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ABSTRACT 

Theoretically, in order to achieve non-zero θ13 a little deviation from Tribimaximal Mixing (TBM) pattern is needed, 
especially on θ13 without perturbing the atmospheric and solar mixing angles. In this work we computed the neutrino 
mixing angles by disturbing the θ13 as well as θ12 in Bimaximal (BM) and Hexagonal mixing (HM) using non-diagonal 
charged lepton mass. Considering the standard form of mass texture which satisfies TBM we have shown the quasi- 
degenerate nature of neutrino. This quasi degenerate type of mass matrix for BM and HM is then used to calculate the 
deviated mixing pattern which are consistent with recent neutrino oscillation data. 
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1. Introduction 

Recent solar, atmospheric, reactor, and accelerator neu-
trino experiments have provided concrete evidence that 
neutrinos are massive and they change their flavors dur-
ing propagation. In the standard neutrino oscillation pic-
ture three active neutrinos are involved, with mass- 
squared differences of order 10  and 10  eV2. The 
deficit in the neutrino flux from solar and atmospheric 
neutrinos have confirmed that at least two neutrinos 
should have non-zero masses. The mixing pattern and the 
tiny neutrino masses makes the explanation of the origin 
of neutrino masses and leptonic flavor mixing one of the 
most prominent problems in the particle physics. The 
mixing of lepton flavors is described by a 3 × 3 unitary 
matrix, whose nine elements are commonly parametrized 
in terms of three rotation angles and three CP-violating 
phases. Defining three unitary rotation matrices in the 
complex planes one can express neutrino mixing in terms 
of three rotations:  
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where ij ij  and ij ij= sins 1 , 3i j  with  
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. 
Using these three rotations, expression of neutrino mix-
ing with standard parameterizations become  

               (4) 

where U is known as Pontecorvo-Maki-Nakagawa- 
Sakata (PMNS) matrix and can be written as  

(5) 

where i i1 2Diag e ,e ,1P    is a diagonal phase matrix 
which contains two non-trivial Majorana phases of CP 
violation. This also involves just three irremoveable 
physical phases ij . In this parameterizations the Dirac 
phase   which enters the CP odd part of neutrino os-
cillation probabilities is given by 13 23 12     

13

. The 
recent global fit [1] to the various neutrino experimental 
data has given the following mixing angle values and 
non-zero of  .  
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2
23sin  0.073

0.058= 0.466


0.019
0.018= 0.312



0.016 0.010.

              (6) 

2
12sin  .               (7) 

and  
2

13sin =             (8) 

In view of above mixing angles it is clear that the 
Tribimaximal mixing (TBM) [2-4], 
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can give the close description to the neutrino oscillation 
as well with a minor correction in  . The predictions  

of Equation (9) viz. 2sin 23

1

2
 13sin 0 and     

2
12sin

3
 

1
, are consistent with atmospheric and solar  

neutrino oscillation with minor correction in 13 . As the 
global analysis of neutrino data has provided hints for 
non-zero 13  [5-7]. The first observational hint for non- 
zero 13  has come from the T2K experiment [8]. After 
T2K experiment MINOS experiment also disfavor the 

13 0   [9]. To achieve non-zero 13  theoretically is an 
interesting topic in neutrino physics. Now, recent analy-
sis on neutrino mixing it is proposed by many papers 
[10-12] that apart from TBM there are some other mixing 
pattern like Bimaximal mixing (BM), Hexagonal mixing 
(HM) and Tetragonal mixing can also give the alternative 
description of neutrino mixing with correction. Among 
these, tribimaximal mixing gives very close description 
of the experimentally found mixing angles when the best 
fit values are presumed. 

In the proposed work we give a description of neutrino 
mixing which is achieved in the framework of bimaximal, 
tribimaximal and hexagonal mixing with the help of 
charged lepton correction. In the present paper, we take 
non-diagonal charged lepton mass in expression of LL  
given by Equation (11). This correction can be realised in 
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix 
in the form of PMNS lU U

m

†UU   , where lU  diago-
nalise the charged lepton mass matrix LR . The matrix 

l  is considered as Cabibbo like mixing matrix as al-
ready been discussed in a recent work [13] for TBM case. 
This correction will deviate the solar mixing 12

m
U

  and 
CHOOZ mixing 13  to the experimental range in case 
BM and HM without disturbing the 23 . 

The seesaw mechanism is used to construct neutrino 
mass models e.g.: Quasi-degenerate, Normal Hierarchi-

cal (NH) and Inverted Hierarchical (IH), are discussed in 
our earlier work [14,15]. Out of these three models which 
model can give good prediction to the neutrino oscilla-
tion is also a topical question in recent neutrino physics. 
In this work we analyze on Quasi-degenerate neutrino 
mass model (NH and IH) with different mixing pattern as 
discussed above. In Section 2, we shown neutrinos are 
quasi-degenerate (NH and IH) in nature considering neu-
trinos are mixed tribimaximally. Next in Section 3, dif-
ferent neutrino mass models with BM and HM consider-
ing neutrinos are quasi-degenerate in nature are discussed. 
Then with the help of charged lepton correction how 
these mixing can predict new mixing which are consis-
tent with recent experimental data along with non-zero 

13  is also discussed. And in the final section i.e. in Sec-
tion 4, there are some concluding remarks. 

2. Quasi-Degenerate Neutrino 

As mentioned in the introduction neutrino mass eigen-
values can have three kinds of pattern normal, inverted 
hierarchical and quasi-degenerate. We know, from neu-
trino oscillations that the neutrino mass pattern is non- 
degenerate. The pattern is hierarchical, if 1m m2
m 2m

2
1m m
m

⊙, 

1  is smallest neutrino mass and ⊙  is solar mass 
square difference. When atm , the pattern is in-
verted hierarchical, where 3  is the smallest mass. In 
the quasi-degenerate case both the ordering may be pos-
sible. 

The most popular neutrino mixing which gives the 
TBM form is given by Equation (9). This can be gener-
ated with two generators S and T of 4A  symmetry, one 
of which gives charged lepton mass matrix diagonal and 
other gives the invariant neutrino mass matrix  
[16], where  is given by  

TBMm

TBMm

   

   
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1 1
,

2 2
1 1

2 2

A B B

m B A B D A B D

B A B D A B D


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  (10) 

gives 1  , 2  and 3 . The 
mass matrix given by Equation (10) is constructed on the 
basis of the type I see-saw mechanism,  

= 2m A B =m D

1= ,T
LL LR RR LRm m M m            (11) 

where LR  is diagonal. The present neutrino oscillation 
data gives the following information for the mass square 
difference.  

m

5 2 2 5 2
217.05 10 eV 8.34 10 eVm     

3 2 2 3 2
312.07 10 eV 2.75 10 eVm     

, 

, 
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2 5 2

2 3 2

65 10 eV ,

2.40 10 eV .


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†= ,lU U U

tive mixing pattern can also arrive in the experimental 
range with corrections. In this section we try to produce a 
mixing pattern, from Bimaximal, Hexagonal as well as 
Tribimaximal mixing with charged lepton correction, 
which is consistent with recent neutrino oscillation data. In 
general, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) 
matrix with charged lepton correction can be expressed 
as product of two unitary matrices as  

with the following best fit values  

21

31

7.m

m

 

 
 

Using 1 , 2  and 3  from Equation (10), mass 
square differences and the sum of the three mass eigen-
values ii

 can be expressed in 
terms of A, B and D. By solving these three equations in 
terms of A, B and D values of 1 , 2  and 3  are 
calculated with MATHEMATICA and listed in the Ta-
ble 1, which are quasi-degenerate in nature.  

m

cosmom  

m                  (14) 

U  diagonalizes the neutrino mass matrix as  where 

  Tdiagonal = ,LL LLm U m UThese values of A, B and D are now used to construct 
the neutrino mass matrices with the help of Equation (10) 
for NH and IN case are:   

         (15)  

lU  diagonalizes the charged lepton mass matrix as  
 Normal hierarchical:   Tdiagonal = .LR l LR lm U m U          (16) 

0.052487 0.105217

0.105217 0.10905

0.105217 0.05632
LLm


 
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   (12) 
In our earlier work [14,15], in construction of LLm , 

using seasaw I we were considered the dirac mass LRM  
is diagonal, which can be considered as either charged 
lepton or up quark type. However, a general form of the 
Dirac neutrino mass matrix is given by  

 Inverted hierarchical:  

0.1063024 0.0001196

0.0001197 0.100396

0.00011966 0.005786
LLm
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
 (13) 
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             (17) 

After Diagonalising the above mass matrices, calcu-
lated mass square differences and mixing angles are 
listed in the Table 2, which shows TBM property.   

  where fm tanm corresponds to    for , 6, 2m n 
m  

 
in the case of charged lepton and t  for  , 8, 4m n   
in the case of up-quarks. Here   can pick value be-
tween 0.104 and 0.247 for the Dirac neutrino mass ma-
trix. In this pattern the PMNS  matrix given by Equation 
(14) doesnot involve l . In the present analysis we use 
non-diagonal 

3. Deviation from Original Mixing Pattern 
with Charged Lepton Correction U

U

LR  in seesaw I and due to this reason 
one has to use the contribution l  in the PMNS matrix. 
We construct a deviated neutrino mixing matrix U i.e. 
PMNS matrix using Equation (14), where charged lep-
tons mass matrices are considered to be non-diagonal. 
This predicts mixing angles, are consistent with recent 
oscillation data. To construct U we consider 

From analysis of recent neutrino oscillation parameter it 
is observed that neutrino mixing is very close to TBM 
pattern. Deviation from TBM is recently reported [13, 
17], where important corrections are incorporated to 
make the mixing angle match with the experimental data. 
Different possible alternatives to this TBM are, e.g. Bi-
maximal, Trimaximal, Hexagonal mixing as well golden 
ration angles, discussed in recent work [10]. This alterna-  

m
U

U  in three 
different forms e.g. BM, HM as well as TBM and the  

 
Table 1. Values of A, B, D, m1, m2, m3. 

Type A B D m1 m2 m3 

NH −0.052487 0.105217 0.16537 0.157704 0.157947 0.16537 

IH 0.106302 −0.0001197 0.09461 0.106182 0.106541 0.09461 

 
Table 2. Mass square differences and mixing angles. 

2 5 2

21 10 eVm    
2 3 2

31 10 eVm  

Copyright © 2012 SciRes.    
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elements of matrix l  are calculated considering it is a 
Cabibbo-Kobayashi-Maskawa like mixing i.e. [13]:  

U

2 3
13sin ,la b12 23sin , sin ,l l          (18) 

where   varies between 0.104 to 0.247 and a, b varies 
between 0.2 to 5. From Equation (18) calculated l  are 
used to construct the elements of matrix . lU

3.1. Hexagonal Mixing 

The standard form of hexagonal mixing matrix is  
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4
 , 2

23
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 and  

13 . Using Equation (19) one can also construct 

LLm  for HM as  
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and has a texture  
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where mass eigenvalues are  

1 2

2
= , =

3
m A B m A 

3.2. Bimaximal Mixing 

The standard form of bimaximal mixing is written as:  

BM

1 1
0

2 2
1 1 1

=
2 2 2
1 1 1

2 2 2

U
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36 , = .B m D     (22) 

which predicts 2
12

1
sin

2
  , 2

23

1
sin

2
  2

13 and sin 0 .  

Using Equation (23) for the quasi-degenerate case one 
can construct neutrino mass model for BM case as:  

1
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   (24) 

the texture has form [15]  

 1 2 1 1
BM

1 2 2

1 2 2

1 2 2

= 1

1
LL om m

   
  
  

    
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    (25) 

where mass eigen values are  

 
 

1 1 1 2

2 1 1 2

3

1 3 2 ,

1 3 2 ,

o

o

o

m m

m m

m m

  

  

   

   


m

0.104669

       (26) 

The  values can be calculated for HM as well as  1,2,3

BM case, which are quasi-degenerate in nature using 
similar procedure adopted in Section 2 for TBM case. 
For HM A  , , 0.128304B   0.210183D   
and for BM 1

57.2 10   33.9 10  

m

, 2  are calcu-
lated using MATHEMATICA. Values of mass square 
differences and mixing angles for BM & HM are given 
in Table 3. The expression for o  is defined as [15] 

2m m v 126.6 10ov  
U

o f o

Now elements of 
, where . 

  are taken from Equation (19) 
and (23) for HM and BM respectively. Then using Equa-
tion (18) choosing the suitable value for  , a and b ele- 
ments of l  have been calculated. Finally deviated 

atrix U is constructed using the following equatio
U

n: m 
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Table 3. Values of θ12, θ23, θ13 and mass scales. 

Type 2 5 2

21 10 eVm     2 2 2

31 23m m  310 eV    2

12sin   2

23sin   13sin  

Bimaximal Mixing 7.91 2.50 0.50 0.50 0 

Hexagonal Mixing 7.67 2.40 0.25 0.50 0 

 
Table 4. Values of θ12, θ23 and θ13. 

Mixing type a  b    2

12sin   2

23sin   13sin  

Bimaximal Mixing 0.25 0.25 0.18 0.26 0.44 0.047 

Hexagonal Mixing 0.3 0.3 0.16 0.31 0.42 0.061 

Tri-Bimaximal Mixing 0.3 0.3 0.2 0.29 0.49 0.064 

 
†

13 12 13 12 13 13 12 13 12

PMNS 23 12 12 13 23 12 23 12 13 23 13 23 23 12 12 13 23 12 23 12 13

12 23 12 13 23 12 23 23 13 12 13 23

l l l l l

l l l l l l l l l l l l

l l l l l l l l l l l l

c c c s s c c c s

U U c s c s s c c s s s c s c s c s s c c s s

s s c s c c s c s s c c

   

       

 
 

         
     12 23 12 13 23 12 23 23 13s s c s c c s c s        

13s

23 13 23

12 13 23

.s c s

s c c

   

   

 
 
 
  

    (27) 

 
This new mixing pattern for suitable value of  ,  

and  is the new mixing pattern deviated from BM and 
HM and meet with the recent oscillation data. Values of 
mixing angles for the pattern along with the suitable 
parameters are listed in the Table 4 in case of HM, BM 
as well as TBM. 

a
b

4. Conclusion 

Tribimaximal mixing provides a very close description of 
neutrino mixing angles. However the present hint of 
nonzero 13  coming from analysis of global neutrino 
oscillation data may indicate that it is broken. Here in 
this work, we try to use the charge lepton correction in 
PMNS matrix to get which can predicts recent neutrino 
oscillation parameters. Different neutrino mixings e.g. 
TBM, BM, HM as well as tetragonal mixing are well 
established and can explain the different pattern of neu-
trino in context of their mass. Analysis on these mixing 
are very mass important to give comments on two im-
portant aspects e.g. neutrino mass hierarchy and non-zero 

13 . In this work we have tried to show quasi-degenerate 
(NH, IH) property of neutrino by parameterized standard 
form of neutrino mass matrix using 21 , 31  and 

ii
 considering neutrino is tribimaximaly mix. Then 

the deviated mixing pattern from TBM, BM and HM 
have been constructed using charged lepton corrections. 
From this analysis it can be conclude that neutrino can 
mix tribimaximaly, hexagonally, and bimaximaly which 
can predicts the neutrino oscillation parameters accu-
rately in 

2m 2m
m

3  level with a small correction in charged 
lepton part. There is a good scope for extension of this 
work with CP violating phases. By using 21 , 31  
and  it is also possible to get non-zero 

2m 2m
ii

m 13  and 

solar and atmospheric mixing angle directly in the range 
of experimental values.  
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