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ABSTRACT 

The conduction of a single-wall carbon nanotube depends on the pitch. If there are an integral number of carbon hexa-
gons per pitch, then the system is periodic along the tube axis and allows “holes” (not “electrons”) to move inside the 
tube. This case accounts for a semiconducting behavior with the activation energy of the order of around 3 meV. There 
is a distribution of the activation energy since the pitch and the circumference can vary. Otherwise nanotubes show me-
tallic behaviors (significantly higher conductivity). “Electrons” and “holes” can move in the graphene wall (two dimen-
sions). The conduction in the wall is the same as in graphene if the finiteness of the circumference is disregarded. Coo-
per pairs formed by the phonon exchange attraction moving in the wall is shown to generate a temperature-independent 
conduction at low temperature (3 - 20 K). 
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1. Introduction 

Iijima [1] found after his electron diffraction analysis 
that carbon nanotubes ranging 4 to 30 nanometers (nm) 
in diameter have helical multi-walled structures. Single- 
wall nanotube (SWNT) has about one nanometer in di-
ameter and micrometers (μm) in length. Ebbesen et al. [2] 
measured the electrical conductivity   of individual 
carbon nanotubes and found that   varies depending of 
the temperature T, the tube radius r and the pitch p. Ex-
periments show that SWNT can be either semiconducting 
or metallic, depending on how they are rolled up from 
the graphene sheets [3]. In the present work we shall 
present a microscopic theory of the electrical conductiv-
ity of semiconducting SWNT, starting with a graphene 
honeycomb lattice, developing a Bloch electron dynam-
ics based on a rectangular cell model [4], and using ki-
netic theory. A SWNT can be formed by rolling a gra-
phene sheet into a circular cylinder. The graphene which 
forms a honeycomb lattice is intrinsically anisotropic as 
we shall explain it in more detail later in Section 2. Mo-
riyama et al. [5] fabricated 12 SWNT devices from one 
chip, and observed that two of the SWNT samples are 
semiconducting and the other 10 are metallic. The semi-
conducting SWNT samples show an activated-state tem-

perature behavior. That is, the resistance decreases with 
increasing temperature. Why are there two sets of sam-
ples showing very different behavior? The answer to this 
question is as follows.  

The line passing the centers of the nearest-neighbor 
carbon hexagons forms a helical line around the nano-
tube with a pitch p and a radius r.  

In Figure 1(a), a section of the circular tube with a 
pitch p is drawn. Its unrolled plane is shown in (b). The 
circumference  likely contains an integral number 
m of the carbon hexagons (units). The pitch p, however, 
may or may not contain an integral number n of units. In 
the fabrication process the pitch is not controlled. In the 
first alternative, the nanotube is periodic with the period 
p along the tube axis. Then, there is a one-dimensional 
(1D) k-vector along the tube. A “hole” which has a posi-
tive charge +e and a size of a unit ring of height p and 
radius r can go through inside the positively charged 
carbon wall. An “electron” having a negative charge −e 
and a similar size is attracted by the carbon wall, and 
hence it cannot go straight inside the wall. Thus, there 
should be an extra “hole” channel current in a SWNT. 
Moriyama et al. [5] observed a “hole”-like current after 
examining the gate voltage effect. The system should 
have the lowest energy if the unit ring contains an integer 
set 

2πr

 ,m n  of carbon hexagons, which may be attained  *Corresponding author. 
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(a)                       (b) 

Figure 1. (a) A section circular tube wall with a radius r and 
a pith p; (b) Its unrolled plane. 
 
after annealing at high temperatures. This should happen 
if the tube length is comparable with the circumference. 
The experimental tube length is much greater than the 
circumference, and the pitch angle can be varied con-
tinuously. The set of irrational numbers is greater in car-
dinality than the set of rational numbers. Then, the first 
case in which the unit contains an integer set  ,m n  of 
hexagons must be the minority. This case then generates 
a semiconducting transport behavior. We shall show later 
that the transport requires an activation energy. Fujita 
and Suzuki [4] showed that the “electrons” and “holes” 
must be activated based on the rectangular unit cell mod-
el for graphene. 

Saito, Dresselhaus and Dresselhaus [3] state that a 
SWNT is characterized by two integer indices  ,m n

m n

ˆ ˆ ˆ ,

, 
for example,  for an armchair nanotube whereas 

 for a zigzag nanotube. If  is a multiple of 
3, then a SWNT is metallic. They then argued that ap-
proximately one third of the SWNT are metallic, and the 
other two thirds are semiconducting. This model is in 
variance with the experimental observation by Moriyama 
et al. [5], where the majority of SWNT is metallic. We 
must look for a different classification scheme. 

0m  n m

If a SWNT contains an irrational number of carbon 
hexagons, which happens more often, then the system 
does not allow a conduction along the tube axis. The 
system is still conductive since the conduction electrons 
(“electrons”, “holes”) can go through in the tube wall. 
This conduction is two-dimensional (2D), opposed to 1D, 
as can be seen in the unrolled configuration, which is 
precisely the graphene honeycomb lattice. This means 
that the conduction in the carbon wall should be the same 
as the conduction in graphene if the effect of the finite-
ness of the radius is neglected. 

We consider graphene in Section 2. The current band 
theory of the honeycomb crystal is based on the Wigner- 
Seitz (WS) cell model [3,6]. The model applied to gra-
phene predict a gapless semiconductor, which is not ob-

served. The WS model [6] is suitable for the study of the 
ground-state energy of the crystal. To describe the Bloch 
electron dynamics [7] a new theory based on the Carte-
sian unit cell not matching with the natural triangular 
crystal axes must be used. Also the phonons can be dis-
cussed using Cartesian coordinate-systems, not with the 
triangular coordinate-systems. The conduction electron 
moves as a wave packet formed by the Bloch waves as 
pointed out by Ashcroft and Mermin in their book [7]. 
This picture is fully incorporated in our new theoretical 
model.  

2. Graphene 

We consider a graphene, in which carbon ions (C+) oc-
cupy a 2D honeycomb lattice, See Figure 2. The normal 
current carriers are “electrons” and “holes”. Following 
Ashcroft and Mermin [7], we adopt the semiclassical 
model of electron dynamics in solids. “Electrons” 
(“holes”) are defined as quasi-electrons which move 
counterclockwise (clockwise) viewed from the tip of the 
applied magnetic field. In the semiclassical (wave packet) 
theory, it is necessary to introduce a k-vector:  

x x y y z z  k k e k e k e

ˆ

            (1) 

where xe ˆ, ye ˆ, ze  are the Cartesian orthonormal vec- 
tors, since the k-vectors are involved in the semi- 
classical equation of motion:  

 d
,

d
q

t
   

k
k E v B 

q

         (2) 

where  is the charge of a conduction electron, and E  
and  are the electric and magnetic fields, respectively. 
The vector  

B

1 



v

k

 =  k

z

                  (3) 

is the electron velocity, where  is the energy. 
The 2D crystals such as graphene can also be treated 
similarly, only the -component being dropped. The 
choice of the Cartesian axes and the unit cell is obvious 
for the cubic crystals. We must choose an orthogonal unit 
cell also for the honeycomb lattice, as demonstrated 
below. 

Graphene forms a 2D honeycomb lattice. The WS unit 
cell is a rhombus shown in Figure 2(a).  

 V r  is lattice-periodic:  The potential energy 

    ,mnV V r R r

1 2 ,mn m n

             (4) 

where  

 R a a               (5) 

is a Bravais vector with the primitive vectors ,a a1 2  
and integers  ,m n

r
. In the field theoretical formulation 

the field point  is given by  
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,mn r r R

r

                (6) 

where  is the point defined within the standard unit 
cell. Equation (4) describes the 2D lattice periodicity 
but does not establish the k-space, which is explained 
below. 

To see this clearly, we first consider an electron in a 
simple square (sq) lattice. The Schrödingier wave equa-
tion is  

   
2

2
*

i    sq2
V

t m
  

   


r r r r


 0
mnR

ˆ ˆ ,

nstant)

x yma na e e

    0
sqmn V  r

.    (7) 

The Bravais vector for the sq lattice  is  
 0

( lattice co

mn x y

a 

R a am n 
       (8) 

The system is lattice periodic:  

sqV r R .             (9) 

If we choose a set of Cartesian coordinates  ,x y  
along the sq lattice, then the Laplacian term in Equation 
(7) is given by  

   
2 2

2 2 , .2 ,x y x y
x y

 
 

 
 

 V r

 
    

     (10) 

If we choose a periodic square boundary with the side 
length Na, N = integer, then there are 2D Fourier trans-
forms and k-vectors. 

We now go back to the original graphene system. If 
we choose the x-axis along either a1 or a2, then the po-
tential energy field  is periodic in the x-direction 
but it is aperiodic in the y-direction. For an infinite lattice 
the periodic boundary is the only acceptable boundary 
condition for the Fourier transformation. Then, there is 
no 2D k-space spanned by 2D k-vectors. If we omit the 
kinetic energy term, then we can still use Equation (4) 
and obtain the ground state energy (except the zero point 
energy). 

We now choose the orthogonal unit cell shown in Fig- 
ure 2(b). The unit has side lengths  

1 0 2 03 , 3 ,b a b a 

a

            (11) 

where 0  is the nearest neighbor distance between two 
C’s. The unit cell has four (4) C’s. The system is lattice- 
periodic in the x- and y-directions, and hence there are 
2D k-space. 

The “electron” (“hole”) is defined as a quasi-electron 
which has an energy higher (lower) than the Fermi en-
ergy F  and “electron” (“hole”) are excited on the posi-
tive (negative) side of the Fermi surface with the conven-
tion that the positive normal vector at the surface points 
in the energy-increasing direction. 

The “electron” (wave packet) may move up or down 
along the y-axis to the neighboring unit cells passing  

 
(a)                  (b) 

Figure 2. (a) WS unit cell, rhombus (dotted lines) for gra-
phene; (b) The orthogonal unit cell, rectangle (dotted lines). 
 
over one C+. The positively charged C+ acts as a wel-
coming (favorable) potential valley for the negatively 
charged “electron”, while the same C+ act as a hindering 
potential hill for the positively charged “hole”. The 
“hole”, however, can move horizontally along the x-axis 
without meeting the hindering potential hills. Thus the 
easy channel directions for the “elections” (“holes”) are 
along the y- (x-) axes. 

Let us consider the system (graphene) at 0 K. If we put 
an electron in the crystal, then the electron should occupy 
the center O of the Brillouin zone, where the lowest en-
ergy lies. Additional electrons occupy points neighboring 
the center O in consideration of Pauli’s exclusion princi-
ple. The electron distribution is lattice-periodic over the 
entire crystal in accordance with the Bloch theorem [8]. 

Carbon (C) is a quadrivalent metal. The first few low- 
lying energy bands are completely filled. The uppermost 
partially filled bands are important for transport proper-
ties discussion. We consider such a band. The (2D) Fer-
mi surface, which defines the boundary between the 
filled and unfilled k-space (area) is not a circle since the 
x-y symmetry is broken ( b c ). The “electron” effective 
mass is lighter in the direction [110] than perpendicular 
to it. Hence the electron motion is intrinsically anisot-
ropic. The negatively charged “electron” is near the posi-
tive ions C+. Hence, the gain in the Colulomb interaction 
is greater for “electron”. Thus, the “electrons” are the 
majority carriers at zero gate voltage. That is, the system 
has two different masses and it is intrinsically anisotropic. 
If the electron number is raised by the gate voltage ap-
plied perpendicular to the plane, then the Fermi surface 
more quickly grows in the easy-axis (y-) direction than in 
the x-direction. The Fermi surface must approach the 
Brillouin boundary at right angles because of the inver-
sion symmetry possessed by honeycomb lattice [9]. Then 
at a certain voltage, a “neck” Fermi surface must be de-
veloped. 

The same easy channels in which the “electron” runs 
with a small mass, may be assumed for other hexagonal 
directions, [011] and [101]. The currents run in the three 
channels     , and  101 . The total 110 110 , 011
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current (magnitude) along the field direction   is pro-
portional to [10]  

 

   

2

channels

2 2 2

cos ,

cos cos 2π 3 cos 2π 3 3 2.


 

      


 (12) 

E 3 meV Note that this current does not depend on the angle   
between the field direction (  ) and the channel current 
direction ( ). More detailed discussion can be found in 
ref. [10]. Hence, the graphene does not show anisotropy 
in the conductivity. 



1 2<

We have seen earlier that the “electron” and “hole” 
have different internal charge distributions and therefore 
have different effective masses. Which carriers are easier 
to be activated or excited? The “electron” is near the pos-
itive ions and the “hole” is farther away from the ions. 
Hence, the gain in the Coulomb interaction is greater for 
the “electron”. That is, the “electrons” are more easily 
activated (or excited). The presence of the welcoming C+ 
ions in the channel direction also enhances this inequal-
ity. 

We may represent the activation energy difference by 
[6]  

.                    (13) 

The thermally-activated (or excited) electron densities 
are given by  

   Bp ,j k T 

= 1j

exj jn T n           (14) 

where  and 2 represent the “electron” and “hole”, 
respectively. The prefactor jn  is the density at high- 
temperature limit.  

3. SWNT 

Let us consider the long SWNT rolled with a graphene 
sheet. The charge may be transported by the channeling 
“electrons” and “holes” in the graphene wall. But the 
“holes” within the wall can also contribute to the charge 
transport. Because of this extra channel inside the carbon 
nanotube, “holes” are likely to be the majority carriers in 
nanotubes although “electrons” are the dominant carriers 
in graphene. Moriyama et al. [5] studied the electrical 
transport in semiconducting SWNT in the temperature 
range 2.6 - 200 K, and found from the filed (gate voltage) 
effect that the carriers are “hole”-like. Their data are re- 
produced in Figure 3.  

The conductivity depends on the pitch of the SWNT. 
The helical line is defined as the line passing the nearest 
neighbors of the C-hexagons. The helical angle   is the 
angle between the helical line and the tube axis. The 
degree of helicity  may be defined as  h

cos .h                   (15) 

For a macroscopically large graphene the conductivity  

 

Figure 3. Log-scale plot of the currents in semiconducting 
SWNT as a function of inverse temperature after Mori-
yama et al. [5]. 
 
is isotropic as we saw in Section 2. The conductivity   
in (semiconducting) SWNT depends on this helicity . 
This is a kind of a finite size effect. The circumference is 
finite while the tube length is macroscopic. 

h

In a four-valance-electron conductor such as graphene 
all electrons are bound to ions at 0 K, and there is no 
conduction. If a “hole” having the charge +e and the size 
of a unit ring is excited, then this “hole” can move along 
the tube axis with the activation energy 3  and the ef-
fective mass 3 . Both m 3  and  depend on the ra-
dius and the pitch. 

3m

m

We are now ready to discuss the conductivity of se-
miconducting SWNT. There are four currents carried by  

1) “Electrons” moving in the graphene wall with the 
mass 1  and the density  1 1 Bexpn k T , running in 
the channels .  110

m
2) “Holes” moving in the graphene wall with the mass 

2  and the density  2 2 Bexpn k T , running in the 
channels 100

m
.  

3) “Holes” moving with the mass 3  and the density 
 expn k T3 3 B , running in the tube-axis direction. The 

activation (or excitation) energy 3  and the effective 
mass  vary with the radius and the pitch.  3

4) Cooper pairs (pairons) formed by the phonon- 
exchange attraction, which move in the graphene wall.  

m

In actuality, one of the currents may be dominant, and 
be observed. 

In the normal Ohmic conduction due to the conduction 
electrons the resistance is proportional to the sample 
(tube) length. Then, the conductivity   is given by the 
Drude formula:  

2 2

* *

1
,

nq nq

m m

  


  *,e m 

             (16) 

where q is the carrier charge  the effective 
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mass, n the carrier density, and   the relaxation (colli-
sion) time. The relaxation rate 1Γ  



Γ

 ph .T 

Γ

 is the inverse of 
the relaxation time. If the impurities and phonons are 
scatterers, then the rate  is the sum of the impurity 
scattering rate  and the phonon scattering rate 

:  
imp

 



imp

 ph T

             (17) 

The impurity scattering rate imp  is temperature- 
independent and the phonon scattering rate  Γ T

T

 above 2 K

Γ

ph  is 
temperature -dependent. The phonon scattering rate 

 is linear in  above around 2 K:  


T

T a a 



 ph T

 ph T

Γ

 phΓ constant,,T

n T

.    (18) 

The temperature dependence should arise from the 
carrier density  and the phonon scattering rate 

. Writing the T-dependence explicitly, we obtain 
from Equations (14)-(18)  

2

*
= e B

imp

1

Γ

k Tj
j

j

n
aT





3 3 meV

.        (19) 
j

e

m


Moriyama et al. [5] used the Arrhenius plot for the 
data above 20 K and obtained the activation energy  

. 

n

              (20) 

By studying the field (gate voltage) effect, the carriers 
were found to be “hole”-like. Thus, the major currents 
observed can be interpreted in terms of the “holes” mov-
ing within the tube wall. 

This “hole” axial transport depends on the unit ring 
containing  hexagons. Since the pitch and the cir-
cumference have distributions, the activation energy 3

m
  

should also have a distribution. Hence the obtained value 
in Equation (20) must be regarded as the averaged value. 

Liu et al. [10] systematically measured the resistance 
 of SWNT under hydrostatic pressures, and fitted 

their data by using 2D variable range hopping (vrh) 
theoretical formula [11]:  

 T

   1 3

0 0exp ,T T

0 525 KT 

T            (21) 

where  

                (22) 

is a fit (temperature) parameter and 0  a (resistance) 
parameter. Mott’s vrh theory [12] is applicable when 
highly random disorders exist in the system. An individ-
ual SWNT (annealed) is unlikely to have such random-
ness. We take a different view here. The scatterings are 
due to impurities and phonons. But carriers (“holes”) 
have a distribution in the unit cell size. Hence the distri-
bution of the activation energy introduces the flattening 
of the Arrhenius slope by the factor 1/3. Compare Equa-
tion (21) and Equation (14). 

The “hole” size is much greater than the usually as-

sumed atomic impurity size and the phonon size, which 
are of the order of the lattice constant. This size mismatch 
may account for a ballistic charge transport observed by 
Frank et al. [13] and others [14]. More careful studies are 
required to establish the cause of the ballisticity. 

We now go back to the data shown in Figure 3. Below 
20 K the currents observed are very small and they ap-
pear to approach a constant in the low temperature limit 
(large 1T   limit). These currents, we believe, are due to 
the Cooper pairs. 

The Cooper pairs (pairons) move in 2D with the linear 
dispersion relation [15]:  

  ,jc p 

 

                 (23) 

   
F2 π ,j jc v



             (24) 

where 
F

jv  is the Fermi velocity of the “electron” (j = 1) 
[“hole” (j = 2)]. 

Consider first “electron”-pairs. The velocity v is given 
by (omitting superscript)  

or ,x
x

x

pp
v c

p p p

   
  
  

v
p

      (25) 

where  

2 2 .x yp p p                (26) 

The equation of motion along the E-field (x-) di- 
rection is  

,xp
q E

t

 


q

               (27) 

  is the charge 2ewhere   of a pairon. The solution 
of Equation (27) is given by  

 0 ,x xp q Et p 
 0

            (28) 

where xp  is the initial momentum component. The 
current density pj q is calculated from (charge  ) × 
(number density pn ) × (average velocity v ). The av-
erage velocity v  is calculated by using Equations (25) 
and (28) with the assumption that the pair is accelerated 
only for the collision time  . We then obtain  

  2
p p p p

1
.

c
j q n v q n c q E q n E

p p
      

 

   (29) 

For stationary currents, the pairon density np is given 
by the Bose distribution function f p :  

    1

p Bexp 1 ,p pn f k T  


         (30)  

e  is the fugacity. Integrating the current pwhere j
p j E

 
over all 2D -space, and using Ohm’s law   we 
obtain for the conductivity  :  

   2 2 2 12π d .pq c pp f           (31) 
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 

In the temperature ranging between 2 and 20 K we 
may assume the Boltzmann distribution function for 

pf  :  

   Bpexpp .f k T  

  1
= aT 

p

          (32) 

We assume that the relaxation time arises from the 
phonon scattering so that , see Equations 
(16)-(18). After performing the -integration we obtain  

2
B
2

2
,

π

e k
e

a
 


             (33) 

which is temperature-independent. If there are “elec-
trons” and “hole” pairs, they contribute additively to the 
conductivity. These pairons should undergo a Bose-Ein- 
stein condensation at a temperature lower than 2.2 K. We 
predict a superconducting state at lower temperatures.  

4. Summary and Discussion 

A SWNT is likely to have an integral number of carbon 
hexagons around the circumference. If each pitch con-
tains an integral number of hexagons, then the system is 
periodic along the tube axis, and “holes” (and not “elec-
trons”) can move along the tube axis. The system is se-
miconducting with an activation energy 3 . This energy 

3  has a distribution since both pitch and circumference 
have distributions. The pitch angle is not controlled in 
the fabrication processes. There are more numerous cases 
where the pitch contains an irrational numbers of hexa-
gons. In these cases the system shows a metallic behavior 
experimentally [16]. 

In the process of arriving at our main conclusion we 
have uncovered the following results.  

1) “Electrons” and “holes” can move in 2D in the car-
bon wall in the same manner as in graphene.  

2) For a metallic SWNT 1) implies that the conduction 
in the wall shows no pitch dependence.  

3) The Cooper pairs are formed in the wall. They 
should undergo Bose-Einstein condensation at lower 
temperature, exhibiting a superconducting state.  

A metallic SWNT will be treated separately. 
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