
World Journal of Nuclear Science and Technology, 2012, 2, 181-186 
http://dx.doi.org/10.4236/wjnst.2012.24028 Published Online October 2012 (http://www.SciRP.org/journal/wjnst) 

Reconstruction of the Neutron Flux in a Slab Reactor 

Adilson Costa da Silva*, Aquilino Senra Martinez, Alessandro da Cruz Gonçalves 
Nuclear Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 

Email: *asilva@con.ufrj.br 
 

Received September 4, 2012; revised October 6, 2012; accepted October 15, 2012 

ABSTRACT 

In this electronic article we use the one-dimensional multigroup neutron diffusion equation to reconstruct the neutron 
flux in a slab reactor from the nuclear parameters of the reactor, boundary and symmetry condition, initial flux and . 

The diffusion equation was solved analytically for one single homogeneous fuel region and for two regions considering 
fuel and reflector. To validate the method proposed, the results obtained in this article were compared using reference 
methods found in the literature. 
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1. Introduction 

In the analysis of the neutronic behaviour of a nuclear 
reactor, one of the most relevant parameters is the deter-
mining of the neutron flux in any region of the reactor 
core, as a precise assessment of this neutron flux will all- 
ow determining the spatial distribution of the reactor’s 
power, as well as other parameters of equal relevance for 
safe reactor operation such as reactor switching off mar-
gin and the value for the control rods [1]. 

Due to the need of precisely determining the neutron 
flux, some methods were created with this purpose, which 
take into consideration the geometry and composition of 
the reactor core. Amongst the many methods, we can point 
the calculation of the neutron flux from the multigroup 
diffusion equation through the finite difference method. 
This method is simple and of easy implementation, al- 
though it requires great computing effort for cases of 
practical interest, given that there is a need to use an ex- 
tremely fine mesh. 

With the aim of avoiding the large computing effort 
inherent to the finite difference method, several methods 
have come to the fore, called nodal methods, which allow 
the use of a coarse mesh (node); however, the use of th- 
ese methods provides only average flux values for a 
given region. This way, one needs to use reconstruction 
methods [2,3] to obtain the neutron flux at any point of 
the reactor core. 

There are many pin power reconstruction methods for 
few-group, some methods use polynomial expansions for 
representation of the intranodal flux distribution [3] and 
others new methods employs the analytical solution of 

Helmholtz equation satisfying a given set of boundary 
conditions. According [3] the analytical solution renders 
superior accuracy compared to polynomial based met- 
hod.  

Aimed at the need for new reconstruction methods that 
are fast and accurate [4,5], this work presents a method 
based on the analytical solution for the neutron flux from 
the solution of the neutron diffusion equation for two 
energy groups in one dimension, using boundary and 
symmetry conditions. 

2. Multigroup Neutron Diffusion Equation 

We have seen advances in recent decades in the devel-
opment of coarse-mesh nodal methods aimed at numeri-
cally solving the one-dimensional multigroup neutron 
diffusion equation. These methods calculate with great 
precision the eigenvalue and neutron flux in each node as 
seen in the comparison with some reference methods 
(usually fine-mesh calculations). Amongst them, we point 
the nodal expansion method (NEM) [6-8] that uses the 
continuity equation and Fick’s Law [9]. The neutron 
continuity equation and Fick’s Law in one dimension, 
two groups of energy and stationary state are expressed 
by the following equations, respectively: 
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     d

dg g gJ x D x x
x
          (2) 

By replacing Equation (2) in Equation (1) we have the 
neutron diffusion equation [1] expressed in terms of the 
neutron flux, such that, 

       

       
2 2

1 1

g g rg g

g
gg g fg g

g geff
g g

d
D x x x x

dx dx

x x x
k

d  


    

 


    
 

     x
   (3) 

where  is the diffusion coefficient for group g,  gD x
rg x


 is the macroscopic removal cross section, 

gg x  is the macroscopic scattering cross section from 
group g' to group g,  fg x  is the product of the avera- 
ge number of neutrons emitted by fission by the macro-
scopic fission cross section, g  is the fission spectrum, 

( )g x  is the neutron flux and  is the eigenvalue of 
the problem. 

effk

Due to the fact of the reactor to be homogeneous in the 
case of one single region (fuel) or homogeneous per part 
in the case of more than one region (fuel and reflector), 
these nuclear parameters are constant in each region, i.e.: 

     , ,g g rg rg gg ggD x D x x      

and  fg x  fg  . With this, Equation (3) it be-

comes: 
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We shall seek an analytical solution from Equation (4) 
for the following cases: Homogeneous slab reactor con- 
sisting only of fuel and a heterogeneous slab reactor con- 
sisting of fuel and reflector as we shall describe in the 
next sections. 

3. Analytical Solution for the Neutron  
Diffusion Equation for a Homogeneous  
Slab Reactor 

The multigroup neutron diffusion equation defined as a 
eigenvalue problem can be written in the matrix form as 
follows: 
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(5) 

where 1( )x and 2 ( )x  represent respectively the fast 

and thermal neutron flux. If we study the equation above 
it is possible to see that the equations both for the fast 
flux and for the thermal flux satisfy Helmholtz’s equa- 
tion, given by: 

   2 2 0; 1,2g gx B x g            (6) 

where  denotes any one of the two roots of the equa-
tion characteristic of the second-order equation in . 
By replacing Equation (6) in Equation (5), it results that: 
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For Equation (7) to be solved, it is enough that the de- 
terminant of the matrix is null, i.e., 
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from which it produces 

 2 12 21 2

1 2 1

1 2 2 211 2

1 2 1 2

1

1
0

fr r

eff

f r fr r

eff

B B
D D k D

D D k D D



 

  
    
 

      
   

 

    (8) 

Note that we have a second-degree equation for  
whose solution is given by: 
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Note that until now we only seek to find the roots of 
the characteristic equation. As we have not defined the 
type of solution and we know that the diffusion equation 
is a second-order differential equation, the types of solu- 
tion that satisfy this equation are many, although we will 
consider that this solution has an exponential behaviour 
for both fast and thermal flux. Thus, the general solution 
for the thermal flux is given by: 

  1 1 2
2 1 2 3 4

2B x B x B x B xx C e C e C e C e          (9) 
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Due to the fact that the system provided by Equation 
(5) is coupled, the solution for the fast flux can be ob-
tained by replacing Equation (9) in (4) to , of which 
we have,  
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We will now seek some conditions that have to be ap- 
plied to Equation (9) or (10) in order to determine the 
coefficients of the equation. Note that the coefficients are 
the same for the fast and thermal flow, so one only needs 
to impose contour and symmetry conditions for only one 
of the equations. In the case of a slab reactor [9] (plain 
slab in direction x) of dimension a as shown in Figure 1, 
we can impose the following conditions:  
1) Null flux in the boundary the left, such that, 

 2 0ag   ; 

2) Null flux in the boundary the right, such that, 

 2 0ag  ; 

3) Maximum flux in the origin, i.e., 

 0g go  ; 

4) Null net current in the origin, .  0 0gJ 

From these conditions, we can build a system with 
four conditions and four unknowns such as, for example, 
for the thermal group the neutron flux coefficients can be 
determined, such that,   
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We will now analyze the case where the roots for B1 or 
B2 have negative values. We will first verify if  
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Figure 1. Slab reactor with an a dimension. 
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As we could see in the previous equation, the first term 
is always positive, as it is squared whereas the second 
term, as it only depends of nuclear parameters and of the 
eigenvalue, thus it is also positive. With this, we ensure 
that possible values for B1 and B2 are actual positive or 
negative values. 

In a more general way we can simplify these notations 
using hyperbolic or trigonometric functions with the pos-
sible values for Bn, with n = 1, 2, such that the neutron 
flux is: 
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where these functions are given by: 
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Note that for each case mentioned above, the equations 
for the fast and thermal flux will be different, that is, they 
may be expressed in terms of hyperbolic or trigonometric 
functions, or combinations of hyperbolic or trigonometric 
functions. This will depend of the nuclear parameters 
used in the calculations and of the eigenvalue. It is worth 
remembering that the coefficients depend of the values 
for the roots of Bn. However, the conditions of the prob-
lem do not change, i.e., a null flux in the boundary, null 
net current in the symmetry axis and constant initial flux. 

4. Analytical Solution of the Neutron 
Diffusion Equation for a Heterogeneous 
Slab Reactor 

The one-dimensional multigroup neutron diffusion equa-
tion for the fuel region was presented in the previous 
section, whose solution was given by Equations (9) and 
(10). For the reflector region this equation undergoes 
some modifications both in the nuclear parameters that 
will be different in relation to the nuclear parameters for 
the fuel, as well as for the form of the diffusion equation, 
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given that for this region there is no neutron fission. 
Therefore, this equation can be written as follows: 
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The solutions of the diffusion equation for the fast and 
thermal group for the reflector region are, respectively,  
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diffusion lengths for the fast and thermal groups. 
Equations (17) and (18) represent the solutions for the 

neutron flux in the reflector region, while Equations (9) 
and (10) represent the solutions for the neutron flux in 
the fuel region. These regions are shown in Figure 2. 

As we already have the solutions for the flux in the 
two regions of the reactor, we will now seek to find 
which condition we should impose to the flux in order to 
determine the coefficients for Equations (9), (10), (17) 
and (18). As the coefficients for Equation (17) are pre-
sent in Equation (18) and the coefficients for Equations 
(9) and (10) are identical, we will apply the conditions 
only for thermal flux in the two regions, fuel and reflec-
tor, such that 

1) Continuity of flux in the interface between regions 
to the left, such that, 

   2 22 2c ra a    ; 

2) Continuity of flux in the interface between regions 
to the right, such that, 

   2 22 2c ra a  ; 

3) Continuity of current in the interface between re-
gions to the left, such that, 

   2 22 2c rJ a J a   ; 

 

 

Figure 2. Slab reactor with two regions of dimension a + 2b. 

4) Continuity of current in the interface between re-
gions to the right, such that, 

   2 22 2c rJ a J a ; 

5) Null flux in the contour to the left, such that, 

 2 2 0r a b    ; 

6) Null flux in the contour to the right, such that, 

 2 2 0r a b   ; 

7) Maximum flux in the origin, i.e., 

 2 20c oc  ; 

8) Null net current in the origin 

 2 0 0cJ  . 

Subscripts c and r represent respectively, the fuel and 
reflector regions. 

Note that, due to the fact that the equations have eight 
coefficients to be determined, it became necessary to im- 
pose eight conditions in order to determine these coeffi- 
cients as mentioned earlier. 

5. Results 

This section presents the results obtained in the analytical 
solution of the neutron diffusion equation and compares 
the results obtained with the nodal expansion method 
(NEM) [1] and with the finite differences method (FDM) 
[10]. Table 1 shows the nuclear parameters used in the 
calculation of a homogeneous slab reactor of a = 100 cm 
dimension and eigenvalue  obtained 

by the finite difference method.     
0.7586362effk 

Figures 3 and 4 show the results obtained for fast and 
thermal flux, respectively, comparing the analytical solu-
tion (Analytic) with the nodal expansion method (NEM) 
and finite difference method (FDM). 

We can see that the results are quite satisfactory for 
both fast and thermal fluxes. The only input data used in 
the analytical solution from the numerical results was: 
eigenvalue  and initial flux effk go . With this data we 

were able to reconstruct the entire neutron flux point-by- 
point in the homogeneous reactor. 

We will now present the results obtained by the ana-
lytical solution for a slab reactor with two distinct regi- 
ons, i.e., fuel and reflector. The nuclear parameters used 
in this calculation are shown in Table 2. 
 
Table 1. Nuclear parameters for a homogeneous slab re- 
actor. 

g rg  fg  Dg gg  

1 0.02935 0.000242 1.4380 0.00000 

2 0.10490 0.155618 0.3976 0.01563 
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Figure 3. Comparison of fast neutron flux. 
 

 

Figure 4. Comparison of thermal neutron flux. 
 
Table 2. Nuclear parameters for heterogeneous slab re- 
actor. 

Type g rg  fg  Dg gg  

1a 1 0.02935 0.000242 1.4380 0.00000 

 2 0.10490 0.155618 0.3976 0.01563 

2b 1 0.035411 0.000000 1.871420 0.00000 

 2 0.031579 0.000000 0.283409 0.034340 

a—Fuel, b—Reflector. 
 

We used the following dimensions in this calculation: 
a = 30 cm (fuel region) and b = 20 cm (reflector region). 
The eigenvalue obtained by the finite difference method 
is . Figures 5 and 6 show the results 
obtained for fast and thermal flux, respectively, compar-
ing the analytical solution (Analytic) with the numerical 
methods of finite difference (FDM) and the nodal expan-
sion method (NEM). 

0.7346988effk 

We can see that the results remained good for the two 
cases. This shows that when it is possible to obtain an 
analytical solution for a simplified geometry, the results 
obtained by the analytical solution are quite close to the  

 

Figure 5. Comparison of fast neutron flux for two regions. 
 

 

Figure 6. Comparison of thermal neutron flux for two re-
gions. 
 
numerical results. The information that the analytical 
solution needs to reconstruct the flux point-by-point that 
comes from the numerical method are: the eigenvalue keff 
that is an information intrinsic of the reactor due to its 
geometry and nuclear parameters and the initial flux 0g  
that is obtained by the numerical solution. 

6. Conclusions 

The objective of this work was to verify, when an ana-
lytical solution can be obtained, this solution can repro-
duce point-by-point the results of the numerical method, 
in this case, finite difference method (reference method). 
With this, some simplified cases were presented to com-
pare analytical results with numerical ones. External data 
from the numerical method were incorporated as input 
data for the analytical solution, that were eff  and the 
initial neutron flux. With such information, with the con-
ditions of boundary and symmetry of the problem and 
with the nuclear parameters, it was possible to recon-
struct the multigroup neutron flux in a slab reactor for the 

k
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case of a single region (fuel) and two regions (fuel and 
reflector) where in both cases the analytical solution 
produced very satisfactory results. 

Based on the conclusions presented, it is hoped that 
the methodology implemented in this article can be ex-
tended to bi-dimensional cases of greater practical inter-
est, as well as its use in the axial reconstruction [11] of 
the neutron flux in PWR reactors. 
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