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ABSTRACT 

The rotation of the physical Earth is far more complex than the rotation of a biaxial or slightly triaxial rigid body can 
represent. The linearization of the Liouville equation via the Munk and MacDonal perturbation scheme has oversimpli- 
fied polar excitation physics. A more conventional linearization of the Liouville equation as the generalized equation of 
motion for free rotation of the physical Earth reveals: 1) The reference frame is most essential, which needs to be 
unique and physically located in the Earth; 2) Physical angular momentum perturbation arises from motion and mass 
redistribution to appear as relative angular momentum in a rotating Earth, which excites polar motion and length of day 
variations; 3) At polar excitation, the direction of the rotation axis in space does not change besides nutation and pre-
cession around the invariant angular momentum axis, while the principal axes shift responding only to mass redistribu-
tion; 4) Two inertia changes appear simultaneously at polar excitation; one is due to mass redistribution, and the other 
arises from the axial near-symmetry of the perturbed Earth; 5) The Earth at polar excitation becomes slightly triaxial 
and axially near-symmetrical even it was originally biaxial; 6) At polar excitation, the rotation of a non-rigid Earth be-
comes unstable; 7) The instantaneous figure axis or mean excitation axis around which the rotation axis physically 
wobbles is not a principal axis; 8) In addition to amplitude excitation, the Chandler wobble possesses also multiple fre-
quency-splits and is slow damping; 9) Secular polar drift is after the products of inertia and always associated with the 
Chandler wobble; both belong to polar motion; 10) The Earth will reach its stable rotation only after its rotation axis, 
major principal axis, and instantaneous figure axis or mean excitation axis are all completely aligned with each other to 
arrive at the minimum energy configuration of the system; 11) The observation of the multiple splits of the Chandler 
frequency is further examined by means of exact-bandwidth filtering and spectral analysis, which confirms the theo-
retical prediction of the linearized Liouville equation. After the removal of the Gibbs phenomenon from the polar mo-
tion spectra, Markowitz wobbles are also observed; 12) Error analysis of the ILS data demonstrates that the incoherent 
noises from the Wars in 1920-1945 are separable from polar motion and removable, so the ILS data are still reliable and 
useful for the study of the continuation of polar motion. 
 
Keywords: Liouville Equation; Polar Motion; Chandler Wobble; Markowitz Wobble; Error Analysis 

1. Introduction 

It has long been known from classical mechanics that the 
Earth rotates like a biaxial [1,2] or slightly triaxial [3-5] 
rigid body. However, such a rigid model is not able to 
fully depict the complexity of the Earth’s rotation. The 
Earth is multilayered, deformable, energy-generating and 
dissipative. In addition to the fluidal layers of the atmos- 
phere, oceans and outer core, geological deformation, 
plate tectonics, seismicity, and volcanism observed on 
the Earth’s surface indicate motion and mass redistribu- 
tion are also to occur in the solid Earth. A renowned evi- 
dence for the Earth’s non-rigidity is the Chandler wobble, 
which is observed, as shown in Figure 1, to possess mul-  

tiple split-periods around fourteen months instead of a 
single ten-month period as predicted by the rigid model; 
a severe disparity. In the Eulerian equation of motion for 
a rigid Earth in free rotation [1,2], the Earth’s free wob- 
ble is due to a slight misalignment between the rotation 
and major principal axes; an assumed initial condition 
that does not physically explain, how the major principal 
axis of a biaxial or slightly triaxial rigid body in stable 
constant rotation can become misaligned with the rotation 
axis? The principal axis is not a vector like the rotation 
axis, but determined solely by matter distribution. A rigid 
Earth allows no motion and mass redistribution to alter 
its inertia for a shift of its principal axes; whereas, exter-  
nal torque only forces a precession of the rotation axes  
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Figure 1. The power density spectrum of polar motion of 
the POLE2004 series (Gross, 2005), span January 20, 1900 
to January 20, 2005 at 30.4375-day intervals, where the 
multiple split-periods of the Chandler wobble are respec-
tively, 424 days (0.861 cycle/year), 430 days (0.850 cycle/ 
year), 436 days (0.838 cycle/year), 442 days (0.826 cycle/ 
year), and 448 days (0.815 cycle/year), while the annual 
wobble is 365 days (1 cycle/year). The 105-year observation 
is not long enough to reach a full resonance cycle of the 
Chandler wobble. Note the presence of secular polar drift 
and long-period (Markowitz) wobbles near zero-frequency. 
 
around the invariant angular momentum axis to trace out 
a space cone, and not a body cone for free wobble of the 
rotation axis around the major principal axis. The separa-
tion of the major principal axis from the rotation axis 
must be due to motion and mass redistribution, but which 
does not occur in a rigid Earth. 

There had been a marathon of errors in the study of 
polar instability [6]. Gold [7] is the first to present a con- 
vincing qualitative discussion on the instability of the 
rotation axis in an anelastic Earth. Utilizing the genera- 
lized Eulerian equation of motion or the Liouville equa- 
tion, Munk and MacDonald [8] are the first to explain the 
separation of the major principal axis from the rotation 
axis via polar excitation. Polar excitation means motion 
and mass redistribution are to occur in the Earth to per- 
turb the angular momentum, or a change in the Earth’s 
inertia to force the rotation axis to revolve away from the 
major principal axis according to the three-finger rule of 
the right-handed system and the law of conservation of 
angular momentum. This is indeed the case for a multi- 
layered, deformable, energy-generating, dissipative, and 
perpetually rotating Earth that allows motion and mass 
redistribution. However, as the first-time transition from 
a rigid rotation to a non-rigid rotation and in attempt to 
make the two compatible, Munk and MacDonald’s 
scheme [8] has oversimplified polar excitation physics, 
and ends up, as will see below, practically still a rigid 

Earth rotation but with polar excitation superimposed on 
independent of rotation. It hence can not predict the multi- 
ple splits of the Chandler frequency. The problems en- 
countered in the Munk and MacDonald scheme have 
been fragmentally investigated [9-14] and summarily 
discussed [15]. Geophysical problems that involve rota- 
tion, such as the angular momentum function of the at- 
mosphere, secular polar drift owing to the postglacial 
viscoplastic rebound, seismic excitation of the Chandler 
wobble, true polar wandering, and impact of a giant aste- 
roid or comet to the Earth, have also been re-investigated 
[14]. In order for a more proper depiction of the polar 
excitation physics, it needs a standard linearization of the 
Liouville equation through which the Earth’s non-rigidity 
is correctly represented. The present paper is a synthetic 
review of the linearization of the Liouville equation, as 
well as a systematic examination of the fundamental 
physics of the rotation of a non-rigid Earth that are over- 
simplified in the Munk and MacDonald scheme. So a 
thorough familiarity of the Munk and MacDonald sche- 
me is essential. However, non-rigidity here is still treated 
as what the Liouville equation allows; physical properties 
of the Earth are not yet added. It is an updating of fun-
damental polar motion modeling to keep up with obser-
vation, while the physical causes of polar excitation are 
not explored. Gross [16] and Gross et al. [17] identify the 
physical excitation of the Chandler amplitude, and Gross 
[18] reviewed polar motion, theory and observation, in 
detail. Observation of the multiple splits of the Chandler 
frequency is further examined here, which is consistent 
with the prediction of such a linearized Liouville equa-
tion. However, the linearization of the Liouville equation 
is for free rotation of a non-rigid Earth in the absence of 
external torques, modeling of nutation and precession 
based on the Munk and MacDonald scheme [19-21] is 
not discussed here; related topics can be found elsewhere 
[13,22]. 

2. Review of Rigid-Body Rotation 

The rotation of the Earth is conventionally cited in clas- 
sic mechanics as a typical case governed by the Eulerian 
equation of motion for a rigid body [1]; no other scien- 
tific models have ever lasted as long. A review of the 
linearization of the equation will help to see its limitation 
to represent the rotation of the physical Earth. 

For a rigid Earth, inertia tensor I is a constant and rota- 
tion  is the only variable. The law of conservation of 
angular momentum requires that the rate of change of the 
Earth’s angular momentum in a reference frame rigidly 
fixed in the Earth rotating relative to an inertial frame 
fixed in space be equal to the external torque L exerting 
on the Earth; i.e., 

I ,I L                 (1) 
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where the over dot designates d/dt relative to the refer- 
ence frame fixed in the Earth. This is the well-known 
Eulerian equation of motion for a rigid body. Now cho- 
osing the Earth’s principal axes (a, b, c) as the reference 
frame and with constant principal inertia I = (A < B < C) 
and variable rotation  = (a, b, c), then, for free rota-
tion of a rigid Earth at L = 0, Equation (1) expands to, 

 
 
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– 0
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Equation (2) is not linear with respect to variable   
so it needs to be linearized to make the equation easier to 
solve. Fortunately, the Earth is only slightly triaxial; i.e., 
C – A >> B – A and C – B >> B – A. For simplicity, let A 
= B; Equation (2) is then linearized as a special case for a 
biaxial rigid Earth in free rotation; i.e., 
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where  is a constant. Now let C A A  
 

, or  
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.

 if the Earth’s slight triaxia-  

lity is counted [3-5], the equation further reduces to, 

                (4) 

This is the equation of motion for free “Eulerian” nu- 
tation of a biaxial rigid Earth. Its solution gives a har- 
monic motion of single frequency σ, which is where the 
single frequency of the Chandler wobble came from. 
However, in the solution it needs to assume an initial 
condition, a slight misalignment between the rotation 
axis and the c-axis, to give the Chandler wobble constant 
amplitude. There is no physical explanation why the ro- 
tation axis and the c-axis of a rigid Earth in stable con- 
stant rotation can become separated from each other. 

From above brief review we see that the Eulerian 
equation of motion is linearized as a special case only for 
free rotation of a biaxial or slightly triaxial rigid Earth. If 
the equation is to fully represent the rotation of the phy- 
sical Earth, it requires: 1) The Earth has to be perfectly 
rigid. However, the physical Earth is a multilayered, de- 
formable, energy-generating, and dissipative heavenly 
body orbiting in space that allows motion and mass re- 
distribution; the Earth’s non-rigidity is totally ignored by 
the equation; 2) The location of the principal axes in the 
Earth must be known in order for the reference frame to 
rigidly fix to. Yet, the physical location of the Earth’s 
principal axes is far from certain, fixing the reference 
frame to them is, as Munk and MacDonald [8] have al- 
ready pointed out, only for mathematical simplicity. Such 

an idealized reference frame is inconsistent with that for 
observation [23]. 3) The Earth’s rotation axis and major 
principal axis have to be already misaligned to give con-
stant wobble amplitude. However, the direction of the 
Earth’s rotation axis is nearly fixed in space besides nu- 
tation and precession, while the principal axes shift re- 
sponding to mass redistribution. The separation of the 
major principal axis from the rotation axis thus cannot 
occur in a rigid Earth in free rotation. 4) The Earth has to 
be always in stable constant rotation. On the contrary, 
observation shows the Earth’s rotation irregularities in- 
clude not only the Chandler wobble and its damping, but 
also secular polar drift, changes in the length of day, as 
well as the annual and Markowitz wobbles. All of them 
are not accounted for by the equation. 

In conclusion, the Eulerian equation of motion for a 
rigid body is not able to represent the complexity of the 
rotation of the physical Earth. It needs a generalized 
equation of motion, the Liouville equation, to account for 
the Earth’s non-rigidity, and which is what the Munk and 
MacDonald scheme is all after. 

3. Generalized Equation of Motion: Liouville  
Equation 

Liouville equation is the generalized Eulerian equation of 
motion that allows motion and mass redistribution in a 
rotating system [8]; the physical Earth is such a rotating 
system, and Munk and MacDonald [8] are the first to use 
the Liouville equation to study the Earth’s rotation. In the 
equation, after the variable rotation , the inertia tensor I 
is also no longer a constant but subject to change, while 
motion and mass redistribution will induce relative an- 
gular momentum h. The three-finger rule of the right- 
handed system [2] then becomes essential. The law of 
conservation of angular momentum requires the rate of 
change of the Earth’s total angular momentum I· + h in 
a reference frame located in the Earth rotating relative to 
an inertial frame fixed in space be equal to the external 
torque L exerting on the Earth; i.e.,  

I I h I h L                    (5) 

IEquation (5) has three terms,  h, , and  × h, 
more than Equation (1) due to the Earth’s non-rigidity. 
The equation is general and the fundamental physics it 
represents are clear. The study of the rotation of the 
physical Earth is a matter of correct interpretation of the 
equation according to the law of conservation of angular 
momentum and the three-finger rule of the right-handed 
system.  

The study of the Earth’s rotation via the Liouville equa- 
tion needs to solve the equation. A complete solution of 
the equation is extremely difficult; it requires to linearize 
the equation for special solutions just like the Eulerian 
equation of motion for a rigid body in Equations (1)-(4). 
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The perturbation scheme developed by Munk and Mac- 
Donald [8] for such a linearization laid out the founda- 
tion for modern Earth rotation studies [24,25]. With such 
a scheme, the equation is linearized to three simple first- 
order linear differential equations that separate the equa-
torial components of the rotation from its axial compo-
nent [8], just like that for the rigid Earth rotation in 
Equations (3) and (4). The equatorial components of the 
rotation can thus be mapped into a complex plan for the 
study of the Chandler wobble [8], while the axial com- 
ponent is no longer a constant as that in Equation (3) but 
differentiated to represent changes in the length of day. 
The equation explains the separation of the rotation axis 
from the major principal axis via polar excitation, but the 
axial and equatorial components of the excitation are 
defined not in the same dimension [8]. Such a lineariza- 
tion of the Liouville equation still gives the Chandler 
wobble a single frequency and is non-damping, while 
secular polar drift will not appear in the solution of the 
equation [23]; these are no different from what are ob- 
tained from Equation (4) for a rigid-body rotation, and 
are thus not consistent with observation [15]. What fol- 
lows is an exploration of these inconsistencies in the 
Munk and MacDonald scheme.  

4. Reference Frame 

The reference frame is most essential, for all motions in 
the Earth are relative to it. For a biaxial rigid Earth, the 
choice is idealized: The major axis of the frame is the 
major principal axis, while the two equatorial axes can be 
aligned anywhere on the equatorial plane in the right- 
handed system. However, for a non-rigid Earth, as Munk 
and MacDonald [8] have already pointed out, it is 
unlikely to find a truly body-fixed frame, and frames 
such as Tisserand and principal axes are obvious choices 
for mathematical simplicity. Chao [23] examines the 
different theoretical frames, including Smith’s invariant 
frame [3], and concludes that there is an inconsistency 
between the frame used for observation and those for 
theoretical calculation. Pan [14] observes that all the 
conventional theoretical frames are idealized systems 
that are not physically located in the Earth. The frame of 
Mathews et al. [26] is no exception. This is because the 
direction of the rotation axis is not truly space-fixed ow-
ing to nutation and precession; the true direction invari-
ant in space is the angular momentum axis. Also, a frame 
cannot keep a constant rotation of its own if it is fixed to 
the physical Earth. Munk and MacDonald [8] align the 
major axis of their frame nearly parallel to the rotation axis. 
However, as the rotation axis traces out a body cone in the 
Earth, there can be an infinite number of frames with their 
major axis nearly parallel to the rotation axis; the frame 
is thus not unique. Once it is fixed to the Earth, its ap-

proximation will deteriorate on the order twice the Chan-
dler amplitude [12,14]. It will eventually disassociate 
itself from polar motion as the rotation axis revolves 
away to pursue after the instantaneous figure axis or 
mean excitation axis for polar stability. Munk and Mac-
Donald [8] hence point out that their frame is not valid 
for polar wandering. A reference frame in the Earth 
should be chosen to avoid above problems; it needs to be 
physically located in the Earth, unique, consistent with 
observation, and always associated with polar motion. 
However, a satisfactory choice of a both theoretically and 
observationally practical reference frame in a rotating 
Earth that allows motion and mass redistribution in its 
different layers is most difficult. Frames may be mathe-
matically transformable, but not physically. Pan [10-14] 
chooses a frame as that shown in Figure 2. The (a, b, c) 
frame is the Earth’s original principal axes prior to polar 
excitation, which is diagonal; whereas, the (x, y, z) frame 
is the axes of the Earth’s inertia tensor that appear simul-
taneously with polar excitation, which is not diagonal. 
The angle pair  ,   is defined as the Earth’s axial 
near-symmetry, which will be further discussed below, 
where   is the deviation angle between the c- and 
z-axes, and   is the azimuth angle between corre- 
sponding equatorial axes. The frame is geocentric. Its 
 





 

Figure 2. The (a, b, c) frame is prior to, and (x, y, z) frame is 
at polar excitation. The angle pair (θ, ) is defined as the 
axial near-symmetry of an Earth at polar excitation. The 
c-axis is the original major principal axis, while z-axis is the 
mean excitation axis or instantaneous figure axis around 
which the rotation axis physically wobbles. The (x, y, z) 
frame is the reference frame. 
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z-axis is the instantaneous figure axis or mean excitation 
axis that is aligned with the axis of reference [8] or the 
geographic axis [3] around which the rotation axis phy- 
sically wobbles. Its y-axis is along the direction of secu- 
lar polar drift, while x-axis is perpendicular to the y- and 
z-axis in the right-handed system. The Liouville equation 
is fully described in the frame, for it can be assumed 
rotating relative to an instantaneously coinciding iner- 
tial frame fixed in space without loss of generality [8,10, 
14]. 

5. Matter Perturbation and Relative  
Angular Momentum 

Physical perturbation to angular momentum arises from 
motion and mass redistribution in a rotating Earth. In the 
Munk and MacDonald scheme [8], however, first-order 
mathematical matter perturbation is linearly added to the 
principal inertia of a biaxial rigid Earth independent of 
rotation. Mathematically such a perturbation is legitimate 
but physically is unjustifiable, because it allows, as Pan 
[14,15] points out, the perturbed inertia to become 
greater than the principal inertia. If it were true, then, the 
Earth’s matter distribution would not be conserved, and 
the Earth would no longer have rotation stability. This 
pertains not only to internal perturbations within the 
Earth, but also external perturbations such as the impact 
of a giant meteorite or asteroid. A meteorite or asteroid 
becomes a part of the Earth as soon as it reaches the 
Earth; then, the Earth’s principal moments of inertia will 
again become greater than the perturbed moments of iner- 
tia, and the Earth’s matter distribution is still conserved. 
Physically, perturbing inertia appears as motion and mass 
redistribution about the terrestrial (x, y, z) frame rotating 
relative to an instantaneously coinciding inertial frame 
fixed in space [14]. So the differentiation operator d/dt + 
 × applies to the whole rotating system, including h. 
However, in the h defined in the Munk and MacDonald 
scheme [8], the differentiation operator is only d/dt, 
which means motion is only about an inertial frame not 
rotating with the Earth. A single rotating system cannot 
have two reference frames coexisting, and motion in the 
system cannot bypass the rotation of the system to refer 
to an inertial frame that is not fixed to the system. If so, 
then motion in the Earth will induce no gyroscopic effect 
or gyricity in the Earth as is observed; this violates the 
three-finger rule of the right-handed system. So h has to 
refer to the same terrestrial (x, y, z) frame in the Earth ro- 
tating relative to an instantaneously coinciding inertial 
frame fixed in space as the whole system does. This is 
the fundamental physics of the rotation of a non-rigid 
Earth that mathematical matter perturbation is not able to 
represent. The motion that induces h is thus not u but u + 
 × r, where u = (ux, uy, uz) is the motion of mass M 

about the (x, y, z) frame, and r = (x, y, z) is the position 
vector of mass M. Let  be the Earth’s average rotation 
speed, h = (hx, hy, hz) thus becomes [10,14], 

  

  

 ,

x x xz

y y yz

z z z

h p I

h p I

h p I

 
              (6)  

 

where the first term p = (px, py, pz) arises from the motion 
u of mass M about the (x, y, z) frame that does not in-
volve rotation; i.e., 
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           (7) 

which is identical to the relative angular momentum de- 
fined in the Munk and MacDonald scheme [8]. On the 
other hand, since the (x, y, z) frame is fixed in the Earth 
rotating relative to an instantaneously coinciding inertial 
frame fixed in space, the gyroscopic effect or gyricity 
from rotation to motion  × r will then induce the second 
term in Equation (6), in which, 

I x y M

I xz M

I yz M

  

 

 





          (8) 

are the inertia changes arising from redistribution of 
mass M under the gyroscopic effect or gyricity from ro- 
tation to motion [14,22,27]. They are named the residual 
moment and products of inertia by Pan [13], while Munk 
and MacDonald [8] define them as matter excitation. 
However, the mathematical matter perturbation in the 
Munk and MacDonald scheme [8] makes Equation (8) 
redundant. This forces the scheme to define the motion 
not to be u + ω × r but only u, bypassing the Earth’s ro-
tation and directly about an inertial frame fixed in space. 
This is inconsistent with the whole rotating system; mo-
tion in an inertial Earth is not physically feasible. The 
relative angular momentum in the Munk and MacDonald 
scheme is hence only p or Equation (7) [8], while the 
second term in Equation (6) or the residual inertia in 
Equation (8) are ignored, overlooking mass redistribution 
is always transported by a motion rotating with the Earth. 
The relative angular momentum in the scheme is thus 
detached from the Earth’s rotation, and is not the angular 
momentum perturbation arising from motion and mass 
redistribution in a rotating Earth as it should. This is a 
fundamental oversight; no motion or relative angular 
momentum in the physical Earth can be independent of 
its rotation. Pan [14] has additional discussion of the 
problem. The angular momentum function of the atmos- 
phere [15,28,30] is practically a normalized form of the 
relative angular momentum h in Equation (6). Fluidal 
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layers in the Earth, the atmosphere, oceans, and outer 
core, can each be represented by an individual h of its 
own mobility and density, while the rest of the Earth is 
still represented by the overall angular momentum I·. 

6. Axial Near-Symmetry and Major  
Principal Axis 

In a non-rigid Earth, after its inertia is altered by motion 
and mass redistribution, the rotation axis will revolve, not 
shift, away from its alignment with the original major 
principal axis according to the three-finger rule of the 
right-handed system, to trace out a body cone around an 
instantaneous figure axis that has shifted to its new posi- 
tion, the mean excitation axis, as illustrated in Figure 3. 
Yet, the direction of the rotation axis is still nearly fixed 
in space besides nutation and precession; it is the instan- 
taneous figure axis that shifts its direction in space, while 
the principal axes shift responding to mass redistribution. 
As Figure 3 exhibits, if the original major principal axis 
at c is a symmetrical axis, then, the instantaneous figure 
axis or mean excitation axis at z, around which the rota- 
tion axis wobbles, can not be also a symmetrical axis as 
 

 

Figure 3. Geometric interpretation of polar excitation on a 
plane projection about the North Pole. c is the pole of the 
c-axis in Figure 2, and ca and cb are the projections of a- 
and b-axes respectively. z is the pole of the z-axis in Figure 2, 
and zx and zy are the projections of x- and y-axes respec-
tively. The circular curve is the trace of the rotation pole , 
while c’ is the assumed major principal pole at polar excita-
tion. The figure is not in actual scale, and the multiple fre-
quency-splits of the Chandler wobble are not depicted. (Af-
ter Pan, 1999, Figure 3). 

well, no matter how close is it to c. This is the axial near- 
symmetry of the Earth at polar excitation, as defined by 
the angle pair  , 
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 in Figure 2, which will induce ad- 
ditional changes in the Earth’s inertia [10,14]. Let the 
Earth’s original principal moments of inertia in the (a, b, 
c) frame be A < B < C; then, for the conservation of the 
Earth’s inertia, the moments and products of inertia in 
the (x, y, z) frame will be [10,12,14], 
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  (9) 

The mathematical matter perturbation in the Munk and 
MacDonald scheme [8] fails to differentiate the two phy- 
sically distinct changes in the Earth’s inertia, respectively 
shown in Equations (8) and (9), that will appear simulta- 
neously at polar excitation. Note both inertia changes in 
Equations (8) and (9) involve physically in polar excita- 
tion in a rotating Earth, while the mathematical matter 
perturbation in the Munk and MacDonald scheme [8] is 
directly added to an inertial Earth regardless of rotation. 

The above demonstration then raises a critical question: 
Can the mean excitation axis be a principal axis or “a ge- 
neralization of principal axis” as Munk and MacDonald 
[8] suggest? There exist no products of inertia about the 
principal axes, so the mean excitation axis can be a prin-
cipal axis only if the residual products of inertia in Equa-
tion (8) and the products of inertia arising from axial 
near-symmetry in Equation (9) can totally cancel each 
other. We can resolve the problem through the excitation 
function in the Liouville equation [8], which provides 
amplitude to the Chandler wobble. With Equations (8) 
and (9) incorporated into the Liouville equation, the three 
components of the excitation function become [10,12], in 
the absence of external torques, 
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(10) 

Equation (10) exhibits the residual products of inertia 
and the products of inertia arising from axial near-sym- 
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metry do not cancel each other, but instead superimpose 
each other to enhance polar excitation. This manifests 
that the mean excitation axis around which the rotation 
axis wobbles is not a principal axis at all; otherwise the 
products of inertia about it should be zero. Munk and 
MacDonald [8] have overlooked this slight deviation of 
the mean excitation axis from the major principal axis. 
The conventional belief that the axis around which the 
rotation axis wobbles is the major principal axis is thus 
not valid in a non-rigid Earth. Figure 3 and Equation (9) 
also exhibit that at polar excitation, the Earth becomes 
slightly triaxial and axially near-symmetrical even it was 
originally biaxial [13,14]. On the other hand, because of 
the appearance of h, the original principal axes (a, b, c) 
prior to polar excitation are no longer the Earth’s prince- 
pal axes; then, where are the principal axes at polar exci- 
tation? The principal axes are singular lines that are, like 
the rigid body, only mathematically defined; how to ex- 
actly locate them in the physical Earth is yet a good geo- 
detic question. As Figures 2 and 3 imply, the physical 
appearance of polar excitation is practically a perturba- 
tion to the Earth’s axial symmetry. If the principal axes 
in the physical Earth are not determined, then, the mea- 
surement of the Earth’s axial near-symmetry angle pair 
 ,   is also a good question. 

Here is also another interesting question. If a motion, 
such as seasonal fluctuations of the atmosphere or the 
atmospheric and oceanic excitation of the Earth’s wob- 
bles [16,17] that induces only negligible mass redistribu- 
tion in the solid Earth; then, there will be little changes in 
the positions of the principal axes in the Earth. However, 
as shown in Figure 3, according to the three-finger rule 
of the right-handed system, the relative angular momen- 
tum induced by the motion will force the rotation axis to 
revolve away from the major principal axis around an 
instantaneous figure axis that has also been forced to 
shift to a new position at the mean excitation axis [8,14], 
about which the inertia tensor is no longer diagonal but 
becomes Equation (9) due to its axial near-symmetry 
[10,14]. Polar excitation by motion alone hence can also 
induce products of inertia in the solid Earth. In such a 
case, polar excitation is due to continuous motion as well 
as the products of inertia arising from the near-symmetry 
of the instantaneous figure axis at its new position. The 
instantaneous figure axis thus will shift responding to 
both motion and mass redistribution, while the principal 
axes shift only responding to mass redistribution. Con- 
tinuous motion maintains the wobble; whereas, the in- 
stantaneous figure axis will gradually drift toward the 
major principal axis via rheological deformation until 
they are realigned with each other. If motion stops, the 
wobble it excites will stop, but the rotation axis will still 
revolve toward the instantaneous figure axis according to 
the three-finger rule of the right-handed system, with the 

major principal axis dragged along, until they are all re- 
aligned with each other to reach at stable rotation of 
minimum energy configuration of the system. 

7. Linearization 

Munk and MacDonald [8] assume the perturbation to the 
Earth’s inertia and rotation as well as the motion-only 
relative angular momentum p, after normalized, are small 
dimensionless quantities whose products and squares can 
be neglected. After such a linearization, the equatorial 
components of the Liouville equation can be mapped into 
a complex plan, while the axial component represents 
changes in the length of day [8]. On the other hand, at 
right-side of the equation is the excitation function 
arising from the motion-only relative angular momentum 
p and the products of inertia, which provides the Chan- 
dler amplitude, while the coefficients of the terms at the 
left-side contribute to the Chandler frequency. However, 
the same motion-only relative angular momentum p and 
the products of inertia that contribute to the Chandler 
amplitude at the right-side are totally neglected from the 
coefficients at the left-side. This leaves only the excitation 
function at the right-side [8] to represent a non-rigid 
Earth, while the left-side is no different from that for a 
rigid Earth as that in Equation (4). The Chandler wobble 
hence still possesses a single frequency like that of a 
rigid Earth, in conflict with the observed multiple splits 
of the Chandler frequency as that shown in Figure 1. 
What such a linearized Liouville equation represents is, 
therefore, practically equivalent to the rotation of a rigid 
Earth with polar excitation superimposed on independent 
of rotation, and not yet truly of a non-rigid Earth. 

In the Liouville equation, only rotation  is an un- 
known that needs a solution; motion and inertia changes 
are the physical quantities that excite polar motion. So in 
the linearization only the terms that involve squares of 
the variable  are needed to be neglected, just like that in 
Equations (2)-(4) for a rigid Earth rotation. The other 
terms that involve the product of  and non-variable 
physical quantities are linear by definition and shall not 
be neglected before they are physically identified as 
genuinely negligibly small. In the Liouville equation, 
Equation (5), only the fourth term  × I· and partially 
the fifth term  × h that contain -squares.  × I· is 
primarily a reaction of the Earth to external torques, so 
its neglect is physically justifiable for free rotation of the 
Earth at L = 0; whereas, the -square terms in  × h are 
due to the gyric motion  × r in h, which are negligibly 
small and are already ignored in the Munk and Mac 
Donald scheme. It is true that the normalized values of 
the products of inertia and the motion-only relative  
angular momentum p are much smaller than that of the 
moments of inertia, but products of inertia and relative 
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angular momentum are neither in the same physical 
dimension nor on the same order of magnitude, and their 
normalized values are not necessarily negligibly small or 
physically insignificant in comparison to the normalized 
differences of the axial and equatorial moments of inertia; 
the latter comprises the fundamental Chandler frequency 
constituents. On the other hand, if motion and mass 
redistribution can excite the Chandler amplitude, there is 
no reason to assume that they are too small to affect the 
Chandler frequency. It is hence inappropriate to neglect 
them before they are physically identified indeed too 
small to contribute to the Chandler frequency. Take into 
account of above considerations and let the only mathe- 
matical perturbation be  = (mx, my, 1 + mz), where (mx, 
my, mz) are dimensionless small quantities [8], the lineari- 
zation of the Liouville equation in the absence of external 
torques becomes [10,12], 
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where z x
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I I
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 

 , ,

 are not inde-  

pendent components but the constituents of the funda- 
mental Chandler frequency arising from matter distribu- 
tion in a slightly triaxial and axially near-symmetrical 
Earth [12], and x y z  is the excitation function 
in Equation (10). The coefficients of left-side terms in 
Equation (11) provide frequencies to the Chandler wob- 
ble, thus not only moments of inertia but also products of 
inertia and motion will contribute to the Chandler fre- 
quency [12]. Equation (11) is three dimensional, and its 
x- and y-components can no longer be mapped into a 
complex plan mathematically as that in the Munk and 
MacDonald scheme [8]. The solution of Equation (11) 
[10,12] gives a slow damping Chandler wobble of 
multiple frequency-splits as well as secular polar drift, 

  

consistent with the observation that the Chandler wobble 
hardly changes except exhibiting a “beat” phenomenon 

of resonant coupled oscillations [8,12,15,31,32]. This 
confirms that single frequency is not the intrinsic 
property of the Chandler wobble, but is only for the free 
rotation of a biaxial or slightly triaxial rigid Earth under 
an assumed initial condition of a slight misalignment be- 
tween the rotation and major principal axes. The ob- 
servation of apparent single Chandler frequency is be- 
cause the length of data analyzed is shorter than the 
resonance cycle and in a time span within the modulation 
envelope of the oscillations [15].  

The solution of Equation (11) [10,12] is very compli- 
cated. In the solution [12], the wobble frequency consists 
of a natural frequency plus or minus three small feedback 
frequency series that are equivalent to adding of small 
springs and dashpots in series with the main oscillator. 
Yet, the natural frequency can further be separated into a 
fundamental frequency attributing to the Earth’s slight 
triaxiality just like that of a rigid Earth, and also three 
small feedback frequency series that are equivalent to 
adding of small springs and dashpots in parallel with the 
main oscillator. Such a feedback mechanism causes the 
multiple splits of the Chandler frequency. The small 
feedback frequency series are due respectively to instan- 
taneous inertia, relative angular momentum, and inertia 
variation arising from the same motion and mass redis- 
tribution that excite the Chandler amplitude [16-18]. 
However, physical details of the frequency excitation are 
not yet identified; the Liouville equation and its solution 
can be further simplified if the orders of magnitude of 
some of the terms are physically identified to be negligi- 
bly small. 

8. Rotation Instability 

The solution of Equation (11) [10,12] gives an exponen- 
tially damping Chandler wobble together with an ex- 
ponentially increasing secular polar drift, suggesting the 
Earth’s rotation is unstable. Secular polar drift represents 
the Earth’s attempt to eliminate its products of inertia, so 
it is always associated with the Chandler wobble that is 
also involved with the products of inertia [14,22]; they 
together constitute polar motion for the Earth to seek 
rotation stability. The damping relaxation time for a 
Chandler wobble of multiple frequency-splits is on the 
order of 104 to 106 years [12], and available observation 
[15] indicates the Chandler wobble has yet to reach a 
complete multiple-resonance cycle. In a multilayered, 
deformable, energy-generating and dissipative Earth, 
once the rotation, major principal, and instantaneous 
figure axes are separated from each other, they will no 
longer be able to revert back to their original position of 
alignment in the Earth again, while rheological equatorial 
bulge will migrate with secular polar drift accordingly 
[8]; so it is an unstable rotation. In an Earth in unstable 
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rotation, secular internal torques [10,13,22], particularly 
those due to the gyroscopic effect or gyricity from 
rotation to motion [13,22,27], dominate secular global 
geodynamics and also cause free nutation. The Earth will 
reach a stable rotation via self-deformation and quadru- 
polar adjustment according to the law of conservation of 
angular momentum and the three-finger rule of the 
right-handed system, until its rotation, major principal, 
and instantaneous figure axes are all completely realig- 
ned with each other to arrive at the minimum energy 
configuration of the system [14]. Then, (mx, my, mz) = 0, 

, and (x, y, z) = (a, b, c).  , 0  

9. Chandler and Markowitz Wobbles,  
Secular Polar Drift 

Assuming the Chandler wobble to be a complex time 
series, Okubo [33] tests the variability of the Chandler 
amplitude, and concludes that it is an artifact depending 
on the analysis methods. Here we further examine this 
particular problem via direct analysis of observation, to 
see whether the multiple splits of the Chandler frequency 
are artifacts. The data used for this analysis is the 105- 
year POLE2004 series [15,34], which is, as error- 
analysis below will show, reliable and useful for the 
study of the continuation of polar motion. Complex Liou- 
ville equation [8] predicts only a non-damping single- 
frequency Chandler wobble with no secular polar drift, as 
if the Earth were rigid after an amplitude excitation. It is 
therefore not appropriate to map real observations into a 
complex plan for the analysis of the frequency excitation 
it does not cover; our analysis reflects Equation (11). The 
analysis tool is a simplest radix-2 FFT; no further 
assumptions or parameters are added to generate artifacts. 
All artifacts in an FFT are due to the finite truncation of 
input, and among them only the Gibbs phenomenon 
smears the whole spectrum; the others are uncom- 
pensated spectral leakages at local frequencies that will 
neither contaminate the signals nor transfer to the time 
domain to induce amplitude modulation. So after the 
Gibbs phenomenon is removed, no other artifacts will 
smear the spectra or induce amplitude modulation, while 
digital filtering is exact, not approximation like conven- 
tional filters.  

We start from Figure 1, the power density spectrum of 
the POLE2004 series from 0.0 to 1.1 cycle/year, includ- 
ing secular polar drift, Markowitz, Chandler, and annual 
wobbles as well as background noises. There is no Gibbs 
phenomenon in a power density spectrum, so the baseline 
tilting method [15,35] that removes the Gibbs pheno- 
menon but will introduce a near-DC component into the 
spectrum, is not applied. What in Figure 1 are thus either 
input signals/noises or uncompensated leakages due to 
finite truncation of the input. For the study of the Chan- 

dler wobble, we remove the annual wobble from polar 
motion, it then gives a waveform as that in Figure 4 and 
a power density spectrum in Figure 5. 

Pan [15] observes that the bandwidth of the Chandler 
wobble is a constant 0.79 - 0.875 cycle/year regardless of 
data length, data quality, time span, and time sampling 
rate; whereas, that of the annual wobble varies from 0.99 - 
1.01 cycle/year for the 105-year (1900-2005) POLE- 
2004 series at 30.4375-day intervals to a broader 0.975 - 
1.025 cycle/year for the more modern 42-year (1962- 
2005) COMB2004 series at daily intervals. A broad band- 
width consists of more than a single discrete frequency 
even it has only a single peak [15]. The Chandler spec- 
trum splits within its bandwidth with the increase of time 
span regardless of time sampling rate, but the annual 
wobble only shifts its frequency content. This exhibits 
that the annual wobble varies timely in response to 
seasonal fluctuations of the atmosphere; whereas, splits 
of Chandler frequency reflect the amplitude modulation 
cycles within the time span [15]. The Gibbs phenomenon 
is already removed, and spectral leakages will not 
contaminate the wobble frequencies, so the splits within 
the constant bandwidth all belong to the Chandler com- 
ponents that will induce amplitude modulation in the 
time span. To further look into it, we isolate the Chandler 
bandwidth; its power density spectrum is shown in 
Figure 6, and waveform in Figure 7 (also [15]). A com- 
parison of Figures 4 and 7, we can see that their dif- 
ference is only that Figure 4 still contains all the remain- 
ders of polar motion, secular polar drift, the Markowitz 
wobbles, and background noises except the annual 
wobble, while Figure 7 consists of only what is within 
the Chandler bandwidth. Figures 4 and 7 reflect each 
other; both exhibit the resonant oscillations or amplitude 
modulation cycles that a single-frequency wobble cannot 
have. However, there is a general belief that if the Chan- 
dler frequency is to split, it is a single split [31,32,36,37]. 
So one may still suspect the side-splits of the Chandler 
frequency are artifacts. To test this, we remove the side- 
splits from the Chandler frequency. This is equivalent to 
spectral leakages are totally compensated as if the input 
length were infinite, which hence will not affect the 
signals. Figure 8 is the power density spectrum of the 
main-split and Figure 9 is its waveform, which displays 
a typical single coupled oscillation obviously different 
from the multiple amplitude modulations as that in Fig- 
ures 4 and 7. A comparison of Figures 7 and 9, we can 
easily conclude that the side-splits cannot be artifacts but 
belong to the Chandler components, for artifacts or 
spectral leakages are not able to add to the main-split to 
induce the multiple amplitude modulations beyond a 
single coupled oscillationas that shown in Figure 7.  

For further confirmation, it is also of interest to see 
how the side-splits alone wil  behave. Figure 10 is the l 
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Figure 4. Polar motion of the POLE2004 series (Gross, 2005) with annual wobble removed, span January 20, 1900 to January 
20, 2005 at 30.4375-day intervals. 
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Figure 5. The power density spectrum of polar motion of the POLE2004 series (Gross, 2005) with annual wobble removed, 
span January 20, 1900 to January 20, 2005 at 30.4375-day intervals. 
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Figure 6. The power density spectrum of the Chandler wobble from the POLE2004 series (Gross, 2005), span January 20, 
1900 to January 20, 2005 at 30.4375-day intervals. 
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Figure 7. The Chandler wobble from the POLE2004 series (Gross, 2005), span January 20, 1900 to January 20, 2005 at 
30.4375-day intervals. 
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Figure 8. The power density spectrum of the main-split of the Chandler wobble from the POLE2004 series (Gross, 2005), 
span January 20, 1900 to January 20, 2005 at 30.4375-day intervals. 
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The Chandler wobble main-split only: January 20, 1900 - January 20, 2005
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Figure 9. The waveform of the main-split of the Chandler wobble from the POLE2004 series (Gross, 2005), span January 20, 
1900 to January 20, 2005 at 30.4375-day intervals. 
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Figure 10. The power density spectrum of the side-splits of the Chandler wobble from the POLE2004 series (Gross, 2005), 
span January 20, 1900 to January 20, 2005 at 30.4375-day intervals. 

 
power density spectrum of the side-splits and Figure 11 
is its waveform, which further exhibit that the side-splits 
are not leakages but components of the resonant oscilla- 
tions of the Chandler wobble that are missed in Figures 8 
and 9. Note in Figure 10 there are two non-zero uncom- 
pensated leakage peaks within the original bandwidth of 
the main-split, but which will not contaminate the side- 
splits or induce amplitude modulations in the time domain. 
In Figure 11, the magnitude of the amplitude modulation 
is slowly decreasing, which may reflect the imbalances 
of the splits at each side of the removed main-split. We 
now remove both the Chandler and annual wobbles 
wholly to see how the remainders of polar motion will 
behave; Figure 12 is the power density spectrum and 
Figure 13 is the waveform. The remainders in Figure 12 
are secular polar drift, the Markowitz wobbles, back- 
ground noises, as well as uncompensated leakages. How- 
ever, as what is shown in Figure 13, none of the re- 
mainders will generate resonant oscillations or amplitude 
modulations. This further exhibits that artifacts or 
uncompensated spectral leakages have nothing to do with 
the multiple splits of the Chandler frequency. 

In Figure 1 or 4 we can also find that near the zero- 
frequency of the power density spectrum, there exist 
three conspicuous and one minor spectral peaks in the 
x-component. The y-component is dominated by secular 
polar drift, but there are yet two peaks that can be 

identified corresponding to those in the x-component. 
Figure 14 plots the enlarged part of the spectrum from 0.0 
to 0.3 cycle/year, and Table 1 lists the measurements of 
those low-frequency spectral peaks. Because of the do- 
mination of secular polar drift in this near-DC frequency 
range, only two peaks, respectively at 0.029 cycle/year 
(34.48 years) and at 0.047 cycle/year (21.28 years), can 
be commonly identified from both the x- and y- com- 
ponents, which are close to the Markowitz wobble. Gross 
[18] reports the Markowitz wobble has a period of 24 
years and an amplitude of 30 mas. The wobbles in this 
frequency range are within or close to the bandwidth of 
secular polar drift; their measurements are therefore 
corrupted by it and are also heavily dependent on spectral 
resolution. The corruption of the wobbles by secular 
polar drift is another reason that to map polar motion into 
a complex plan may be misleading. However, what listed 
in Table 1 are yet apparent and cannot be taken too 
seriously. Longer observation is needed for more detailed 
study of these long-period wobbles. It is not yet certain 
whether Equation (11) will predict such long-period 
wobbles. If it does not, then they are not free wobbles. 

Finally, we can also make a glance at secular polar 
drift. Based on Figure 14, we pick 0.000 - 0.012 cycle/ 
year as its bandwidth. Then, its power density spectrum 
is shown in Figure 15, and waveform is plotted together 
with the original polar motion observation in Figure 16. 
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The Chandler side-splits: January 20, 1900 - January 20, 2005
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Figure 11. The waveform of the side-splits of the Chandler wobble from the POLE2004 series (Gross, 2005), span January 20, 
1900 to January 20, 2005 at 30.4375-day intervals. 
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Figure 12. The power density spectrum of the remainders of polar motion from the POLE2004 series (Gross, 2005) with 
Chandler and annual wobbles removed, span January 20, 1900 to January 20, 2005 at 30.4375-day intervals. 
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Figure 13. Remainders of polar motion from the POLE2004 series (Gross, 2005) with Chandler and annual wobbles removed, 
span January 20, 1900 to January 20, 2005 at 30.4375-day intervals. 
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Figure 14. The power density spectrum of polar motion of lower frequencies from the POLE2004 series (Gross, 2005), span 
January 20, 1900 to January 20, 2005 at 30.4375-day intervals. 
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Table 1. The long-period (markowitz) wobbles. 

Frequency (cycle/year) 0.006 0.018 0.029 0.047 

Period (year) 166.67 55.56 34.48 21.28 

x-amplitude (μas) 4.1 × 105 2.5 × 105 2.0 × 105 0.7 × 105 

y-amplitude (μas)   4.4 × 105 2.7 × 105 
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Figure 15. The power density spectrum of secular polar drift from the POLE2004 series (Gross, 2005), span January 20, 1900 
to January 20, 2005 at 30.4375-day intervals. 
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Figure 16. Secular polar drift and polar motion from the POLE2004 series (Gross, 2005), span January 20, 1900 to January 
0, 2005 at 30.4375-day intervals. 2 
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10. Error Analysis of the ILS Data 

The observation examined above includes the less reli- 
able ILS data [15,34]; the high noise level in the ILS data, 
particularly those recorded during the 1920-1945 War 
period, may introduce errors into the analysis and thus 
lead to misinterpretation. However, Pan [15] observes 
that the noises in the data are mostly random and inco- 
herent between x- and y-components, and the incohe- 
rency is higher in higher frequencies. As exhibited by the 
observation analysis above, such incoherent random 
noises will not affect the periodic signals in the Chandler 
frequency range much, for they are incapable of periodi- 
cally feeding enough energy back to split the Chandler 
frequency [12,38], while noises with periods less than a 
month are already eliminated by the monthly sampling of 
the data. If the noises could ever affect the wobble fre- 
quencies, they would separate the x- and y-components 
of the wobbles incoherently rather than nearly identical 
to each other as what is observed in Figure 1 (and Fig- 
ure 18). On the other hand, since complex Liouville equa- 
tion predicts only a non-damping single-frequency wob- 
ble of constant amplitude and no secular polar drift, 
mapping the x- and y-components of observation, par- 
ticularly those contain incoherent background noises, 
into a complex plan is misleading. In order to further 
clarify the problem, we will do an error analysis of the 
ILS data, particularly those of 1920-1945 War years, in 

three directions: 
1) Time domain: Figure 17 plots the original polar 

motion data of the POLE2004 series, span 20 January 
1900 to 20 January 2005, at 30.4375-day intervals, in- 
cluding the ILS data [34]. As shown, with the presence 
of the annual wobble, the amplitude modulation in 1920- 
1945 is slightly lower but not exceptionally low. How- 
ever, the incoherency between the x- and y-components 
is conspicuous, as is also exhibited by the amplitude 
spectra of the data in Figure 18, which indeed reflect the 
War disturbances. Figure 18 shows the incoherency gets 
worse at higher frequencies, but yet hardly gets into the 
bandwidths of the Chandler and annual wobbles. Now 
we remove the annual wobble from the data, as that in 
Figure 4, then the much lower amplitude modulation and 
the incoherency between the x- and y-components in 
1920-1945 become more conspicuous, which lead to a 
belief that the split of the Chandler frequency is caused 
by the “phase ambiguity” associated with the exception- 
ally low amplitude in 1920-1945. However, here we need 
to note that, as is already mentioned above, the x- and 
y-components of the data are not mapped to a complex 
plan but each treated alone and then plotted together. The 
amplitude spectra are all zero phase, so there is not 
“phase ambiguity” but incoherent noises as that shown in 
Figure 18. Yet, the multiple splits of the Chandler fre- 
quency are still there intact, not disappeared with “phase 
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Figure 17. Polar motion observation from the POLE2004 series, span 20 January 1900 to 20 January 2005, at 30.4375-day 
intervals (Gross, 2005). 
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Figure 18. Amplitude spectra of polar motion from the POLE2004 series; Gibbs phenomenon removed. 
 
ambiguity”. There are also questions: Why the annual 
wobble seems less affected by the Wars but the inco- 
herency around it becomes worse? Why the amplitude 
modulation during 1914-1918 WWI period was not as 
low as the years afterward? These questions will become 
clear below. Figure 7 is the waveform of the Chandler 
wobble extracted from its exact bandwidth in Figure 18, 
which exhibits clearly not a single frequency motion but 
multiple resonant oscillations with lowest amplitude at 
1927. The incoherency between the x- and y-components 
that is conspicuous in Figures 4, 17 and 18 is disap- 
peared in Figure 7. The incoherent noises are thus sepa- 
rable and removable, as exhibited by a comparison of 
Figure 18 to Figure 6, since the noises do not contami- 
nate the wobble frequencies. On the other hand, Figure 9 
is the waveform of the main-split of the Chandler spec- 
trum, which exhibits a single coupled oscillation with its 
lowest amplitude at 1932, no longer at 1927 as that in 
Figure 7, but there were no major wars in 1927-1932. If 
the low amplitude modulation in 1920-1945 was indeed 
caused by the Wars, then there should be only one lowest 
point in the period, more likely closer to 1939-1945 or 
even 1914-1918. The envelope of amplitude modulation 
as that shown in Figures 7 and 9 will then be interrupted 
at the same lowest point, and there will also be no shift of 
the amplitude modulation cycles corresponding to the 
Chandler frequency splits as that shown in Figures 7, 9 
and 11. The amplitude modulation in Figure 9 is a typi- 
cal single coupled oscillation, no longer reflects the excep- 
tionally low amplitude in 1920-1945 as that in Figure 4. 

The shift of amplitude modulation from Figures 7 to 9 is 
thus due to the removal of the three side-splits from the 
Chandler spectra, not because of Wars. More importantly, 
as is also exhibited in Figure 9, a resonant coupled os- 
cillation cannot have an open end; it must be cyclic. Only 
one low amplitude end is not able to physically split the 
natural frequency of the Chandler wobble; it needs an 
energy feedback mechanism to achieve it [38]. 

2) Frequency domain: As is already demonstrated 
above, the bandwidth of the Chandler wobble is a con- 
stant regardless of data length, data quality, time span, 
and time sampling rate, while that of the annual wobble 
shifts its frequency content. The incoherent noises intro- 
duced during the 1920-1945 War period are separable 
from the constant Chandler bandwidth and removable, so 
the Wars have not affected the frequency content of the 
Chandler spectrum. A broad bandwidth contains more 
than a single discrete frequency; the splits of the Chan- 
dler spectrum within its bandwidth are expected all to be 
the Chandler components. Fourier theory says a periodic 
waveform can always be decomposed into a series of 
harmonics each having its individual amplitude and fre- 
quency. So the multiple amplitude modulations of the 
Chandler wobble, as demonstrated above, are due to the 
multiple splits of its bandwidth, and not a single fre- 
quency motion with time-varying amplitude¸ which is 
only apparent. 

3) Synthetic simulation: Following the synthetic simu- 
lation of 5-component Chandler wobble and annual 
wobble [15], the upper plot in Figure 19 is a simulation 
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of the 105-year polar motion, while the lower plot is the 
same simulation but with the annual wobble removed. In 
the plots magnitude and time span are not exact but rela- 
tive. By comparing these two plots respectively with 
Figures 4 and 17, we can find the Chandler amplitude 
modulation in certain time span can become conspicu- 
ously lower without War interruptions. On the other hand, 
Figure 20 shows the same simulations but free of noises.  

By comparing the lower plot of Figure 20 with Figures 
7 and 9, we can see after the annual wobble is removed, 
the Chandler amplitude modulation can become excep- 
tionally low in certain time span, and the envelope of a 
resonant coupled oscillation cannot have an open end but 
cyclic.  

From above error analysis, it can be concluded that 
what the War disturbances during 1920-1945 introduced 
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Figure 19. Synthetic simulation of the 105-year polar motion of the POLE2004 series. Upper plot is the original simulation; 
lower plot is with the annual wobble removed. Magnitude and time span are not exactly simulated. 
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Figure 20. Synthetic simulation of the 105-year polar motion of the POLE2004 series free of noises. Upper plot is the original 
imulation; lower plot is with the annual wobble removed. Magnitude and time span are not exactly simulated. s  
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into the ILS data are mainly incoherent noises, which are 
separable from polar motion and removable because they 
are either random or in much higher frequencies. The 
lower amplitude modulation around the time span 1920- 
1945 is not due to the Wars but is barely a coincidence. 
The ILS observations are hence still reliable and useful 
data for the study of the continuation of polar motion, 
and the multiple splits of the Chandler frequency so ob- 
served are real.  

11. Conclusion 

The rotation of a biaxial or slightly triaxial rigid body is 
not able to depict the complexity of the rotation of a 
multilayered, deformable, energy-generating and dissipa- 
tive Earth that allows motion and mass redistribution. 
Munk and MacDonald’s linearization of the Liouville 
equation to represent the rotation of a non-rigid Earth has 
oversimplified polar excitation physics, which ends up 
equivalent to a rigid Earth with polar excitation superim- 
posed on independent of rotation. It hence still gives a 
non-damping single-frequency Chandler wobble of con- 
stant amplitude with no secular polar drift. The problems 
encountered in the Munk and MacDonald scheme are 
reviewed, analyzed, and improved according to funda- 
mental physical laws. The terrestrial reference frame is 
most crucial, and the selection of a both theoretically and 
observationally practical reference frame for the study of 
the rotation of the physical Earth is a most difficult 
problem. It should be physically located in the Earth,  
unique, consistent with observation, and always asso- 
ciated with polar motion; i.e., the reference frame should 
be able to express the Liouville equation as the gene- 
ralized equation of motion for the rotation of the physical 
Earth. Physical angular momentum perturbation appears 
as a relative angular momentum arising from motion and 
mass redistribution about the same terrestrial frame 
rotating with the Earth relative to an inertial frame fixed 
in space as the whole system does, and cannot bypass the 
Earth’s rotation and directly about an inertial frame. 
Motion and mass redistribution in a rotating Earth is not 
the same as that in an inertial Earth or flat Earth. At polar 
excitation, the direction of the Earth’s rotation axis in 
space does not change besides nutation and precession 
around the invariant angular momentum axis, while the 
principal axes shift responding to mass redistribution. 
The rotation of the Earth at polar excitation is unstable, 
and the Earth becomes slightly triaxial and axially near- 
symmetrical even it was originally biaxial. Two physi- 
cally distinct inertia changes will appear simultaneously 
to superimpose each other at polar excitation; one is due 
to mass redistribution, and the other arises from the axial 
near-symmetry of the perturbed Earth. During polar 
motion, the instantaneous figure axis or mean excitation 
axis around which the rotation axis physically wobbles is 

not a principal axis. The Earth’s principal axes are to be 
geodetically determined, also is the Earth’s axial near- 
symmetry angle pair  ,  . The Chandler wobble 
possesses not only a single frequency but multiple splits 
and is slow-damping, which exhibits the “beat” pheno- 
menon of resonant coupled oscillations. Secular polar 
drift is after the products of inertia and is always asso- 
ciated with the Chandler wobble; the two together con- 
stitute polar motion for the Earth to seek polar stability. 
The conventional belief that the axis around which the 
rotation axis wobbles is the major principal axis is not 
true in a non-rigid Earth.The Earth will return to its stable 
rotation via self-deformation and quadrupolar adjustment 
according to the law of conservation of angular momen- 
tum and the three-finger rule of the right-handed system, 
until its rotation, major principal, and instantaneous 
figure axes are all completely realigned with each other 
to arrive at the minimum energy configuration of the 
system. Multiple splits of the Chandler frequency are 
further confirmed by directan alysis of observation; 
Markowitz wobbles are also observed. Error analysis of 
the ILS data demonstrates that the incoherent noises from 
War disturbances in 1920-1945 are separable from polar 
motion and removable, so the ILS data are still reliable 
and useful for the study of the continuation of polar 
motion. The rotation of the physical Earth must follow 
fundamental physical laws; legitimate mathematics may 
not necessarily represent true physics.  
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