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ABSTRACT 

A systematization for the manipulations and calculations involving divergent (or not) Feynman integrals, typical of the 
one loop perturbative solutions of Quantum Field Theory, is proposed. A previous work on the same issue is general-
ized to treat theories and models having different species of massive fields. An improvement on the strategy is adopted 
so that no regularization needs to be used. The final results produced, however, can be converted into the ones of rea-
sonable regularizations, especially those belonging to the dimensional regularization (in situations where the method 
applies). Through an adequate interpretation of the Feynman rules and a convenient representation for involved propa-
gators, the finite and divergent parts are separated before the introduction of the integration in the loop momentum. On-
ly the finite integrals obtained are in fact integrated. The divergent content of the amplitudes are written as a combina-
tion of standard mathematical object which are never really integrated. Only very general scale properties of such ob-
jects are used. The finite parts, on the other hand, are written in terms of basic functions conveniently introduced. The 
scale properties of such functions relate them to a well defined way to the basic divergent objects providing simple and 
transparent connection between both parts in the assintotic regime. All the arbitrariness involved in this type of calcula-
tions are preserved in the intermediary steps allowing the identification of universal properties for the divergent inte-
grals, which are required for the maintenance of fundamental symmetries like translational invariance and scale inde-
pendence in the perturbative amplitudes. Once these consistency relations are imposed no other symmetry is violated in 
perturbative calculations neither ambiguous terms survive at any theory or model formulated at any space-time dimen-
sion including nonrenormalizable cases. Representative examples of perturbative amplitudes involving different species 
of massive fermions are considered as examples. The referred amplitudes are calculated in detail within the context of 
the presented strategy (and systematization) and their relations among other Green functions are explicitly verified. At 
the end a generalization for the finite functions is presented. 
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1. Introduction 

Given the fact that exact solutions for Quantum Field 
Theories (QFT) are rarely possible, almost all knowledge 
constructed through this formalism about the phenome-
nology of fundamental interacting particles has been ob-
tained within the context of perturbative techniques. In 
order to get the predictions in such framework, many 
nontrivial mathematical difficulties must be circum-
vented due to the presence of infinities or divergences in 
the perturbative series for the elementary process. We 
have to find a consistent prescription to handle the ma-
thematical indefiniteness involved, which means to avoid 
the breaking of global and local symmetries as well as 
simultaneously to avoid ambiguities in the produced re-
sults. By ambiguities we understand any dependence on 
the final results on possible arbitrary choices involved  

in intermediary steps of the calculations. If they exist, 
undoubtedly, the predictive power of the formalism it is 
destroyed. The first and most immediate of such ambi-
guities are those associated with the choices of the labels 
for the momenta carried by the internal lines of loop per-
turbative amplitudes. They naturally appear when the 
divergence degree is higher than the logarithmic one. The 
result for such amplitudes may be dependent on the par-
ticular choices for the routings due to the fact that in this 
case the amplitudes are not invariant under shifts in the 
loop momentum. A second and important type of choice 
is the regularization prescription. Two different choices 
for the regularization can lead to different results for the 
calculated amplitudes. These two kinds of ambiguities 
are very well-known in the corresponding literature. A 
third and more general one has been recently considered  
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in the context of perturbative calculations, which is the 
denominated scale ambiguities [1]. They are related to 
the choice for a common scale for the finite and diver-
gent parts when they are separated in a Feynman integral. 
There is an arbitrariness involved in the separation of 
these terms in a summation when they have different 
divergence degrees. The scale properties of the pertur-
bative amplitudes are the most general guides for the 
consistency of the procedures. There are situations in 
which a symmetry violating is non-ambiguous relative to 
the choice for the labels of the internal lines momentum 
but it is ambiguous relative to the choice for the common 
scale. In addition to the difficulties coming from the di-
vergences we frequently have also those coming from the 
extension of the mathematical expressions involved. Apart 
from a few number of simple amplitudes, the mathe-
matical complexity of the obtained expression, not rarely, 
makes prohibitive any analysis of the obtained results. 

Considering these aspects of the perturbative calcula-
tions in QFT it would be desirable to get a procedure to 
manipulate and calculate divergent physical amplitudes 
without compromising the results with a particular regu-
larization scheme. In addition to this, we would like to 
make the calculations preserving all the possible choices 
for the arbitrariness involved like those related to the 
choice of routings for the internal momenta and for the 
common scale for the finite and divergent parts. To com-
plete such adequate calculational strategy it would be 
desirable to get also a systematization for the finite parts 
of the amplitudes in a way that the mathematical expres-
sions become simple allowing the required analysis and 
algebraic operations related to the renormalization pro-
cedures, among others. 

If one agrees with this line of reasoning the present 
work may constitute a contribution on this direction. We 
present in this paper a calculational strategy which ful-
fills the requirements stated above. We start by formu-
lating the steps involved in the calculation of perturbative 
amplitudes, through the corresponding Feynman rules, in 
such a way that no regularization needs to be specified. 
The calculations are made by using arbitrary choices for 
the internal lines of loop amplitudes and an arbitrary 
scale parameter is introduced in the separation of terms 
associated with different degrees of divergences. Through 
the procedure no divergent integral is really calculated. 
They are reduced to standard forms which are then un-
touched. The finite parts are not contaminated with any 
type of modification and a systematization through 
structure functions is introduced. The result is a com-
pletely algebraic procedure where no limits or expan-
sions are taken. All the procedures like Ward identities 
verifications, renormalization procedures and so on, are 
made by using properties of the finite functions and basic 
divergent objects. In addition to this, the important aspect 

of the procedure is its general character; all the ampli-
tudes in all theories and models are treated in an abso-
lutely identical way. We treat amplitudes in renormaliz-
able and non renormalizable theories formulated in even 
and odd space-time dimension within the same strategy. 
Symmetry violating terms as well as ambiguous ones 
may be simultaneously eliminated in a consistent way. 
Anomalous amplitudes are consistently described with-
out the presence of ambiguities in any (even) space-time 
dimension. 

The material we present in this work may be consid-
ered as an extension of that presented in [2]. The ques-
tions considered here are not new. In the literature there 
are many works about this issue and certainly many oth-
ers continue to be done nowadays. In particular, the re-
duction of tensor integrals to scalar ones, made in the 
present work through the properties of the introduced 
finite functions, has been studied by Passarino and Velt-
man [3] as well as other authors [4-12]. The scalar inte-
grals has been considered by G.’t Hooft and Veltman 
[13]. Recently, new works have been produced specially 
involving massless propagators like in [14-29] (and ref-
erences therein). The present systematization for the per-
turbative calculations must be understood as a contribu-
tion to this type of investigation. The very general char-
acter of the procedure and the absence of restrictions of 
applicability may represent some advantages which can 
be useful for some users of the perturbative solutions of 
QFT’s. With the material presented here any self-energy, 
decay amplitude and elastic scattering of two fields can 
be calculated in fundamental theories. 

The work is organized as follows. In the Section 2 we 
define the set of basic one-loop 4D Feynman integrals 
which we will discuss in future sections. In the Section 3 
we explain the strategy adopted to handle the diver-
gences as well as we define the basic divergent objects 
used to write the divergent content of the perturbative 
amplitudes. The basic functions (and some of their useful 
properties) used to systematize the finite parts of the am-
plitudes are introduced in the Section 4. The solution of 
the basic one-loop integrals is considered in the Section 5 
and the explicit calculation of perturbative amplitudes in 
the Section 6. In the Section 7 we consider the explicit 
verification of the relations among the Green functions 
for the calculated amplitudes and in the Section 8 the 
questions related to the ambiguities and symmetry rela-
tions are discussed. A generalization for the finite func-
tions and their useful properties are presented in the Sec-
tion 9 and, finally, in the Section 10 we present our final 
remarks and conclusions. 

2. Basic One-Loop Feynman Integrals 

First of all we call the attention to the fact that in pertur-
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bative calculations, independently of the specific theory 
or model, in loop amplitudes, we have to take the inte-
gration over the unrestricted momentum. We can con-
sider such an operation as the last Feynman rule. Pre-
cisely at this step all the one-loop perturbative ampli-
tudes will become combinations of a relatively small 
number of mathematical structures, the Feynman inte-
grals. Some of such structures are undefined quantities 
because they are divergent integrals. Given this situation 
we have at our disposal two distinct but, in principle, 
equivalent attitudes to adopt. We can perform the calcu-
lation of the desired amplitudes one by one, within the 
context of a chosen regularization prescription or equiva- 
lent philosophy, ignoring any type of possible systemati-
zation of the procedures or identifying the set of opera-
tions we have to repeat in calculating different ampli-
tudes considering such required operations in a separat-
edly way. In adopting the second option, the immediate 
systematization of the perturbative calculations is to con-
sider the study of the set of Feynman integrals we need to 
solve in order to calculate all the one-loop amplitudes. 
Here we will restrict our attention to the fundamental 
theories but this attitude can always be followed. 

In this linere of asoning we first separate the ampli-
tudes by the number of internal lines or propagators. 
Thus the one propagator amplitudes in fundamental theo-
ries will be reduced, in some step of the calculations, to a 
combination of the integrals 
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Here ij i j  The highest degree of divergence 
here is the quadratic one occurring in 2I  . In calculating 
amplitudes having three internal propagators we need to 
evaluate the integrals  
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Here we have defined ijl ij l . The higher degree 
of divergence involved in the above set of integrals is the 
linear one in 3I  . Two of them are finite structures. We 
can introduce also the ingredients required to calculate 

amplitudes having four internal lines, the four propaga-
tors Feynman integrals  
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Now ijlm ijl m . Only one of such structures is 
divergent which is the logarithmically divergent structure 

4I 

k k

k

. 
In the above definitions i  and im  are the arbi-

trary momentum carried by an internal propagator and its 
mass, respectively. The arbitrary internal momenta i  
are related to the external ones through the relations of 
energy-momentum conservation in vertices connecting 
the internal lines with the external ones. The adoption of 
arbitrary routing for the internal lines momenta is of cru-
cial importance due to the divergent character of the 
Feynman integrals involved, in particular for those hav-
ing degree of divergence higher than the logarithmic one 
just because in this case the result may be dependent on 
the chosen routing. In adopting such general arbitrary 
routing for the internal lines we can identify possible 
ambiguous terms arising in a certain calculation which 
are undefined combinations of the internal lines momenta 
(not related to the external ones). This aspect will be-
come clear in a moment. 

When we find a combination of divergent Feynman 
integrals in a certain step of the calculation of a pertur-
bative amplitude, in order to give an additional step we 
have to specify the prescription we will adopt to handle 
the mathematical indefinitions involved. Usually this 
means adopting a regularization prescription or an equiv-
alent philosophy. All the results, after this, will be com-
promised with the particular aspects of the chosen regu-
larization. The so obtained results will represent only the 
consequences of the arbitrary choice made for the regu-
larization. Even if there are elements of the calculations 
which are independent of the regularization scheme em-
ployed, certainly, there are parts of the result which will 
be specific of the particular regularization used. 

In the present work we will follow an alternative pro-
cedure. We will not compromise the results with a par-
ticular choice in any step of the calculation. The choice 
for the regularization will be avoided. The routing of the 
internal lines momenta will be taken as arbitrary and the 
most important and new aspect specially for calculations 
involving different species of massive fields, the com-
mon scale for the finite and divergent parts, will be as-
sumed also as being arbitrary. With this attitude all the 
possibilities for such choices will still remain in the final 
results. Thus, it will be possible to make a very general 
analysis of the results searching for the universal condi-
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tions which are necessary to be preserved in order to get 
consistent results in perturbative calculations. This means 
to obtain results which are simultaneously free from am-
biguous and symmetry violating terms. In order to fulfill 
this program, in the next section, we will describe the 
strategy to be adopted in the manipulations and calcula-
tions of divergent Feynman integrals. 

3. The Strategy to Handle Divergent 
Feynman Integrals and the Basic 
Divergent Structures 

When we use the Feynman rules to construct the pertur-
bative amplitudes there are two distinct steps. First, with 
propagators, vertex operators, combinatorial factors, 
traces over Dirac matrices, traces over internal symme-
tries operators and so on, we construct the amplitudes for 
one value of the loop momentum k. The next step is to 
take a summation over all values for such momentum, 
since it is not restricted by the energy momentum con-
servation at all vertices of the corresponding diagram. 
This means integrating over the loop momentum. It is 
possible to use these two distinct moments of the calcu-
lation to formulate a strategy to handle the divergences 
present in perturbative calculation of QFT which may 
avoid the use of a regularization [30]. The idea is very 
simple and does not involve any kind of magic. Only an 
adequate interpretation of the usual procedures is re-
quired. The first step is the same described above: to 
construct the amplitude corresponding to one value of the 
unrestricted momentum. Then before taking the integra-
tion, the last Feynman rule, we make a counting in the 
power of loop momentum in order to get the superficial 
degree of divergence of the amplitude in the space-time 
dimension we are working. Having this at hand we adopt 
the following representation for the involved propagators  
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taking N in the summation as equal or major than the 
superficial degree of divergence. Here   is an arbitrary 
parameter having dimension of mass which plays the role 
of a common scale to both finite and divergent parts of 
the corresponding Feynman integral. Through this pa-
rameter a precise connection between the finite and di-
vergent parts is stated. Note that (as must be required) the 
expression above is an identity and in addition the right 

hand side is really independent of the arbitrary parameter 
2 . After the adoption of the adequate representation for 

the propagators and making all the convenient algebraic 
reorganizations, we take the integration over the loop 
momentum k. Then we note that the internal momenta 
dependent parts of the Feynman integrals are located 
only in finite integrals. On the other hand, the divergent 
parts will reside in standard forms of divergent integrals, 
after a convenient reorganization, where no physical pa-
rameter is present. Then we can perform the integration 
of the finite integrals obtained and in the divergent ones 
we need not to make any additional operation. 

In order to allow a compactation of some expressions 
in future sections it is convenient to introduce the defini-
tion i i i

2 2 22 iA k k k m     , so that we can write the 
above expression as  
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The steps above described, required to implement the 
procedure, can be formulated within the context of the 
language of regularizations. In such formulation we take 
the integration over the loop momentum and then the 
divergences are stated. We adopt then a regularization in 
an implicit way in all Feynman integrals. It is required of 
such regularization distribution only very general proper-
ties. In addition to rendering the integral convergent we 
require that such distribution is even in the loop momen-
tum in order to be consistent with the Lorentz symmetry 
and that a “connection limit” exists. Schematically 
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where the is  are parameters of the distribution  
 2 2,G ki , and the limits which allow to remove the 

distribution in the finite integrals  
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must be well-known. By assuming the presence of this 
very general regularization we can manipulate the inte-
grand through algebraic identities just because the inte-
grals are then finite. Next, the identity (5) is used to re-
write the propagators in the Feynman integrals. In the so 
obtained finite integrals we take the connection limit 
eliminating the regularization and performing then the 
integration. In the divergent integrals so obtained no ad-
ditional modifications are made. Only a convenient reor-
ganization in the form of standard objects is promoted. 

There are no practical differences in both procedures 
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described above. The only difference is the presence of 
the subscript  in the divergent integrals indicating 
that a regularization was assumed in an implicit way. The 
first formulation however represents the evolution of the 
second one proposed and developed by O. A. Battistel 
and denominated as implicit regularization, just because 
it allows us to perform all the necessary calculations 
without mentioning the word regularization in perturbat-
ive calculation for any purposes, as we shall see in what 
follows when representative examples of amplitudes 
calculations will be considered in detail. 



The terms which will be converted in divergent inte-
grals, when the integration over the loop momentum is 
taken, can be conveniently organized so that all the di-
vergent content is present in the standard objects (at the 
one-loop level in fundamental theories) 
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In nonrenormalizable theories or in two or more loops 
calculations new objects analogous to these can be de-
fined. Note that all the steps performed are perfectly va-
lid within reasonable regularization prescriptions, in-
cluding the dimensional regularization technique. This 
means that it is possible to make contact with the results 
corresponding to the ones belonging to such methods. To 
do this it is only necessary to evaluate the divergent 
structures obtained according to the specific chosen re-
gularization prescription just because the finite parts 
must be the same due to the fact that, in all acceptable 
regularization the connection limit must exist. As a con-
sequence, finite integrals must not be modified. More 
details about the procedure will be presented in a mo-
ment when examples of perturbative (divergent) ampli-
tudes are considered. 

4. Basic Structure Functions for the Finite 
Parts 

Once the procedure described above is adopted, finite 
Feynman integrals must be solved. In general, to solve 
such integrals is not a problematic task. However, fre-
quently, the obtained result is a very large mathematical 
expression making difficult any type of analysis. The 
experience, in realizing such type of calculations, re-
vealed that it is possible to identify basic functions to 
systematize the results for the finite parts of the pertur-
bative Green functions so that the results became very 
simplified and all the analysis required became simple 
and transparent. Such basic functions will emphasize, in 
a natural way, many important aspects typical of the per-
turbative physical amplitudes like, for example, unitarity. 
Further required manipulations, in renormalization pro-
cedures, in the verification of relations among Green 
functions or Ward identities, can be completely simpli-
fied in terms of simple properties of such basic functions. 
It is possible to show that the finite parts of amplitudes 
having a certain number of internal propagators can be 
reduced to a unique function written, in an integral form, 
in terms of Feynman parameters. Our next task will be to 
define the referred basic structures and to explicit their 
useful properties to be used in posterior sections where 
we will consider the evaluation of the divergent Feynman 
integrals defined in the first subsection above. The prop-
erties considered for such basic functions will be used in 
future sections, when we will consider explicit examples 
of amplitudes evaluation and in the verification of rela-
tions among Green functions. 

4.1. Basic Two-Point Structure Functions 

After the adoption of the procedure described in the Sec-
tion 3 above, when we are considering a calculation in-
volving amplitudes having two internal propagators the 
finite parts so obtained can be always written in terms of 
the following functions  

12 2 2 2
1 2 20
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m m
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In the expression above, p is a momentum carried by 
an internal line or a combination of them, 1  and 2  
are masses carried by the propagators,   is a parameter 
with dimension of mass which plays the role of a com-
mon scale for all the involved physical quantities and 
     2 2 2 2 2 2; , , 1Q m p m x p x x m m x m    1 2 1 2 1 . The role 

of the masses can be inverted through a simple change in 
the integration variable. In intermediary steps of pertur-
bative calculations it is enough to maintain the integral 
representation but if one wants to solve the integration in 
the Feynman parameter this operation can be easily per-
formed. For the first component of the above set of func-

Copyright © 2012 SciRes.                                                                                 JMP 



O. A. BATTISTEL, G. DALLABONA 1413

 tions we will obtain 
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We can note then that the function kZ m   

acquires an imaginary part in the region ,   2
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as required by unitarity. It is possible to state relations 
among the functions corresponding to different values for 
k. Examples of such relations are  
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Through such relations all components of the set can 
be reduced to that having the number of  reduced in 
one unity and successively to finally be reduced to only 
the   function. These type of reduction is very 
useful in verifications of symmetry relations as we shall 
see in a moment. 

4.2. Basic Three-Point Structure Functions 

In evaluating the finite parts of Feynman integrals asso-
ciated with amplitudes having three internal propagators, 
Equation (3), we can obtain considerable simplification if 
the results are written in terms of the following functions  
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where  and  are momenta of the internal lines or a 
combination of them and, 
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If the considered amplitude possesses two or more 
Lorentz indexes it is useful to define another set of 
auxiliary functions. They are defined as  
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The elements of the above set of functions can be re-
duced to nm  and kZ  functions if useful or necessary. 
However, in intermediary steps of calculations it is fre-
quently convenient to maintain the presence of nm  
function to give a compactation of the results and opera-
tions. Now we consider useful properties for the func-
tions nm  and  nm . 

The first aspect is relative to the reduction of all the 
elements of the set having a certain value for n m  to 
that having 1.n m 

1n m 
 We now show such reduction 

firstly considering those for . We start by con-
sidering 01 . After some algebraic effort, which involves 
only basic mathematical operations like integration by 
parts, we can write the expression     
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  and In the last two equations above, we can note that both functions 01  may be related through a set of simul- 
taneous transformations. 

The reduction of the functions 20  and 02  can be written as  
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  on the other hand, it is interesting to obtain two alternative forms. First we write  For the component 
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The second form is  
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2,n mThe explicit expressions for the nm  functions, corresponding to    can be completed if we develop the 

00  in terms of nm  and kZ  functions. Such function can be written as  
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3n mThe expressions corresponding to the first reduction of the nm  functions having   are  
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The two different forms for the function   are written as  
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  Firstly the form  Finally we consider the expressions for the function 
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and then a second form can be obtained 

         

           

2
2 22 2 2 2 2 21

12 1 2 3 2 2 3 2 12 2 2

2 2 2 2 2 2
1 2 1 32 2 2 2

2 1 3 012 2 2 2 2

1
; , ; ; , ;

2

1
; , ; 2

p q qC
Z m p q m Z m p q m Z m

p q p

p m m q m mp q p q
Z m q m

p p q p p

 

 

     2 2 2 2
3

112

; , ;

.

q m

q

 



         





nm

   

               

 

For the   used in the above expressions we have the following expressions  
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With these expressions we can write the functions 

nm  corresponding to  completely in terms of 
of functions 

3n m 
kZ  and nm  with  2.n m 

1n m

The reductions present above are very useful in par-
ticular to allow the identification of important properties 
of the basic functions associated to amplitudes having 
three internal propagators. These referred properties are 

required when relations among Green functions or Ward 
identities are verified. They are particular combinations 
of a couple of elements of the set of functions which can 
be constructed directly from the reductions presented 
above. The usefulness of these properties will become 
very clear in future sections. They are 

1)  
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 functions,  It is also useful to note similar properties involving the nm
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Furthermore, note that when on the left hand side we 

have nm  for what , on the right hand side we 
will have only functions with n m , and so on. 
Such type of structures are precisely the expected ones 
when the Ward identities are considered. It is clear that 
other functions corresponding to higher values of  and 

, and analogous relations among them, can be obtained. 
In the final Section 9 we will show how to generalize all 
above functions and their relations to an arbitrary number 
of points. At the present purposes the 

will be enough. 
3n m 

2 

n
m

nm

4.3. Basic Four-Point Structure Functions 

The finite parts of four-point functions calculations admit 
a systematization analogous to the three-point functions. 
The basic functions are defined as  

  given above  
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If the considered amplitude possesses at least two Lo-

rentz indexes it is useful to define another set of auxiliary 
functions 
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          (32) 

and if four or more Lorentz indexes are involved it is 
convenient to define also the functions  

1 1 21 1 1
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x x x i j k
ijk

Q
x x x x x x


            (33) 

The elements of the set of functions ijk  and ijk  
defined above can be reduced to functions ijk  if useful 
or necessary. However, in order to give a compactation 
of the results and operations, in intermediary steps of 
calculations, frequently, it is convenient to maintain the 

ijk  and ijk  in the corresponding expressions. All the 
functions of the set ijk  can be, at the final, reduced to 
the most simple ones 000 . As examples of such reduc-
tions let us consider those corresponding to 1i j k  

ijk

. 
They can be written as 

 :  1) Functions 
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3) Functions  :  
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The systematization obtained through the functions 

ijk , ijk  and ijk  is enough to write all four-point 
amplitude. In order to verify relations among Green 

functions or Ward identities some properties of those 
functions are useful too. In our case it is sufficient the 
following properties:  
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Similar relations can be obtained for others compo-

nents of the set by exploring the properties relating these 
functions which are the interchanges p q , p r
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                   (43) 

 , 
m m , and m m  (analogously to the 2 3 2 4 ij  func-
tio

rts of a four
p will be nl

ns). The systematization allows us to treat the pertur-
bative four-point amplitudes in an exact way. By succes-
sive reductions all the content of finite - 

ction ritten in terms of o y 000

 pa
oint fun w   

(more 00  and 0Z ). Let us now consider the evaluation 
of the integrals (1)-(4) in terms of the systematization 

After introducing the strategy to be adopted to hand  
with th ivergen s in perturbative calculations of QFT, 
as well as to state the standard divergent structures in 
terms of which th

introduced. 

5. Manipulations and Calculations of the 
One-Loop Feynman Integrals 

le
e d ce

e divergent parts will be written and to 
define the set of basic functions in terms of which the  
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finite parts will be written, we can consider the solu
 the divergent Feynman integrals presen

tion 
of ted in (1)-(4). 

 

3D

5.1. One-point Feynman Integrals 

If we want to solve the Feynman integral  1I 
 defined 

in (1), by using the procedure described in previous sec-
tions, first we identify the divergence degree  . 
After this we have to adopt the adequate representation 
for the propagator. This means taking  in the ex-
pression (5) to get 

3N 
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Next we reorganize in enient way in order to get the basic divergent structures defined in Section 3. Then we 
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write the above expression in the form 
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t
o

organizations are made to get 
 completely in combinations 
nd then we get 

 

2 2 2 2
1k k D  

 

 

where we have written only the terms which are even in 
he loop momentum k by simplicity just because the odd 
nes will be ruled out after the introduction of the inte-

gration sign. Convenient re
the divergent terms written
of the five objects (7)-(11) a
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 □

 

Only finite terms will be integrated in the next step and no additional modification will be made. The result is the 
expression  
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s for the definition of the divergent objects 
precisely on this form will become clear in future sec-
tions. It is possible to show that for any value of N in the 

involved divergent objects a regularization must be as-
sumed and the integration made. However, as we shall 
see in a moment, this is not necessary in any situation. 

ivergent i
 follow the same 

eaking, the same 
 in (44) can be 
n be avoided by 

 □

 
The reason

expression (44) major than 3 the result can be put in the 
above form. Note that, following our strategy, no men-
tion needs to be made to regularization techniques until 
this step. On the other hand, the above result can be con-
ve ed to any regularization prescription since all the 
ste

Now we can consider the quadratically d
gral defined in (1). For this purpose we
procedure applied above. Strictly sp
representation for the propagator used
adopted. However, algebraic effort cart

ps performed are perfectly valid in the presence of all 
regularization distribution. Such eventually adopted regu- 
larization, in this case, will be present only in the basic 
divergent objects just because it can be removed from the 
finite integrals by taking the connection limit. If, on the 
other hand, we want to attribute a definite value for the 

taking the value N = 2 in the expression (5) just because 
the obtained expression may be put in the same form for 
any superior value. Having this in mind in all situations 
where we have to calculate the integral 1

nte-

I  we will have 
to integrate the expression (omitting an odd term in the k 
loop momentum)  
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1

Solving the finite terms we obtain  

     
 

 2 .k 
             (45) 

 
Again note the general character of the expression. 

Only mathematical operations free from choices have 
been made. 

5. s 

Now we consider the integrals having two propagators. 
First we take the simplest one: the 2
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where we have used the definition (6) in order to write 
the expressions in a more compact way. Now we intro-
duce the integration sign to get 

 
 

 
2. Two-Point Feynman Integral

 
I  integral. When 

is integral needs to lved, as a consequence of the 

 used in (44 wever, given the divergence 
n be 

r both propaga-

th
ap

be so

). Ho

plication of Feynman rules, we first adopt the repre-
sentation (5) for the propagators. If one wants to use an 
unique representation for the propagators the expression 
may be that
degree involved, some algebraic simplification ca
obtained assuming the value = 1N  fo
tors. We have to integrate the summation of terms 
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12

The finite ones can be integrated by using usual tools 
to yield  

i
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2 log 0 1 22

; , ; ,
4π

i
I I Z m p m            (46) 

where we have introduced the definition 2 1k k p  .  
The same procedure can be adopted when the integral 

2I   needs to be solved. In our procedure, before taking 
the integration, we first write 
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Note that odd terms have been omitted. After some reorgan  solving the finite integrals 
btained to get  





ization, we take the integration
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         (47) 

Here we have defined 1 2P k k  . 
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Next, we can follow strictly the same procedure to get the expression for the integral 2I   in our procedure. The 
first step is to write 
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Now we take the integration, after a convenient reorganization of the terms to write the divergent terms as a mbination 
of the basic divergent structures, and perform the integration in the finite terms by using standard techniques, to get 



co

         

       

   

2 2 2 2 2
2 2 2 2 1 1 1

2 2 2
2 2 1 1 2 2 2 1 1 1

2
2 2 2 1 1 2 1 1

2
1 2

2

1 1 1
2

2 6 4
1 1

2 2
12 12
1

2 2
12

I k k k k k k m m

k k k k g k k k k k k

k k k k k k k k

     
   

     
  

   
    

   

 



                  

               

      

□

2 2 2 1

1
2

12
k k k k k 

        2 2
1 2 1 1 quad

1
2

2
k k k g I 

            

       

   

 

22 2 2 2 2
1 2 log 2 1 log

2
2 2 2 2 2

2 2 2 1 2 1 1 1 log 2 2 2

2 2 2 2 2 2 2
2 1 2 1 1

1 1
2

4 12

1 1
2 2 ln

6 2

1
; , ; ;

2

g m m I g k k I

m
k k k k k k k k I g m m

g p Z m p m Z m p

 

        



  

 




          

                

     

       
 

2 2 2 2 2 2
2 2 1 1 2

2 2 2 2 2 2 2 2 2 2
1 2 1 1 2 1 1 1 1 2

2 2 2 2
1 1 0 1 2

, ; , , ;

1
; , ; ; , ;

2

; , ; ,

m p p Z p m m

g m m Z m p m k p k p Z m p m

k k Z m p m

 

    

 

 

 



       

         

   

         (48) 

 
which completes the calculation of the Feynman inte- 
grals having two internal propagators. 

5.3. Three-Point Feynman Integrals 

Now we evaluate the integrals having three propagators. 
The first element of the set (3) is finite and may be cal-
culated by taking any value for N in the expression (5). 
We write the result as 

 
 2 2 2 2 2

3 00 1 2 34 2
123

d 1
; , , , ,

(2π) 4π
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I m p m q m

D
      (49) 

4

where we adopted the definitions 3 1k k q   and  

2 1k k p . The definition (15) for the nm   functions 
has been used. The same comment applies to the second 
element of the set (3). The result can be written as  
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  (50) 

By simplicity, we will omit the arguments of three- 
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after taking the integration we have to adopt the adequate 
representation for the propagators. In this case we can 
first write 

 

point functions nm  and nm  whenever it is not in-
volved four-point structures. The next integral of the set 
(3), which is 3I  , is logarithmically divergent. Then 
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     (51) 

Now let us consider the linearly divergent structure, the integral 3I  . The first step is to rewrite it using (5), as we 
did above, and next we solve the finite integrals to write the result as 
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In fundamental theories the considered integrals are 

enough to evaluate the one-loop amplitudes having three 
internal propagators. 

5.4. Four-Point Feynman Integrals 

Finally, we consider the four-point function integrals. 
Only one of them is a divergent structure which makes 
the job easy. The first, the scalar one, can be written as   

   2

0004π ,
            (53) 

where we have identified the four-point structure func-  

tions previously defined in the Equation (31) and also the 
external momentum 4 1r k k  . Next, one can imme-
diatly see that, for the vector integral, we can write  
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The last one we consider is the logarithmically divergent one, which we write as  
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ith the above results for the Feynman integrals at hand ak kW

we can perform all the one-loop amplitudes for one, two, 
three and four fermionic propagators in the context of 
fundamental gauge theories. In the next section we eva-
luate some representative amplitudes involving vector 
vertexes. 

6. Physical Amplitudes 

In the preceding sections we have considered the evalua-
tion of the Feynman integrals introduced in the Section 2, 

 crucial for the one-loop calculation in the con-
text of fundamental gauge theories like QED. All the 
integrals have been written in terms of the set of diver-

which are

gent objects; □ ,  ,  , I
 and in

log  and quadI , de-
 t 11)  terms of the func-fined in

tions 
he Equations (7)-(

kZ , nm  and, nml  
o, th

ing prop
p am
three

defi  the Equations (12), 
w ree an ur-point functions, 

e g the above cited 
o plit be reduced to a 

pieces: 0

ned in
d fo

rties relatin
udes can 

(15) an
respectiv
functio
comb

d, (31)
ely. B

ns, all
ination of only 

 for t
y us

 one-lo
 basic Z , 00  and, 

000 . 
In the present section we will evaluate some represen-

tative amplitudes of the perturbative calculations by us-
ing the systematization introduced in the preceding sec-

Ward identities. We choose for this purpose 
n functions of the Standard 

nctions having only fer-

perat  an on we  stat

 q ntiti

  

tions. We will consider an example for each number of 
points taking the amplitude corresponding to the higher 
degree of divergence. With this attitude we will have an 
opportunity to use all the ingredients we have introduced 
in our proposed systematization. In next sections we will 
consider the relations among Green functions, ambigui-
ties and 
simple but representative Gree
model; the one-loop Green fu
mionic internal lines. It is simple to state relations among 
these structures as well as to state Ward identities to be 
obeyed by them. 

In the construction of such Green functions through 
the Feynman rules, apart from coupling constants, inter-
nal symmetry o ors d so , have to e the 
amplitudes for one value of the loop momentum k, which 
are the ua es 

   
 

; ;

; .

i j l
i F a a j F b b

l F d d

t Tr S k k m S k k m

S k k m

       

 

 
 (65) 

heT   quantities are vertice operators belonging to
the set  

5 51, , , ,i        

appearing in the coupling of fermionic currents to the 
bosonic fields in the Lagrangian. After defining the op-
erators corresponding Lorentz indexes are attached to 

i j lt
  

. The quantities FS  are fermionic propagators 

carrying momentum   and mass am  which we 
will write as  

 
,a a

F
a

k k m
S

D

 
  

where through the quantity  2

a a aD k k m    
state a connection with the procedure described in the 
proceeding sections. The corresponding one-loop ampli-
tudes are obtained by taking the integration of the t 
structures in the loop momentum k; 

 

2  we  

4

4

d
.

2π
i j l i j lk

T t
      

 
 

In the present work we will consider the cases where 
the structures above correspond to divergent amplitudes 
for one, two, three and four-point functions. They are all 
connected due to relations among Green functions and 
Ward identities as we will see. 

6.1. One-Point Functions 

We start by taking the cases having the highest diver-
gence degrees; the one-point functions. First, we write 
for the one value of the k momentum, the quantities 

  ; ,i
i F a at Tr S k k m     

or 

     1 1
1 1 1

1 1

1
.

k k
t Tr m Tr

D D




 
         (66) 

The corresponding one-loop amplitudes, obtained by 
integrating the above structures in the loop momentum, 

 

4
1 1

4

d
,

2π

k
T t    

are divergent quantities. The superficial degree of diver-
gence is cubic. Now, taking two different possibilities to 
the vertice operators we can construct the one
functions which will be useful in future developm
First we take the scalar one-point function which means 
to e

-point 
ents. 

 assum  1 1  . We get then 
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1

1 1

1
1 ,S k k
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D D
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or, solving the Dirac traces,  

1
1

1
4 .St m

D

 
  

 
 

At this point we adop equate rep tation for 
the propagator

t the ad resen
, as we have made when we discussed the 

solution of the 1I  integral. Then we get 
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divergent objects as 
well as the presence of a potentially ambiguous term, the 
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Note the presence of the basic 



 one, si   is arbitrary. 
king 1Now ta    in the expression (66) we get the 

vector one-point function 
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Using the results for the Dirac traces involved we get 
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Note that the result is completely potentially ambigu-
ous since all the quantities involved are arbitrary (the 
momentum 1k  and the scale 2 ). Let us now consider 
an example of two-point functions. 

6.2. Two-Point Function 

If one wants to consider a representative Green function 
of

nic 

e write them from the defini-
tion (65) as  

     

2 
  

 the perturbative calculation, concerning the consis-
tency in the manipulations and calculations involving 
divergent Feynman integrals, certainly there is no better 
on rmioe than the fe two-point functions. We will con-
sider three of such amplitudes related among them 
through Ward identities. W
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Dirac traces) 
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Next, we consider the amplitude scalar-vector (SV) by takin    and 2   , we get 
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Now we consider the most complex and interesting 

case; the vector-vector (VV) amplitude. It is obtained 
from the general definition (65) ming 1 by assu   , 

2   . We get the the expression 

,k g t       

where we have adopted the definitions 

   2 1 22 ,VVt t k 
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and 
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function. In the definition (68) above s



  

. After taking the integration in these expressions 
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where we have defined the quantity  

24

                (69) 
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Note the presence in the above expression of poten-
tially ambiguous terms since the quantity  

1 2P k k   

is depen ces for arbitrary quantities as well as 
the presence of terms dependent on physical combination 
of the arbitrary intern  2 1p k k   which 
are not dependent on t or the routing of the 
internal lines momenta of the loop amplitude but are de-  

pendent on the arbitrary choice for the common scale. 

6.3. Three-Point Functions 

Now we consider the case of three-point functions. In 
this case the higher degree of divergence involved is the 
linear one. We will take three related amplitudes in order 
to exploit the potentiality of the proposed systematization. 
From the definition (65) we get first the expression  
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e take in all vertice scalar operators  1 2 3 1̂So if w        we get  
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By using the developments made in solving the integrals (46) and (49) we get the expression 
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Finally, let us consider the case of triple vector operators. First we get 
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6.4. The Four-Vector Four-Point Function 
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After performing the Dirac traces we identify the following structure 
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After performing the Dirac traces, the four-point amplitudes with vector and pseudoscalar vertices acquire the form  
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Below we identify the values of is  according to the corresponding amplitude  
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Some algebraic effort is necessary in order to obtain an expression for the above amplitudes. This is a tedious task, 
although easy, because the number of external momenta and Lorentz indexes involved produce very large mathematical 
expressions. Consider first the t = 2j = 3  and = 4l . From the results (53), (54), (56), (59) 
and, (62) we get 

ensor (74) for = 1i , , k
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J J Jwhere J ,  ,   and   are given by in Equations (55), (57), (60) and (63). Replacing the above result 
(with appropri 1ate values for the symbols  and 2 ) in Equation (74) gives  
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For the amplitudes listed in the table above we may write 
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Above, the following compact definitions were also 
used 
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is point, fulfilled 
oposed systematization 

mplitudes. However, 

another important aspect involved in perturbative calcu-
lations can be also considered which, within the context 
of our procedure, became very simple and transparent, 
that is the verification of relations among the Green 
functions and, consequently, of the associated Ward 
identities. We perform such task in the next section.  

7. Relations among Green Functions 

In the preceding sections we have described in details a 
procedure to handle the divergences typical of the per-
turbative calculations in QFT. The procedure is very 
general since all the choices involved have been pre-
served; the internal momenta were taken as arbitrary so 
that all possible choices can be made in the final results, 
the choice of regularization is avoided since all the steps 
performed are allowed in the context of all reasonable 
regularization prescription and an arbitrary scale was 
adopted in the separation of terms having different de-
grees of divergent and finite ones. We can ask ourselves 
at this point about the consistency of the per rmed op-
erations as usual in such type of manipulations and cal-
culations. In order to verify this aspect we can make a 
minimal test of consistency by verifying if the relations 
among the calculated Green functions remain preserved 
after the realized operations. The required consistency is 
to verify such identities without assuming particular  

fo

Our main purpose has been, at th
which is to show how the pr
works in the calculation of physical a
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choices for the involved arbitrariness, which means that 
the relations need to be satisfied in the presence of poten- 
tially ambiguous and symmetry violating terms. Essen-
tially, what we want to know is if the performed opera-
tions have preserved the property of linearity of the inte-
gration which seems to be a trivial task but, given the 
mathematical indefinitions involved, it is not. Only if the 
operations realized until this point possess the desired 
consistency we can give an additional step which is to 
verify if the potentially ambiguous and symmetry violat-
ing terms can be eliminated in a consistent way. Let us 
consider this aspect in detail now. 

We start by considering the VV two-point function 
whose calculation we have considered in detail in the Sec. 
(VI). In order to state a relation with other calculated 
amplitudes it is enough to note the identity bellow 
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After taking the Dirac traces in both sides we can 
identify that  

  2 1 ,VSm m t 
     (77) 

The above relation means that it is expected that if we 
integrate both sides in the loop momentum k the corre-
sponding relation among the loop amplitudes remain 
valid, i.e., 

 2 1 .VSm m T 
  (78) 

This means that by calculating all the involved ampli-
tudes in a separated way and after this contracting the VV 
amplitude the reorganization of the terms must allow the 
identification of the amplitudes in the specific combina-
tion of the right hand side. This type of identity is highly 

ontrivial to be preserved in traditional regularization 
r

 2 1 ,SSm m T 
   (79) 

which implies that 

   

     

     

 

2 1 2 1

2 1 1 1 2 2

2 1 1 1 2 2

2

2 1

, ,

, ,

.

VV

V V

S S

SS

k k k k T

k k T k m T k m

m m T k m T k m

m m T

 



 

 

    

    

 

      (80) 

We can note from the above expressions that all am-
plitudes of the perturbative calculations are related 
among them. In particular, the above considered relations 
involve the amplitudes: VV, VS, SS, PP, V and, S. 

For the calculated three-point function structures we 
can verify the relations  
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  (83) 

Now we can note that all the three, two and one-point 
calculated functions are in fact related among them 
through precise relations. In the above considered rela-
tions the following structures are involved: VVV, VVS, 
VSS, VV, VS and, SS plus the ones which appear as sub-
structures: VPP, SPP, PP and S. 

If we consider four-point functions, the same will oc-
cur. To evaluate the VVVV function all the above men-
tioned structures will appear as well as other four-point 
structures. This is a very crucial point. We can start from 
a finite amplitude and by successive contractions we can 
relate such amplitude with the cubically divergent one- 
point function. The challenge is then to evaluate all the 
perturbative amplitudes within a certain prescription 
maintaining all the relations among them preserved in a 
simultaneous way. Within the context of our procedure 
we will show that all the relations presented above can be 
verified in the presence of all remaining arbitrariness. We 
emphasize that such type of verifications are very non-
trivial for all traditional techniques. 

Let us start by the property (78). Taking the expression 
for the VV amplitude, Equation ( , and contracting 
with 2 1k k p
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p escriptions. A similar procedure allows us to state that 
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69)

  we get 
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By comparing to the resu ) for the VS mplitude 
we can identify 
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In order to complete the verification of the property 
(78), the last term in the above equation must be identi- 
fied with the one-point vector functions. It is simple to 
note that if an   is added and subtracted in the ex- 
pression for A , a reorganization allows us to identify  

   V Vp A T k T k   

    .
 

2 2 2
2 1 2 12 m m k k
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So, the relation (78) is obtained preserved by our 
calculation. 

The relation (80) is, on the other hand, emblematic to 
explain many aspects of our procedure and we will make 
the discussion in details. First we note that by contracting 
the expression (67) for the VS  amplitude it is obtained 
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 (84) 

We know that this result needs to be related to the SS 
amplitude as well as with S amplitudes having different 
masses. This means that quadratic divergences need to 
appear from the right hand side in a non-cancelling way. 
At first sight it seems that it is not possible to satisfy the 
relation. However, we note that on the left hand side of 
the identity (84) we have the function Z1 and in the right 
hand side only Z0 must appear. Let us consider the reduc-
tion of Z1 to Z0 through the property (13) in order to 
adequate the right hand side of the Equation (84). The 
referred reduction is the property (13) which allows us to 
write 
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Now consider the result obtained for the 1I  integral 
at the value 0,ik   which is nothing more than a scale 
property of the basic quadratic divergent object  

 2
quadI , 

       

 

2 2 2 2 2
quad 1 quad 1 log

2
2 2 2
1 12 2

1

ln .
4π

I m I m I

i
m m

m

  



     
  

    
   

    (86) 

We get then 
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Now note that we can relate the reduction of the finite 
functions to
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Substituting in the expression for VS amplitude we 
will identify the relation (79) among the Green f
VS, SS, and, S. Note that the precise connection 
the finite functions and the basic divergent object allows 

 exact way the considered relation 
ions. It is not necessary to emphasize 

that the same procedure is nontrivial within the context 
of traditional regularization methods. 

Let us now consider the relations among the three- 
point functions calculated in the previous sect
tracting the VVV amplitude, calculated in 
with q

       
  

   
   
  

   
   

 

unctions 
between 

us to verify in an
among Green funct

ion. Con-
last section, 

  and using the properties (23), (24), (25) and 
(29) in order to eliminate the nm  functions having 

3n m   in favor of those having 2n m   we get  
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If we consider the results for th plitudes VV  and 

SVV , Equations (69) and (71)  to note that 
the expression above may be i d as being the 
relation (81). It is not difficult to verify the relations (82) 
and (83) by performing the same sequence of steps. 

The procedure used above can also be adopted to state 
analogous constraints to the four-point Green function. 
As an example of such constraint we have  
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e am

, it is now easy
dentifie        

    

 

In order to show that the calculated four-point ampli-
tude VVVV satisfies this relation, at first we contract Eq-
uation (73) with  4 1k k

  and eliminate the ijk  
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having i + j + k = 1 in favor of those having i + j + k = 0. 
The next step is to use the properties (34)-(43) in order to 
eliminate the ijk  and ijk  functions having i + j + k = 

 favo hose having i + j + k = 3 and so on. The 
latio easy but involves a lot of algebra, therefore 

we will no w it explicitly. All the required ingredi- 
have  given in the preceding sections. 

8. Ambiguities and Symmetry relations 

e Sect 6 we have evaluated, within the systema- 
on p ed, Green’s functions which are typical of 
erturb tive calculations. In particular, all the con- 
d am udes appear in the context of Standard 
.  the evaluated Green’s functions, having 

ee of rgences higher than the logarithmic one, it 
is possible t note the presence of terms where the de- 

nce he internal momenta appear as arbitrary 
tities (th  summations of them). This is expected 

ce a sh  in the integrating momentum generates sur- 
faces terms which implies that different choices for the 

ernal lines momenta lead to different am- 
udes. possible dependence on the choices for the 
ls of t nternal lines momenta characterizes what 
eno e as ambiguities. This situation is not ac- 

in this case, the power of predict- 
of th ry is destroyed. In addition, fundamental 

tries like the space-time homogeneity 
are not prese ved in the perturbative calculations. It will 

 su ng to find global and local gauge symme-
tries as well as internal symmetries violated in physical 

itudes ving the space-time homogeneity broken. 
ere is on one possibility to save such type of calcula- 

o inate the ambiguous terms in a consistent 
niv  way. Within the context of the adopted 

gy t biguous terms are automatically separated 
d preserv so that it is easy to identify them.  
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In the case of three-point functions we found 
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In all the above listed ambiguous terms it can be noted 
that they invariably appear as multiplying the objects , 
  and, □ . All these terms present simultaneously 
scale ambiguities because such objects are dependent on 

 . This is due to the fa  

SST P   

 2 1T m     

the arbitrary mass scale ct that in
all amplitudes the obtained expression is independent of 
the parameter 2  if the terms containing the objects ,  
  and, □  are absent. This statement can be verified 
directly by differentiating the expression or changing the 
scale to another one, like for example one of the involved 
fermionic masses, through the scale properties of the 
finite function and of the basic divergent objects 
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xpressions for 
the perturbative amplitudes which are nonambiguous 
relative to the choice for the internal lines momenta, but 
are ambiguous relative to the choice for the common 
scale for the finite and divergent parts. This aspect can be 
easily noted in the considered amplitudes. In the VV  
two-point function 
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In such examples the listed term
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s are independent of 
the choices for the internal momenta. They can be con-
verted in ambiguities through their evaluation in inter-
mediary steps within the context of traditional regulari-
zation techniques. Again we can note that all the poten-
tially scale ambiguous terms are combinations of the 

objects    and, □ . 
Let us now consider the symmetry relations. It is easy 

to see that the situation is completely similar to the ques-
tion of ambiguities considered above. There are two 
types of impositions coming from the symmetries for the 
amplitudes. The general ones, coming from Lorentz and 
CPT, present in the Furry’s theorem, whose implication
states that all amplitude which has an odd number of 
external vectors and only one species of fermion at the 
internal lines must vanish identically, and that coming 
from the divergence of the fermionic vector current 
which states a precise relation with the corresponding 
scalar current. The first of the impositions mentioned 
above implies that the amplitude  1

VT k  must be iden-
tically zero, which means that it is required  
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Due to the same reasons, the theorem states that the 
amplitude for the process V VV , which is the VVV  
amplitude symmetrized in the final state, 

   1 2 3 1 2 3, , , , ,V VV VVV VVVT T k k k T l l l  
  

 

must vanish for the case of equal masses. The arbitrary 
internal momenta for the second channel obey, 2 1q l l   
and 3 1p l l . This means that it is required  
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□

 

Concerning the symmetry relations coming from the 
proportionality of the divergence of the fermionic vector 
current with the scalar current, we note that in the VV  
two-point function we get  
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of the ob  ,   
and, □ . In fact this result requir e as the Fur-
ry’s theorem, a vanishing value fo tor one point 
function. Following this line of reasoning we note that 
the SVV amplitude possesses a symmetry violating term 
which is independent of the choice for the internal lines 
m enta 

es the sam
r the vec

om
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The same occurs for the VV VV  process where 
the violating term is proporcional to  2



2

□  with a 
nonanbiguous coefficient. 

In view of the above comments and others omitted, it 
is very simple to conclude that all these unwanted prob-
lems can be removed from the amplitudes in a consistent 
way. There are simple but powerful arguments. If we 
consider that a perturbative solution for the amplitudes of 
a QFT must be compatible with the space-time homoge-
neity or it does not make any sense, if we cannot admit 
that the scale independence can be broken by any method 
or

tion

nm gra

 that 

we denominated them as Consistency Relations. Such 
conditions can be easily understood. In fact the definition 
of the objects ,    and, □  has been conveniently 
made in order to get clean and sound clarifications. First 
note that  
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so that we can identify  

 

 strategy adopted to give some meaning for the pertur-
bative amplitudes and if we also cannot admit that an 
acceptable interpretation for the perturbative solu  
breaks symmetry relations of the underlying theory, then 
it becomes necessary to impose a set of properties for the 
divergent Fey an inte ls in order to recover these 
symmetries, due to the fact that the perturbative series is 
not automatically translational and scale invariant and 
symmetry preserving. Fortunately all these problems can 
be solved simultaneously. It is enough to impose

0.    □  

We can look at these conditions as a set of properties 
required to a regularization method in order to produce 
consistent results or we can think that this is the set of 
properties required to the perturbative series in order to 
get the space-time homogeneity maintained in the calcu-
lated expressions (among others). Due to these reasons 
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The factor 4 in the last condition is justified by the 
symmetrization in the Lorentz indexes. In order to give 
symmetrical role to all indexes four terms need to be 
introduced in the left hand side given the factor 24 to the 
fourlinear in loop momentum integral. Frequently it is 
convenient to write such integral in symmetrized form. 
We adopted the definition of the object □  in a non-
simmetrized way only to reduce the mathematical ex-
pressions. Note that through the Gauss theorem these 
quantities are identified as surfaces terms. It becomes 
clear now that if these conditions are not imposed the 
perturbative calculations simply does not make any sense. 
It is on the other hand simple to verify that these condi-
tions are satisfied in the presence of any distribution. 
W
and gauge symmetries are violated as well as the ampli-
tudes may be ambiguous quantities. T prescription is 
universal since in other dimensions as well as in theories 
or models where higher degree of divergences are pre-
sent analogous conditions can be identified. This inter-
pretation of the perturbative calculations provides us the 
required consistency. The calculated amplitudes are am-
biguities free and symmetry preserving.  

ithout these conditions being fulfilled space-time, local 

he 
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If one agrees with the arguments put above then the 
adoption of a regularization become completely unnec-
essary for any purposes in the perturbative calculations. 
All the required manipulations and calculations, inclu -
ing the renormalization, can be performed, following o r 
strategy, without any mention to the word regularization. 
And, which is better, the results are so consistent as de-
sirable and no restrictions of applicability exist. 

9. Generalizations of the Finite Functions 
and Their Relationship 

Through the proposed method to manipulate and calcu-
late divergent integrals, in the above section we have 
been learning how to systematize the finite parts of the 
one, two, three, and four-point integr which are pre-
sent in the relevant amplitudes belonging to fundamental 
theories. It is not hard to see that this systematization 
could be generalized to amplitudes with an arbitrary 
number of points. In this section we discuss some aspects 
of this generalization. We begin by defining the et of 
functions 

where 1,2,3,k   , and  
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  representing a Kronecker delta symb l. All fi-
nite parts of the one-loop Feynman integrals with an ar-
bitrary number of points, handled by the proposed ap-
proach, can be systematized through this set of functions. 
We recognize that Equation (93) is the generalization of 
definitions (12), (16) and (33) and Equation (94 s the 
generalization of Equations (15), (32) and (31). 

In the preceding sections we have systematically eva-
luated the one, two, three, and four-point vector ampli-
tudes and verified their Ward identities. Within our ap-
proach, the verification of the Ward identities is greatly 
simplified by using a set of identities characteris-  

tic  n  
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1, , ki i  , like those given by Equations (17)-(29). In 

order to obtain such identities for an arbitrary number of 
points first we note that 
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xThe first term is a total derivativ . So, performing the integral over 1x , we write the above expression as  
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Finally, we get a recurrence relation  
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with the j-esimo term given by  

 1 1 1;j j j jb b p p m m     and 1 ji i . If, in a par- 
ticular kinematical situation, the matrix A  
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number of mathematical structures saving, in 
this way, considerable computational time. 

10. Conclusions 

In the present work we considered general aspects in-
volved in the calculations of perturbative ampli
QFT’s. A very general procedure is presented for this 
purpose. The work can be considered as an extension of a 
previous one where only one species of fermion has been 
considered [2]. In addition, the calculations in the present 
contribution have been done by adopting an arb
scale parameter putting the calculations in the most gen-
eral way. All the arbitrariness involved in the calcula-
tions were preserved in intermediary steps. The adoption 

oided, the internal momenta are 
assumed as arbitrary and the common scale for the finite 
and divergent parts was taken as arbitrary t
integrals were not really evaluated. Only 
properties of such quantities were used. This became 
possible through a convenient interpretation of the 
Feynman rules. The perturbative amplitudes
for one value of the loop (unrestricted) momentum are 
not integrated before a convenient representation for the 
propagators is assumed. When the integration is taken all 
the dependence on the internal arbitrary momen
sent in finite integrals. In the divergent ones no physical 
quantity is present. Only the arbitrary scale appears there. 

Th

t 

1 1, , 1, ,
1

1
,

detl l l

k
n

i i i lj j
j
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A

where ij  is the cofactor of ij i ja p p  . By recursive 
use of the above relation it is possible to reduce all 
functions  

1 , , k

n
i i   to functions with 1 2 0ki i i    . 

This type of reduction is useful, for example, in 
applications whe e w  are interested in numerical results 
because within this procedure we have to manipulate 
only a low 

tudes of 

itrary 

of a regularization was av

oo. Divergent 
very general 

 after written 

ta is pre-

e divergent parts are written as a combination of stan-
dard mathematical objects which are never really inte-
grated and the finite parts are written, after the integra-
tion is performed, in terms of finite structure functions. 
So, two very general types of systematization are pro-
posed; 

1) Divergent parts. The divergent conten of one loop 
amplitudes perturbative amplitudes belonging to funda-
mental theories can be written as a combination of five  

objects;  2
logI  ,  2

quadI  ,  2
 □ ,  2

   

and  2
  . 

2) Finite parts. The finite content can be written as a 
combination of only three functions  2 2

0 ;Z p m , 
 00 ,p q  and  000 , ,p q r  for amplitudes having two, 

three and four internal propagators. 
All self energies, decays and elastic scattering of two 

fields can be calculated by using the results presented 
here as well as their symmetry relations can be verified. 
The results written in terms of the systematization above 
can be used in the context of regularizations since all the 
operations performed are valid in the presence of any 
reasonable regularization distribution. All we need to 
evaluate is the standard divergent objects. 

As a last comment we argue that if we want to give 
some meaning to the perturbative calculations we have to 
impose that the space-time homogeneity and the scale 
independence need to be recovered. Otherwise, the am-
plitudes become completely arbitrary quantities as well 
as local and gauge symmetries may be violated (invaria-
bly by the ambiguous terms). If we agree with this argu-

 is 
□ , 

ment, our procedure makes this job easy. All we need
to impose that the conveniently defined objects 

  and   become identically vanishing. This as-
sumption can be viewed as completely reasonable since 
these objects can be identified as surfaces terms which 
are really vanishing quantities in the presence of any dis-
tribution. The same will occur by assuming the analytic 
continuation of the integrals to a continuum and complex 
dimension which is the ingredient of the dimensional 
regularization. So, in any consistent interpretation of the 
perturbative amplitudes only the basic divergences 

 2
logI   and  2

quadI   will remain in a calculated 
divergent amplitude. They need not to be calculated since 
they will be absorbed in the renormalization of physical 
parameters. The calculation of beta functions can be done 
by using the scale properties of such objects. 

All these comments allow us to conclude that within
the context of our strategy the amplitudes are automati-
cally ambiguities free and symmetry preserving and no 
regularization method needs to be used for any purp
The strategy, in addition, is universal since it can be ap-
plied to any theory or model, renormalizable or not, and 
formulated in odd and even space-time dimensions in an 

 

ose. 

Copyright © 2012 SciRes.                                                                                 JMP 



O. A. BATTISTEL, G. DALLABONA 1448 

absolutely identical way. And, which is still better, the 
results are as consistent as desirable. Investigatio
volving higher space-time dimensions (odd and even) as 
well as nonrenormalizable theories in four dimensions 
are presently under way and the obtained results are in 
accordance with our best expectations. 

In addition, other authors have been made investiga-
tions by using the procedure adopted in the present work. 
In particular in [31] the authors explored some very in-
teresting aspects of the systematization proposed in [2] 
concluding that there are important advantages relative to 
the traditional ones. 
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