patient. Suppose further 
that a team of expert medical researchers identify three 
variables or potential sources of error over which the 

collection of test results tend to vary and which might be 
relevant to the outcome of the medical test in question. 
The first identified potential source of error concerns the 
occasion on which the patient is tested. Specifically, the 
researchers suspect that short-term fluctuations in patient 
values may lead to inconsistent test results. Hence, the 
test outcome may depend on when the patient was tested. 
For purposes of this illustration, we will designate this 
type of error as “Error Type 1”. The second hypothesized 
source of error (Error Type 2) relates to an unobservable 
and temporally stable patient attribute that causes certain 
patients to be consistently more or less likely to generate 
false positive or false negative test results. The third 
identified error source (Error Type 3) is related to labo-
ratory processing. In particular, the researchers hypothe-
sized that variation in laboratory procedure may contrib-
ute to the generation of false negative or false positive 
test results. 

In order to understand how these sources of error in-
fluence the test’s outcome, the researchers design an ex-
periment that samples test results from across the vari-
ables that tend to vary in the real world administration of 
the test within the population and that are hypothesized 
to contribute to error. The experiment draws a large ran-
dom sample of patients from the clinical population of 
interest. Each patient in the sample is scheduled for mul-
tiple random appointment times at a clinic where speci-
mens are collected. After each clinic visit, the collected 
specimen is divided into sub samples and sent for proc-
essing at multiple randomly selected laboratories. In G 
study terminology, the experiment’s object of measure-
ment is patient (p), and the two study variables over 
which sampling occurred, usually referred to as facets, 
are occasion (o) and laboratory (l). For purposes of 
analysis, the test’s outcomes are analyzed using analysis 
of variance (ANOVA) with each cell containing the re-
sult of a single test outcome (i.e. either positive or nega-
tive, 0/1, or a continuous variable with or without a 
threshold value). Equation (5) displays the G study model 
for the decomposition of the total observed score vari-
ance σ2(Xpol) into seven variance components that are 
estimated using ANOVA-based mean squares to derive 
estimates of the quantitative effects that compose a single 
test outcome (Xpol). 

σ2(Xpol) = σ2(p) + σ2(o) + σ2(l) + σ2(po) + σ2(pl) + σ2(ol) 
+ σ2(pol)                              (5) 

The ANOVA-based research model is a fully crossed 
person (p)-by-occasion (o)-by-laboratory (l) [p × o × l] 
random model. However, unlike typical ANOVA appli-
cations which focus on F tests and follow-up significance 
testing of certain mean effects within the model, G stud-
ies estimate variance components (VCs) for a single 
outcome and quantify all sources of variance. (It should 
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be noted that in some medical testing applications both 
ANOVA-based significance testing and VC estimation 
might prove useful.) This G study model estimates seven 
VCs. There are three main effects: p, o and l, and four 
interactions: po, pl, ol, and pol. It is useful here to con-
sider what each VC conveys about the test results. The 
VCs can be verbally described as follows: 

p – the degree to which test results tend to yield a con-
sistent outcome for patients across occasions and labora-
tories (may contain Error Type 2), 

o – the degree to which certain sequential occasions 
are more or less likely to detect a positive or negative 
result (contributes to Error Type 1, but in this example it 
should logically be zero), 

l – the degree to which certain laboratories are more or 
less likely to detect positive or negative results (contrib-
utes to Error Type 3), 

po – the degree to which a patient’s test status tends to 
change depending on the occasion on which the sample 
was collected (contributes to Error Type 1), 

pl – the degree to which a patient’s test status tends to 
change depending on the particular lab to which the 
specimen was sent (contributes to Error Type 3), 

ol – the degree to which the probability of a positive 
test result for a particular occasion tends to vary depend-
ing on the laboratory processing the specimen (this 
should logically be zero), 

pol – the degree to which the patient’s test status de-
pends on the occasion / laboratory combination and other 
un-modeled or residual sources of error (also indicates 
the degree to which the G study model fails to capture 
relevant error sources). 

3. Results 

Interpreting the magnitude of the VCs from the G study 
can determine whether, or under what conditions, the 
assumption of test independence is satisfied and whether 
enhanced prediction upon retesting is achieved. The total 
variance in the G study model [σ2(Xpol)] is simply the 
sum of the all the variance components. Suppose in our 
example problem the test yields dichotomous data (nega-
tive/positive test results) and is summarized as the pro-
portion of positive test results (ρ). Therefore, model 
variance is estimated as approximately: (ρ) * (1 – ρ); and 
hence is equal to the proportion of positive tests observed 
multiplied by the proportion of negative tests obtained 
across all tests in the sample. Hence, the first result of 
interest from the experimentally sampled data in our 
example problem is the proportion of positive test results 
observed within the sample. If the random sample is of 
adequate size it should yield an accurate estimate of the 
population proportion. 

If, as in our example, there are established estimates of 
disease prevalence, and test specificity and sensitivity the 

researcher should examine the congruence between sam-
ple results and expected population values. Although a G 
study can productively proceed if a sample disagrees 
with established estimates of population prevalences and 
the test’s specificity and sensitivity, for the purpose of 
simplicity in illustrating our example problem, let’s as-
sume that the proportion of positive tests obtained from 
our sample is in close agreement with the expected 
population proportion. Hence, 31% of patients testing 
positive in our sample reflect a patient’s true positive 
disease status and 69% of the positive test results repre-
sent false positive results in a sample with a disease 
prevalence of .01. The expected proportion of positive 
results is .029 and the total model variance will sum 
to .0279. 

To further illustrate, Table 1 displays four hypotheti-
cal G study outcomes from the fully crossed G study 
model. Each outcome has a different practical implica-
tion related to achieving test independence. Assuming 
the sample is approximately consistent with expectations 
estimated from the population, let’s focus on the VC out-
comes in Table 1. For Outcome 1, 30% of the variance is 
found to be related to the patient and the largest source of 
the error is attributable to a patient by occasion interac-
tion. Since the specificity, sensitivity and prevalence are 
known, Equation (3) suggests that in the absence of pa-
tient Error Type 2, patient variance will account for ap-
proximately 30% of the total variance in the model. Out-
come 1 appears to agree closely with this expectation and 
hence would suggest Error Type 2 does not make a major 
contribution to measurement error. Further, since 60% of 
the variance is related to the person-by-occasion interac-
tion (po), test results from a specimen collected on a sin-
gle occasion and submitted to multiple laboratories are 
unlikely to provide independent information. The obvi-
ous recommendation resulting from Outcome 1 would be 
that to maximize the information from retesting and to 
insure that results exhibit test independence, specimens 
should be collected on different occasions. 

As another illustration, let’s suppose Outcome 2 as 
reported in Table 1 was the G study result of our sam-
pling experiment. Here patient variance is significantly 
higher than might be expected in the absence of Error 
Type 2. With 60% of overall variance attributed to pa-
tient variance, this outcome dramatically exceeds what 
one would expect in the absence of Error Type 2. In this 
situation, the practical implication is that a Bayes serial 
calculation would always be inappropriate even if speci- 
mens were collect on multiple occasions and sent to mul-
tiple labs. This result suggests that some patients are 
consistently more likely to generate false positive test 
results. 

Outcome 3 in Table 1 displays a G study outcome 
where most of the error is attributable to the patient-by- 
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Table 1. Percent of total variance for seven variance com-
ponents for each of four hypothetical G study outcomes 

 VC 
Outcome 

1 
Outcome 

2 
Outcome 

3 
Outcome 

4 
Ef-
fect 

Outcome 
1 

% % % % 

p 0084 30 60 30 30 

o .0000 0 0 0 0 

l .0000 0 10 2 2 

po .0167 60 2 2 2 

pl .0003 1 10 50 6 

ol .0006 2 8 0 0 

pol .0020 7 10 16 60 

TOT .0279 100 100 100 100 

 
laboratory interaction (pl) (Error Type 3). To achieve 
enhanced prediction/accuracy through the use of serial 
testing, a single occasion would likely suffice as long as 
the specimen was sent to multiple laboratories. For Out-
come 4, the three way interaction term (pol) explains 
most of the variance and illustrates a possible failure to 
specify and sample across relevant sources of error. 
Since the three-way interaction contains un-modeled 
error as well as the three-way interaction, this outcome 
may indicate that the variables investigated are not re-
lated to observed variation in test results. 

4. Discussion 

Although the testing problem presented within this hy-
pothetical example focused on the interpretation of a 
hypothetical diagnostic biomedical test, G theory meth-
odology coupled with Bayes serial estimations has much 
broader application. For example, many concerned con-
stituents are currently attempting to assure the accurate 
and fair use of tests in employment, sports eligibility, and 
in making sanction decisions. In all of these contexts, 
issues of fairness have arisen due to the large proportion 
of false positive results and the high stakes nature of the 
test results. There is considerable interest in increasing 
the accuracy of test evidence for making important deci-
sion or a diagnosis. In addition, in many instances the 
data for such analyses may already exist since medical 

testing companies when seeking FDA approval for a par-
ticular test must submit the test to a series of trials. 

It is obvious from governing board recommendations 
and from published legal advice that test users are aware 
that retesting might reduce error. However, recommen-
dations for retesting are usually made without statisti-
cally estimation of the utility of retesting. Suggestions 
that samples be divided into multiple collection tubes, or 
that the test be repeated implies an expectation of in-
creased precision with repeated testing. Unfortunately, 
when the sources of error are not systematically esti-
mated, the usefulness of a particular retesting protocol is 
currently unknown. 
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