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ABSTRACT 

A linear Hamiltonian in spatial derivative that satisfies Klein-Gordon equation was used starting from energy momen-

tum relation for free particle was solved in agreement with the matrices ˆ̂  and   bearing in mind their suitability in 

terms of anticommutation relations in parallel with the definition of algebraic matrices whose hermicity is fulfilled by 
†ˆ ˆ ˆi

†ˆ ˆ
i    and    and in turn linked up to explicit representation of the Dirac matrices. The wave packets of 

plane Dirac wave obtained as a superposition of plane wave yielding a localized wave function was normalized consid-
ering only positive energy of plane wave in which the expectation value with respect to the wave packet resulted from 

 
2c p

 grv
E



 was found to agree with the Ehrenfest theorem in relation to Schrodinger theorem as it relates to true 

velocity of single particle. A comparison was made between the classical concept with Heisenberg representation from 
where the combined effect of the positive and negative energy components was considered. 
 
Keywords: Hamiltonian; Klein-Gordon Equation; Wave Function; Dirac Matrices Wave Packet; Heisenberg  
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1. Introduction 

The of the wave particle plays important role in under-
standing of the behavourial description of particle as re-
gards the electronic structure, energy spectrum and wave 
characteristics [1]. With regard to this, many researchers 
probe into this using classical approach which was of 
course found to be insufficient in giving complete de-
scription particle. However this is because relativistic 
effect which is of most important is in description of any 
physical system is excluded. Indeed relativistic effect 
plays a crucial role the description of electronic structure 
of not only small particle but also heavy particles [1]. 
Sequel to the evolution of Dirac theory that led to for-
mulation Dirac equation, Dirac’s relativistic frame work 
where one electron spinorial solution is a two vector 
whose component are wave function has been used but 
was found incomplete in giving description of particle 
[2-4]. A survey of the current available analytical solu-
tion using relativistic one electron atoms has been carried 
out.It has been made that reasonable description can only 
be given by making use of quantum electrodynamics [5]. 

In this work we intend to analyze the wave character-

istics using relativistic approach by bringing together 
momentum relation, vectorial relation and Dirac wave in 
conjunction with Heisenberg representation observe in a 
real sense the feasibility of existence of single particle. 

2. Analytical Procedures 

The analytical procedure is taken in three aspects via 
momentum relation and matrices of free particle, Dirac 
wave and Heisenberg representation. 

2.1. Momentum Relation and Matrices of Free 
Particle 

We start with relativistic covariant wave equation of 
Schrodinger form is written as 


Ĥ

t
 


                 (1) 

for free particle [5,6]. 
This is a linear time derivative. Now we construct a 

Hamiltonian that is also linear in the spatial derivative 
that is of the form  
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ˆ
om c1 2 31 2

ˆ ˆ ˆ ˆf

c
H i

t i x y z

   
  

     

  
 

   
    

(2) 

Of which if every single component,   of the wave 
function has to satisfy Klein-Gordon equation [4,5,7] 
starting from energy momentum relation for free particle 

2 2 2 2 4
0E p c m c                (3) 

In terms of Equation (1), we write  
2

2 2
2t
 2 2 2 4

oc m c 
 

 


            (3) 

This can be iterated to give 

 
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
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


  



ˆ



 


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This expression has to agree with the following re-
quirements for the matrices   and ̂  to be suitable 
for our application. These are 

ˆ ˆi j ˆ ˆ 2j i ij      

ˆ ˆ ˆ 0i i   

2 2ˆˆi  

ˆ

            (6a) 

ˆ               (6b) 

               (6c) 

These anticommutation relations defines the algebraic 
matrices whose hermicity is fulfilled if  

†ˆ ˆi i i    and †ˆ ˆ 

1

 

with i  and . This implies that the eigen-
values have the values ±1. One of the special features 
exhibited by the eigenvalue is the fact that they are inde-
pendent of special representation and can be shown as 
diagonal representation of the form with the eigenvalues  

2ˆ 1  2ˆ 1 

NA A

1 0 0

0 1 0

0 0 1

 
 
 
 
 
 





   

ˆ

 

were 

ˆ ˆi                 (5) 

From the anticommutation relation of Equation (6) it is 
generalize that trace, i.e. the sum of the diagonal ele-
ments of the matrices of each   and ̂  has to be zero 
representation. 

i.e. 

ˆˆ ˆi  

ˆ ˆ ˆ ˆtr tr

                   (7) 

As  

A A 

ˆ ˆˆ ˆ ˆtr tr tri i i

                  (8) 

which invariably indicates that 

     

ˆtr 0i

             (9) 

Indicating that 

                  (10)  

This agrees with the practice that the trace of a matrix 
[8,9] is always equal to the sum of its eigenvalues. i.e. 

1

2

0 0

tr 0 0

N

A

A

A

 
 
 
 
 




  

1

1

ˆˆ ˆtr
N
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A u u 



 
1ˆ ˆtr triuu

             (11) 

 i
 

2 1 1K KKA A

             (12) 

where  

   

ˆ0
ˆ

ˆ 0
i

i

            (13) 

Since the explicit representation of the Dirac matrices 
are 





 

  
 

11 0ˆ
0 11


 

   

ˆi

               (14a) 

              (14b) 

  being Pauli’s matrices and 11 unit matrix With 

ˆˆi  and   can be written especially as shown below.  

1

0 0 0 1

0 0 1 0
ˆ

0 1 0 0

1 0 0 0



 
 
 
 
 
 

2

0 0 0

0 0 0
ˆ

0 0 0

0 0 0

i

i

i

i



 
 
 
 
 
 

3 :

0 0 1 0

0 0 0 1
ˆ

1 0 0 0

0 1 0 0



 
  
 
 

 
1 0 0 0

0 0 0 1ˆ
0 0 1 0

0 0 0 1



 
  
 
 

  

              (15) 

             (16) 

            (17) 

            (18) 
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2.2. Dirac Wave 

By considering only a free particle we set  

ˆ 0p                 (19)  

This makes Equation (2) to become  

2
0

ˆM C
t

   


            (20) 

of which we can write four solutions of wave function 
thus 

   2
0

1

i M C t

 

 
 1 0

exp
0

0


 
  
 
 
 

       (21) 

   2
0i M C t 

 2 1
exp

0

0


 
  
 
 
 

0 

       (22) 

   2
0i M C t 

 3 0
exp

1

0


 
  
 
 
 

0 

       (23) 

   2
0i M C t 

 

   

4 0
exp

0

1

   
 
 
 

0 
 

       (24) 

of which the first two correspond to positive energy val-
ue while the last two are negative energy values. In addi-
tion to this unique properties exhibited by Dirac equation, 
it also depicts covariance properties. This on the other 
hand explains that the solution appears to possess the 
correct behaviour in the non relativistic limit in agree-
ment with the considered the wave packet. The wave 
packets of plane Dirac waves are superpositions of plane 
wave yield localized wave functions in space and time 
since Dirac equation is a linear wave equation that 
marches a wave packet of a plane wave with positive 
energy [3,7]. They are of the form. 

     1
0 0 0

23
5 0d

, ,
i p p xM Cp

x t b p s u p s e
 

 


 ,b p s

 

1 32π sE 
 

(25) 

Here the amplitude  determines the admixture 

of the plane wave , iu p s e x h 

        3, , d 1x t t x     

 to the wave packet 

and the plus indicates that a superposition of only posi-
tive energy plane wave is considered. 

This is normalized as 

         (26) 

with this normalization [7], the expectation value with 
respect to the wave packet of positive energy is written is 
written as 

   
2 2

3d ,i i
i gr i

S

p c c p
J p b p s V

E E


 

    (27) 

Similarly the mean current of an arbitrary wave packet 
of plane wave of positive energy from non relativistic 
concept is equal to the expectation value the classical 
group velocity,   

2

gr

c p
V

E
                  (28) 

This corresponds to the Ehrenfest theorem on relation 
to Schrödinger theory and invariably agrees with the true  

velocity of single particle that constitutes. 2 ˆ pc p E  

and 
2 ˆ

p

c p

E
  for free solutions of the Dirac equation. This 

assertion agrees with the classical picture. 

2.3. Heisenberg Representation 

On the other hand, for waves with the same characteris-
tics [7,10,11], the result exhibits paradoxical nature as 
their velocity is directed against their momentum which 
explains the fact that those particles with negative energy 
apparently appears to behave as if they have a negative 
mass. Further clarification can be made using the equa-
tion of motion in the Heisenberg representation.  

ˆd 1
ˆˆ,

d f

x
x H c

t ih
   

 

         (29) 

This can be solved by comparing it with the classical 
equation of motion of a rapidly oscillating motion 

 ˆ
0 exp 2 f

f

cp
i iH t

H
         (30) 

Whose amplitude and frequency of these additional 

oscillations are of the other 02m c  and 
2

02m c


 re-  

spectively. This oscillating motion as mentioned already 
is known as Zitterbewegung which vanishes if wave 
packets with exclusively positive or negative energy are 
considered. This implies that interference effect resulting 
from the combined effect of the positive and negative 
energy components of a wave packet and invariably de-
monstrates that in real sense a single particle theory is 
not absolutely possible in practice but can only be ap-
proximately obtained if the associated wave packet is 
restricted to one energy range. The most interesting as-
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pect observed in this analysis is that the true velocity of 
single particle appears to constitute both the negative and 
positive terms of energy which brings about the idea that 
a particles with negative energy apparently tends to have 
negative mass as their velocity is directed against their 
momentum. 

General observation shows that the mean current of an 
arbitrary wave packet plane energy from non relativist 
concept agrees with the expectation value of the classical  

group velocity 
2

gr

c p
V

E

 
 

 
 which corresponds to the  

Ehrenfest theorem in relation to Schrodinger theory [3] 
further clarification during the analysis using Heisenberg 
representation brings about frequency of additional os-
cillations of the order 

02m c  and 
2

2
02m c


           (31) 

3. Discussion  

In this paper we have analytically studied the fundamen-
tal wave characteristics of free particle based on equation 
constructed from relativistically covariant wave equation 
of Schrodinger equation that satisfies Klein-Gordon equ-
ation. The expression for anticommutation relations that 
defined the algebraic matrices with special representation 
showing the diagonal matrices A, to AN in conjunction 
with the explicit representation of the Dirac matrices are 
seen in Equations (14a) and (14b) with their explicit val-
ue presented in Equations (15)-(18). The wave func- tion 
relating to wave packet of the plane wave associated with 
any particle being described using Dirac equation is pre-
sented in Equations (21)-(24) as wave packets. The 
packet explains the fact that Dirac waves are superposi-
tion plane waves and yields localized wave functions in 
space and time in which when considered with only posi-
tive energy of a particle is compactly written as in Equa-
tion (35) and normalized as in Equation (26). The nor-
malization enabled us to write the expectation value with 
respect to the wave packet as seen in Equation (27) is 
known as Zitterbewegung that vanishes if the wave 
packet associated exclusively to both positive and nega-

tive energy. This implies that Zitterbewegung is as a re-
sult of the combined effect of negative and positive en-
ergy components a situation that confirmed the fact that 
in a real sense of it, the idea of a single particle is feasi-
ble only when it is considered with restriction to one en-
ergy range. 
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