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ABSTRACT 

This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering 
different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Carlo (MCMC) 
simulation methods for this model was first introduced by [1], taking into account software reliability data and consid-
ering non-informative prior distributions for the parameters of the model. With the non-informative prior distributions 
presented by these authors, computational difficulties may occur when using MCMC methods. This article considers 
different prior distributions for the parameters of the proposed model, and studies the effect of such prior distribu-
tions on the convergence and accuracy of the results. In order to illustrate the proposed methodology, two examples 
are considered: the first one has simulated data, and the second has a set of data for pollution issues at a region in 
Mexico City. 
 
Keywords: Non-Homogeneous Poisson Processes; Bayesian Analysis; Markov Chain Monte Carlo Methods and  

Simulation; Prior Distribution 

1. Introduction 

The non-homogeneous Poisson model has been applied 
to various situations, such as the analysis of software 
reliability data, air pollution data and medical count data. 
Denote by M(t) the cumulative number of events in the 
time interval (0, t] for t ≥ 0. M(t) is modelled by a 
non-homogeneous Poisson process with mean value 
function m(t). The mean value function m(t) changes 
according to the model, i.e., it assumes the shape of the 
distribution that is being used. One can also characterize 
the distribution by the intensity function 
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m t
t
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If λ(t) is a constant, so that m(t) is linear, then M(t) is 
called a homogeneous Poisson process; otherwise the 
process is called a non-homogeneous Poisson process. 

Many different choices for the function m(t) are con-
sidered in the literature, especially in software reliability 
[1]. Reference [2] considered that the expected number 
of software failures for time t, given by the mean value 
function m(t), is non-decreasing and bounded above. 

Specifically, they have considered the mean function 

 1 ,( ) 1 e tm t               (1) 

where θ, in our application represents the expected 
maximum number of days in which air quality standard 
is violated by a particular pollutant and β the rate at 
which events occur. By (1), we have that 

   1 1 e tt m t      . In [3] a generalization of the 
model given by (1) was proposed, with the following 
intensity function 

  1
2 .e tt t

               (2) 

The corresponding mean function is 

   2 1 e .tm t
              (3) 

Note that (1) and (3) can be written as special cases of 
the general form where the mean value function is given 
as 

   ,m t F t                (4) 

where F(t) is a distribution function. On the other hand, 
for any distribution function F(t) we have a valid model. 
A widely used distribution function, given its high flexi-
bility of fit, is the Generalized Gamma distribution. In 
this case the mean function is *Corresponding author. 
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where Ik(s) is the integral of the Gamma function given by 
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From Equation (6), we obtain the intensity function 
given by 
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This model is called Generalized Gamma model. When 
k is integer we can write F(t) as 
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The three models used in this article are described as 
follows: 

1) Model I: Here all the parameters are unknown, and 
λGG(t) is given by (7); 

2) Model II: with k = 1, λGG(t) is given by the function 
λ2(t) given in (2) [3]; 

3) Model III: with k = 1 and α = 1, λGG(t) reduces to 
λ1(t) [2]. 

It is important to point out that other generalized mod-
els could be considered in this case. A particular case is 
given by the exponentiated-Weibull distribution (see, for 
example, [4-6]). This model permits bathtub forms for 
the intensity function, besides the forms assumed by the 
Generalized Gamma distribution. This case is beyond the 
goals of this paper. 

In the Bayesian analysis of Models I, II and III, we 
may have some difficulties in obtaining the Bayesian 
inferences using MCMC simulation methods. In order 
to do so, let us study the effect of different prior dis-
tributions on the performance of sample simulation 
algorithms for the posterior distribution in which we 
are interested. 

The focus of this paper is to propose different prior 
distribution specifications for the parameters, because 
when we consider the models with all parameters being 
free and to be estimated, we found some convergence 
problems in the MCMC algorithm for simulating samples 
of the joint posterior distribution. Therefore, a sensitivity 
analysis of the estimation of the parameters of the models 
is conducted which relates to the choice of prior distribu-
tions. The biggest concern is with the parameter k, a pa-
rameter of the Gamma distribution [5]. 

In this article we will present two prior distribution 
proposals for the parameter k of the Generalized Gamma 
model. The first uses the prior distributions for the pa-
rameters used in [1]. Given the problems with this prior, 

especially of convergence of the Gibbs sampling algo-
rithm, a second prior distribution is suggested for the 
parameter k, which is a truncated exponential distribution. 
As we shall see, this distribution proves to be adequate. 
Other distributions were tested, but will not be displayed. 
We chose to present only the two assumed prior distribu-
tions, because the first one is suggested in the literature 
and the second one has shown good results. 

The convergence of the MCMC algorithm was ana-
lysed by graphical methods and by the Gelman-Rubin 
criterion. The Gelman-Rubin criterion [7] relies on par-
allel chains to test whether they all converge to the same 
posterior distribution. In [8] the introduction of a correc-
tion factor was suggested. This corrected statistics was 
evaluated using the CODA package in R. The closer this 
statistics is to 1.0, the more evidence we have that the 
chain is near convergence. The limit value of 1.2 is some- 
times used as a guideline for “approximate convergence” 
[9]. 

This article is structured as follows. In Section 2 we 
present the Bayesian inference for the models discussed 
here. Section 3 introduces an example of this process 
with simulated data, and we use the two prior distribu-
tions mentioned previously for the parameter k. An ap-
plication to Mexico City’s pollution data is performed in 
Section 4. In Section 5 some concluding remarks are 
made. 

2. Bayesian Inference 

The data set is denoted by DT = {n; t1, t2, ···, tn; T}, where 
n is the number of events observed such that 0 ≤ t1 ≤ t2 
≤ ··· ≤ tn ≤ T, and ti are the times of the events observed 
during the period of time (0, T]. 

The likelihood function for the vector  , , ,k     
considering the truncated time of the model (see, for ex- 
ample, [10]) is given by 
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In some cases it is necessary to introduce a latent va- 
riable; this latent variable may improve the convergence 
of the MCMC algorithm. We considered the introduction 
of a latent variable N’ that has Poisson distribution with 
parameter  1 F T     (see [1] for details). 

Considering the mean function (5) with a Generalized 
Gamma distribution, the likelihood function for the pa-
rameters θ, β, α and k is expressed as 
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such that, 
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2.1. Prior Distributions 

The first set of prior distributions for the general Model I 
are the distributions suggested by [1]: 

  1) ~Poisson 1 kN I      ; 

 2) ~Gamma , ; ,  known;a b a b  

 3) ~Gamma , ; ,  known;c d c d  

     1 1

1
4) ~  where  to 0 ;      


     

     2 2
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5) ~  where  to ,  0 k k k k k

k
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where P(λ) denotes the Poisson distribution with pa-
rameter λ. Observe that the prior distributions for k and α 
are improper priors. With this choice of prior distribution 
we cannot guarantee that for all data sets the posterior 
distribution is proper; in other words, we could have 
convergence problems in the simulation algorithm for 
samples of the joint posterior distribution. To overcome 
this problem, we assume a truncated exponential prior for 
k, but other priors could be used as the Gamma distribu-
tion. This is a subject of a future work. Thus, in the second 
set, also for the general Model I, we assume other prior 
specifications for the parameters α and k, i.e., given by 

 4) ~ Gamma , ; ,  known;e f e f  

 5) ~ truncated exponential , ; ,  known,n nk a g a  

where a, b, c, d, e, f and an are the known hyperparame-
ters of the gamma distribution where Γ(a, b) denotes a  

gamma distribution with mean 
a

b
 and variance 

2

a

b
. 

Further, let us assume prior independence among the 
parameters. The values of the hyperparameters are given 
in the applications, following expert opinion or even 
from some information in the data (use of empirical Bay- 
esian methods). As we have convergence problems in the 
chains of the parameter k, the effects of other priors for 
this parameter are studied in the applications. These pri-
ors distributions are given in Section 3. 

In the restricted Models II and III the same prior dis-
tributions are used for the free parameters. 

2.2. Posterior Distributions 

The inference will be conducted based on information 
supplied by the posterior distribution of the parameters. 
From the Bayes formula, the joint posterior distribution 
is obtained by combining the prior and the likelihood 
function. The likelihood function for homogeneous or 
non-homogeneous Poisson processes is given by, 
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Initially we will consider the case where the prior dis-
tribution of k is that suggested by [1]. In this case, the 
posterior distribution is given by 

 
  

  
 

 

1

1 1
1

1

1

1 2

!

1 e

( ) .

n

i
i

N n a n kn c n
k

T in
i

b d tN

k

P D t
N k

I T

k





 


  







    




 
      

 


 
   

  

 

 



   (12) 

Because the posterior distribution in (12) has no closed 
form, we resort to MCMC methods to generate samples 
for the joint posterior distribution. The algorithm used to 
obtain posterior distribution samples in (12) is given as 
follows. For the subset of parameters whose full condi-
tional density is known, we simulate samples directly 
from these distributions, using the Gibbs Sampling algo-
rithm; for the set of parameters whose conditional densi-
ties are not known standard densities, the samples are 
taken using the steps of the Metropolis-Hastings algo-
rithm [11,12]. Recommended references for a review of 
the MCMC methods are given in [13]. 

The conditional posterior distributions required for 
MCMC methods are given by 

 1) , , , , ~ 1 ;T kN k D P I T        
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The distribution for the parameter θ has a closed form 
distribution, so the posterior distributions of θ are ob-
tained through the Gibbs sampling method. Since the 
posterior distributions of α, β and k do not have a closed 
form, we resort to MCMC methods to simulate samples 
of these random quantities. The algorithm used to obtain 
posterior distribution samples of the parameters α, β and 
k, whose full conditional densities are not known, is the 
Metropolis-Hastings algorithm. 

When we adopt the prior specification of the second 
set, proposed in Model I, we have that the posterior dis-
tribution is given by 
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and the only changes in the marginal posterior densities 
occur in 4) and 5), which are replaced by 
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3. A Simulated Study 

In this section we use a set of simulated data with a sam-
ple size of 300 observations with θ = 300, β = 0.02, α = 1 
and k = 1. 

For both sets 1 and 2 of the prior specifications of 
Model I we found problems of convergence of the Gibbs 
sampling algorithm for all parameters. We used a burn-in 
of 15,000 iterations to eliminate the effects of the initial 

values, and after the burn-in period another 900,000 it-
erations were simulated. Taking every 500th step, which 
gives a final sample of size 1800 we obtained Monte 
Carlo estimates for the random quantities of interest. 

We also obtained posterior estimates of the restricted 
models: Model II, k = 1 and Model III, k = 1, α = 1. We 
used a burn-in of 50,000 iterations, and after this we ob-
tained 5000 samples of the posterior distributions, a 
sample at each tenth iteration. 

In Model I, assuming set 1 of the priors of [1], we 
have, 

  ~ 1 kN P I T  ;     

 ~ 0.001,0.001 ;   

 ~ 0.001,0.001 ;   

1
~ , 0; 


  

1
~ , 0k k

k
 .  

Let us call the model with this prior specification as 
Model I(1). 

In Model I with the second set of prior specifications, 
we assume a Gamma prior distribution for α given by 
Γ(0.001, 0.001). For the parameter k we conducted a 
study of the sensitivity of different priors assuming dif-
ferent hyperparameter values. This was done because, 
when this parameter is estimated, it is difficulty to obtain 
convergence of the algorithm used to simulate samples 
for the parameters. The prior distributions tested for this 
parameter include: Uniform (0, T), Γ(0.001, 0.001) and 
Γ(10,000), besides other values for the hyperparameters 
of such distributions. The transformation log(k) was also 
tested, where log(K) ~ N(a1, b1), with many values for 
the hyperparameters a1, b1, including N(0, 0.01), N(10, 10) 
and N(0, 1). In most tests the convergence of the Markov 
chain simulations was not satisfactory. The best result 
was obtained for a truncated exponential distribution 
with mean parameter equal to 0.95 and truncated in 3. 
Let us call the model with this prior distribution Model 
I(2). Table 1 shows summaries of the posterior the esti-
mates of Models I, II and III. 

For Model I(1) which uses a non-informative prior dis-
tribution specification for parameter k, the graphs of the 
MCMC chains are shown in Figure 1 (letters (a), (c), (e) 
and (g)). Only for parameter θ (letter (a)) do we appear to 
have clear convergence, while for the parameter β (letter 
(c)) there is clear nonconvergence, and for parameter k 
(letter (g)) there is possible nonconvergence. Figure 2 
(letters (a), (c), (e) and (g)) presents the posterior distri-
butions of the two chains. Only for the parameter θ (letter 
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Table 1. Posterior summaries of the estimates of the parameters for Models I, II and III. True model: θ = 300, β = 0.02, α = 1 
and k = 1. Sample size of 300. Priors: for the parameters θ, β and α the prior distributions are the ones in Section 2. For the 
parameter in Model I: (1) Non-informative prior distribution proposed in [1]; (2) Exponential prior distribution with mean 
parameter 0.95 and truncated in 3. For Model I, we have: 1st row of each parameter corresponds to an estimate of chain 1, 
starting from a given value; 2nd row corresponds to an estimate of chain 2, starting from the true values. 

Models  Priors   Posterior Estimates  

and Priors Parameters Mean S.D. Mean Median S.D. CI (95%) 

 θ 31.1 31.62 313.15 312.97 18.63 (282.44, 344.89) 

  1 31.62 313.49 313.04 18.35 (284.53, 343.25) 

 β 1 31.62 0.220* 0.127* 0.224* (0.013*, 0.6855*) 

I(1)  1 31.62 0.334* 0.084* 0.525* (0.009*, 1.502*) 

 α - - 0.709* 0.687* 0.196* (0.444*, 1.070*) 

  - - 0.744* 0.757* 0.255* (0.348*, 1.127*) 

 k - - 2.026* 1.787* 0.889* (0.910*, 3.6825*) 

  - - 2.202* 1.559* 1.5665* (0.819*, 5.588*) 

 θ 1 31.62 310.13 309.60 17.40 (282.58, 339.62) 

  1 31.62 310.39 310.35 17.63 (281.83, 339.85) 

 β 1 31.62 0.036 0.023 0.041 (0.0030, 0.113) 

I(2)  1 31.62 0.043 0.024 0.054 (0.0026, 0.166) 

 α 1 10 0.984 0.967 0.1915 (0.696, 1.333) 

  1 10 0.983 0.962 0.2155 (0.644, 1.355) 

 k 0.95 0.57 1.105 1.058 0.336 (0.653, 1.736) 

  0.95 0.57 1.133 1.058 0.403 (0.627, 1.971) 

 θ 1 31.62 310.19 310.04 17.87 (281.45, 340.15) 

II β 1 31.62 0.019 0.019 0.004 (0.014, 0.027) 

 α - - 0.999 0.999 0.049 (0.917, 1.078) 

 θ 1 31.62 310.09 309.44 17.38 (282.47, 339.11) 

III β 1 31.62 0.019 0.019 0.001 (0.017, 0.021) 
*There is no convergence for these parameters. 

 

 
                 (a)                           (b)                            (c)                             (d) 

 
                 (e)                           (f)                            (g)                             (h) 

Figure 1. Convergence of chains 1 and 2, for the parameters of Model I(1), for which the graphs are labeled (a), (c), (e) and 
(g), and Model I(2), for which the graphs are labeled (b), (d), (f) and (h). 
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                       (a)                                   (b)                                     (c) 

 
                       (d)                                   (e)                                     (f) 

 
                                         (g)                                     (h) 

Figure 2. Posterior distribution of the parameters for chains 1 and 2 of Model I, where graphs (a), (c), (e) and (g) correspond 
to the first set of priors, and graphs (b), (d), (f) and (h) correspond to the second set of priors. The true value of each parame-
ter is represented by a vertical line. 
 
(a)) is there any indication of convergence. These results 
are confirmed by the Gelman-Rubin’s statistics which are 
equal to 1.25 and 1.15, for the parameters β and k respec-
tively. That is, we did not get convergence for the MCMC 
chains with these prior distributions.  

In Model I(2) we use, as the new proposed prior dis-
tribution for the parameter k, an exponential distribution 
with mean parameter 0.95 and truncated in 3. The chains 
are presented in Figure 1 (letters (b), (d), (f) and (h)) and 
there is an indication of convergence. Figure 1 (letters 
(b), (d), (f) and (h)) shows the posterior distribution of 
the parameters for chains 1 and 2, and there is also indi-

cation of convergence. The convergence is confirmed by 
the Gelman-Rubin’s statistics, with the largest value equal 
to 1.01. 

The main conclusion reached in this sensitivity analy-
sis is that in the case of the proposed Model 2, this is 
close to the process that generates the actual data; in 
other words, it is possible to have a good approximation 
of the posterior distribution of the parameters. Even us-
ing prior distributions for parameters α, β and θ which 
are not very informative, Model I(2) can estimate the true 
value of these parameters. This does not hold true for 
Model I(1). 

Copyright © 2012 SciRes.                                                                                  JEP 



Non-Homogeneous Poisson Processes Applied to Count Data: A Bayesian Approach  
Considering Different Prior Distributions 

1342 

4. An Application to Pollution Data 

This section applies Models I(1) and I(2) to fit data cor-
responding to the maximum daily mean measurements of 
ozone gas, based on data from the northeast (NE) region 
of Mexico City. The sample has 981 observations, which 
correspond to times when a certain threshold established 
for the air quality standard is violated in the interval time 
(0,T] These data are available at  
www.sma.df.gob.mx/simat, and we took eighteen years 
of observations, from January 1st, 1990 to December 31st, 
2008 [14]. 

For these models and the assumed data set we used a 
burn-in of 15,000 iterations, and after this we obtained 
7000 samples of the posterior distributions, with a sam-
ple at each one-hundredth iterations. 

Table 2 shows the posterior estimates of the parame-
ters for Models I(1) and I( 2). 

In Figure 3, we show the trace plots of chains 1 and 2, 
respectively, for the parameters of the models, where 
graphs (a), (c), (e) and (g) correspond to Model I(1), and 
graphs (b), (d), (f) and (h) correspond to Model I(2). We 

can observe in Figure 3, that in graphs (a), (c), (e) and 
(g), related to Model I(1), only parameter θ appears to 
have convergence (graph (a)), and there is evidence that 
there is non convergence for the other parameters. In this 
model we used a non-informative prior distribution 
specification for the parameter k. In Model I(2), graphs 
(b), (d), (f) and (h), appear to have convergence. In this 
model we proposed as the prior distribution for the pa-
rameter k an exponential distribution with mean parame-
ter 0.99 and truncated in 6. 

The largest value of the Gelman-Rubin’s statistics for 
the parameters of the general Model I(2) is equal to 1.00 
indicating convergence of the MCMC chains. In Model 
I(1) the Gelman-Rubin’s statistics are equal to 1.22, 1.23 
and 1.19, for the parameters α, β and k respectively. So 
we did not get the convergence of the MCMC chains 
using the non informative prior for the parameter k. 

In Figure 4, we have the posterior distribution of the 
parameters for chains 1 and 2 for Models I(1) and I(2). 
The graphs labelled (a), (c), (e) and (g) correspond to the 
first set of priors; and the graphs t labelled (b), (d), (f) 

 
Table 2. Posterior estimates of parameters, using a sample of real data corresponding to the NE region of Mexico City. Priors: 
for parameters θ, β and α the prior distributions are the ones in Section 2. Priors for parameter k: Model I(1) non-informa-
tive prior distribution proposed in [1]; Model I(2) exponential prior distribution with mean parameter 0.99 truncated in 6. In 
the 1st row, for each parameter, we present the estimates corresponding to chain 1, and in the 2nd row, we present estimates 
corresponding to chain 2. 

Models  Priors   Posterior Estimates  

and Priors Parameters Mean S.D. Mean Median S.D. IC (95%) 

 θ 1 31.62 995.64 995.17 32.50 (942.78, 1049.44) 

  1 31.62 999.31 998.33 34.84 (944.71, 1057.79) 

 β 1 31.62 3.7 × 10–4* 0.6 × 10–5* 2.4 × 10–3* (0.8 × 10–6*, 1.3 × 10–4*) 

I(1)  1 31.62 2.9× 10–3* 1.1 × 10–5* 1.2 × 10–2* (2.7 × 10–6*, 2.5 × 10–2*) 

 α - - 1.530* 1.569* 0.235* (0.966*, 1.808*) 

  - - 1.425* 1.507* 0.269* (0.663*, 1.663*) 

 k - - 1.114* 1.002* 0.409* (0.817*, 2.007*) 

  - - 1.332* 1.067* 0.823* (0.915*, 3.718*) 

 θ 1 31.62 1043.54 1043.38 35.39 (986.58, 1102.41) 

  1 31.62 1044.71 1044.15 35.79 (985.53, 1103.67) 

 β 0,1 0,001 0.055 0.052 0.022 (0.025, 0.095) 

I(2)  0,1 0,001 0.056 0.053 0.021 (0.026, 0.094) 

 α 1 10 0.592 0.589 0.042 (0.530, 0.662) 

  1 10 0.588 0.586 0.038 (0.529, 0.656) 

 k 0.99 0.95 4.457 4.445 0.512 (3.660, 5.328) 

  0.99 0.95 4.486 4.467 0.491 (3.697, 5.324) 

*There is no convergence for these parameters. 
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                    (a)                                     (b)                                       (c) 

 
                    (d)                                     (e)                                       (f) 

 
                                         (g)                                     (h) 

Figure 3. Convergence of chains 1 and 2, for the parameters of Model I(1), in which the graphs are labelled (a), (c), (e) and (g), 
and Model I(2), in which the graphs are labelled (b), (d), (f) and (h). 
 
and (h) correspond to the second set of priors. The results 
confirm the convergence in the Model I(2) and noncon-
vergence in Model I(1) 

5. Conclusions 

In this article we proposed a sensitivity analysis with 
various specifications of prior distributions for the model 
previously introduced in [1], which was developed using 
the Bayesian approach. We have conducted a study of 
the effect of prior distributions on the convergence and 
accuracy of the results, and in this way we have been 
able to propose a prior distribution for the parameter k 
that gives convergence of the samples simulation algo- 

rithm. Observe that using improper prior distributions for 
the parameter k could not guarantee that the posterior 
distribution was proper, as this depended on the data set 
(as was observed in our application with real data). After 
trying several prior distribution specifications for this 
parameter, it was possible to propose a prior distribution 
that would considerably improve the convergence of the 
chains. Such improvements can be noted in credible in-
tervals, in which the range of the interval is smaller using 
a truncated exponential prior distribution; we may also 
observed these best results through graphical analysis 
when using a truncated exponential prior distribution for 
the parameter k, we obtained convergence of the chains. 

It is important to point out that other informative priors 
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Figure 4. Posterior distributions of parameters for chains 1 and 2, respectively for Model I, where graphs (a), (c), (e) and (g), 
correspond to the first set of priors and graphs (b), (d), (f) and (h) correspond to the second set of priors. 
 
for the parameter k could be considered, such as a 
Gamma distribution. This possibility is a goal for a future 
study. 
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