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ABSTRACT 

In this paper it is shown how the benefit efficient 
patient list model of Ubøe and Lillestøl [1] can be 
used to infer strength of preferences from patient list 
data. It is proved that the model allows the cons- 
truction of unique sets of preferences replicating the 
observed allocations. To illustrate how this theory can 
be applied in practice, preferences are uncovered 
from a small data set, obtained from the Norwegian 
patient list system. 
 
Keywords: Patient Lists; Efficient Welfare; Statistical 
Distributions 
 
1. INTRODUCTION 

In the Norwegian patient list system in general practice 
the patients can be assigned to a general practitioner that 
agrees to have the main responsibility for his or hers 
patients. As there are limited numbers of doctors of 
specific types, e.g. gender, it may happen that a signi- 
ficant number of patients are assigned to doctors of the 
wrong type, i.e. a type of doctor that they really do not 
want. This gives rise to several interesting research 
questions, among them: How can we characterize assign- 
ments that conform to reasonable criteria for total bene- 
fits to the patient-doctor community, when patients are 
individually competing for the scarce resource? Which 
changes in allocation can be expected when the avail- 
ability of the scarce resource changes, e.g. by increased 
availability of female doctors? The latter is known to 
happen in many countries, and was precisely the 
question asked by the investigators on general practice 
and community medicine that posed the problem in the 
first place. 

In [1] Ubøe and Lillestøl suggested a new statistical 
framework for this context, enable to answer questions 
of this kind, based on the concept of benefit efficiency. 
The next research challenge was then to see if the model 
allowed inferences, i.e., to say something about the 

preference structure based on an observed allocation. 
This turned out to involve some delicate theoretical 
problems, among them non-uniqueness, and the purpose 
of this paper is to present our solution to these problems. 
As an illustration of the theory we will consider a special 
case, using patient list data from the Norwegian patient 
list system in general practice. These data report the 
registered allocation of male and female patients to male 
and female doctors. While this is mainly a theoretical 
paper, the paper also offers some guidelines for 
practitioners that want to apply this kind of theory to real 
world data. 

The theory of this paper follows from the idea of a 
benefit efficient allocation, which can be described as 
follows: Let A1, A2, …, AT denote the sets of actions that 
agents of type 1, 2, …, T can choose, let Ut: At R be 
the real number utilities of each choice, and let Q1, 
Q2, …, QT be a sequence of probability measures on A1, 
A2, …, AT. Then Q = Q1 × Q2 ×…× QT is called a benefit 
efficient probability measure if it satisfies the two 
conditions: 
 Larger aggregated utility, i.e. sum of utilities of all 
agents, of an allocation implies larger probability of that 
allocation. 
 As the number of agents of each type pass to 
infinity, the numbers of agents making each choice must 
satisfy a specified set of linear allocation constraints. 

Quite surprisingly, there are extremely few probability 
measures of this type. In fact when utilities and cons- 
traints are given, these measures form a one parameter 
family. In the inverse problem we consider in this paper, 
the parameter can be set to 1 without loss of generality. 
Then the resulting allocation will be as given by For- 
mula (1) in the theory section below, where we briefly 
recall the model construction in [1], and then show how 
we can obtain unique representations of preferences. To 
enhance readability, proofs and technical arguments are 
given in appendices. 

The Norwegian patient list system in general practice 
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is described in some detail in [1], and we refer to this 
paper for a review of the system. Note that our modeling 
framework extends beyond the Norwegian patient list 
system and it can be understood without any particular 
knowledge of that system. Note also that our model is 
completely specified by Formula (1), and no further 
knowledge of the model will be needed to understand 
the issues we address in this paper. 

In the application section we use our model to infer 
structure and strength of preferences from observed real 
world data. These data were collected from an official 
panel survey of Norwegian living conditions (Levekårs-
undersøkelsen 2003). 

We believe that our basic approach to this problem is 
novel. It is fundamentally different from the theory of 
revealed preferences in consumer theory, see e.g. [2], 
and is not in any way related to the extensive economic 
literature on the design of matching system in health 
care, see e.g. [3]. Hence we will not enter into a 
discussion of other models in this area with a different 
scope. 

2. METHODS 

The model in [1] can be described briefly as follows: 
Assume that there are S groups of patients, T types of 
doctors, and let Pts denote the number of patients in 
group s that has a doctor of type t, s = 1, 2, ... , S, t = 1, 
2, … , T. 
 Patients: We assume that there is a total of Es 
patients belonging to group s, s = 1, 2, ..., S. A patient 
belonging to group s is assumed to have a utility Uts of 
having a doctor of type t, t = 1, 2, …, T. It may some- 
times happen that a patient prefer to wait for a vacancy 
of a suitable doctor rather than being assigned to a 
doctor of a type that the patient dislikes. We let Pt(s+S) 
denote the number of patients of type s waiting for a 
doctor of type t (not being assigned to any doctor), and 
let Ut(s+S) denote the utility of these patients. 
 Doctors: Every doctor working within the system 
is assumed to have a certain list length, i.e., a maximum 
number of patients that he or she can serve. We assume 
that there are Dt doctors of type t, and that these doctors 
can serve a total of Lt patients, i.e., Lt is the sum of the 
list lengths of all doctors of type t. Some doctors may 
have vacancies, and we let Ut(2S + 1) denote the utility per 
vacancy incurred by a doctor of type t. 

Thus we have defined Pts and Uts for s = 1, 2, …, 2S + 
1, t = 1, 2, …, T, which can then be represented by Tx(2S 
+ 1)  matrices P and U. 

Utilities for vacancies and for being assigned to the 
wrong type of doctor may of course be negative, in 
which case we refer to these numbers as disutilities. 
Note that the word utility is used in a broad sense as a 

quantification of strength of preferences. Utilities are 
hence not necessarily utilities in the von Neumann-
Morgenstern sense. 

Clearly the (E1, …, ES) patients can be allocated to the 
(D1, …, DT) doctors in many different ways. The basic 
hypothesis in [1], however, is to assume that the system 
is benefit efficient in the sense that states with large 
aggregate utility (sum of the utility of all patients and 
doctors) are more probable than states with smaller total 
utility. If the system is benefit efficient with a large 
number of patients in every group, it is possible to prove, 
see [1], that the allocation will settle at a statistical 
equilibrium given by the following explicit formula: 
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See Appendix 3 on how to compute the balancing 
factors A1, A2, …, AT, B1, B2, …, BS. Note that these 
allocations must not be confused with the allocation with 
maximum total utility. In fact, the allocation with maxi- 
mum total utility can be obtained as special case if one 
multiplies the utilities in (1) with a constant and let that 
constant pass to infinity. 

The basic problem we want to address in this paper 
can be formulated as follows: Assume that the system is 
benefit efficient and that we observe 
 The total number of patients in each group, i.e. Es, s 
= 1, …, S. 
 The total number of doctors of each type, i.e. Dt, t 
= 1, …, T. 
 The total list length of doctors of each type, i.e. Lt, t 
= 1, …, T. 
 The final allocation of patients to doctors/waiting 
lists, i.e. Pts, s = 1, … , 2S + 1,  t = 1, … , T. 

To what extent do these observations reveal the 
strength of the preferences  

Uts, s = 1, …, 2S + 1, t = 1, …, T ? 

It is easy to observe that there are always an infinite 
number of utility matrices leading to the same final 
allocation. To obtain uniqueness we hence have to 
impose some additional restrictions on specific utilities 
and/or the relationships between them. Such restrictions 
are typically based on prior knowledge of the context 
and on known empirics, and modeling issues of this kind 
are discussed in detail in Section 3. In Theorem 2.1 
below, we single out one of the infinitely many repre- 
sentations, and refer to the representation in (2) as the 
canonical choice. This is useful for two main reasons: To 



J. Ubøe et al. / J. Biomedical Science and Engineering 3 (2010) 799-806              801 

Copyright © 2010 SciRes.                                                                  JBiSE 

get insight to the degrees of freedom in modeling, and to 
provide a basis for numerical calculations. 

2.1. Theorem 2.1 

Assume that an observed patient list distribution P can 
be replicated by a model that satisfies (1). Then we can 
find a unique utility matrix U that replicates P on the 
form (later referred to as (2)): 
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            (2) 

PROOF: See Appendix 1. 
The zeros in (2) can formally be interpreted as 

reference points and the corresponding groups as 
reference groups. Uniqueness is obtained when we 
specify how much more/less utility the other groups 
have in comparison to these reference groups. While the 
representation given by (2) has several favorable 
properties, results given on this form are quite hard to 
interpret. Hence it might be profitable to look for other 
representations offering more transparent interpretations. 
In general the position of the S + T reference groups can 
be chosen in several different ways, and an important 
modeling issue is to specify natural reference groups for 
the given context. 

We can also obtain alternative unique representations 
by assuming a utility structure with sufficient identities 
and/or symmetries. Nevertheless, it is convenient to use 
(2) as a canonical form, both for algorithmic program- 
ming and for resolving theoretical issues. One important 
issue is that of identification, i.e., recovering the para- 
meters of an assumed utility structure from its estab- 
lished canonical form. Equivalent structures are obtained 
by transformations of U that leave P invariant. These are: 
 Add/subtract a fixed T-dimensional column vec- 
tor a to all columns of U labeled s = 1, …, S and s = 
2S + 1 (i.e. except s = S + 1, …, 2S). 
 Add/subtract a fixed 2S + 1-dimensional row vector 
of form (b,b,0), with b S-dimensional, to all rows of U. 
 Add/subtract a constant c to column s = 2S + 1 of 
U and at the same time subtract/add the same constant 
from all columns s = S + 1, …, 2S. 

However, the easiest way to check identifiability may be 
to use the transform given by Formula (11) in Appendix 1 
and check the uniqueness of the parameter recovery. 

Note that the canonical form, as well as alternative 
models with the same number of (linear) restrictions, 
provides perfect fit to the available data. Hence any 

inference does not lend itself to the usual statistical 
standard error computations. 

3. RESULTS AND DISCUSSION 

The Norwegian patient list system was introduced in year 
2001 and is monitored by the authorities. Data on availa- 
bility of doctors are made readily available to the public, 
and some aggregated data on list composition and vacan- 
cies are also available for research purposes. Reliable data 
on doctor preference are not readily available. However, 
some questions on the combination (gender of respondent, 
gender of assigned doctor, preferred gender of doctor) 
were included the official panel survey of Norwegian liv- 
ing conditions (Levekårsundersøkelsen 2003). The ques- 
tions asked relevant to our study were: 

Q1: Do you want to relate to an assigned general 
practitioner, or do you want to use several general practi- 
tioners? 

Q2: Do you mind whether your assigned general 
practitioner is male or female? 

Q3: For those who answered “yes” on Q2: Do you 
want to have a male or a female assigned general practi- 
tioner, or do you want to use both a male and a female? 

Unfortunately the response rate to the preference 
questions were low, and more so for males than females. 
Hence this part of the paper must be considered more as 
an illustration of the potential offered by the theory, and 
not so much as an empirical survey in its own right. 

With the way of questioning above we were left with 
the problem of what to do with respondents who wanted 
both gender of doctors available. Since the system of a 
single assigned general practitioner was already firmly 
established with no opportunity of multiple assignments, 
we decided to split these relatively few respondents 
equally between the two preferences. The observed counts 
are shown in Table 1. 

In this case T = 2, with types denoted M (male doctor) 
and F (female doctor), and S = 4 with groups denoted 
mm, mf, fm and ff, where the first letter is the gender of 
the patient and the second letter is the preferred gender 
of doctor. 

A total of 3489 persons, 1736 men and 1753 women, 
were interviewed in the panel survey. As we can see 
from Table 1, the responses to the preference questions 
were very low, and more so for males than females. 
That partly explains the strong bias we observe in the 
data, e.g. 22% men, and we therefore scaled the data to 
adjust for this. Two issues are taken into account: First 

Table 1. Observed counts in each group-original data. 

Patient group mm mf fm ff 

M-doctor 78 2 32 77
F-doctor 5 4 2 200
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we have scaled the data so that there is an equal num- 
ber of respondents of each sex, second we have scaled 
the data to get the marginal frequencies in accordance 
with the approximately known distribution of doctors at 
the time, namely 70% male doctors and 30% female 
doctors. 

The results after these scalings are given in Table 2 
per 1000 respondents. 

3.1. Missing Data and Partial Information 

Officially there are no waiting lists, and data on this are 
hard to get. In Appendix 2, however, we prove that one 
can infer the correct preferences for the groups in Table 
2 even in the case where data on waiting lists and 
vacancies are missing. The crucial result, Theorem 5.4, 
states that these preferences are independent of the data 
for waiting lists and vacancies. 

A survey made by the Norwegian Ministry of Health 
and Care Services (2004) reports a total of 2 026 doctors 
with vacancies, the average number of vacancies being 
223. With the reported 4 563 751 patients served, this 
gives 99 vacancies per 1 000 patients. For illustrative 
purposes we round this in Table 3 to 100 patients per 
1000 served. We have no information on how this is 
distributed among the gender of doctors. If they are 
distributed evenly among the genders, the number will 
be as given in the parentheses in Table 3. Note that the 
number of patients who want a doctor of the same 
gender is higher for males than for females. 

3.2. Inferring Canonical Utilities from  
Observed Data 

The utility matrix corresponding to the types and 
groups in Table 3 is 

15 18 1911 14

25 28 2921 24

         
U U UU U

U U UU U

 
   

U     (3) 

where the row order is M, F and the column order is 
mm, mf, fm, ff, mm-w, mf-w, fm-w, ff-w, vacancy, 
where w indicates a waiting list state. According to 
Theorem 5.4 in Appendix 2, the missing data in Table 
3 can be chosen arbitrarily. Zero entries can be handled, 
but unless special care is taken such entries lead to 
serious numerical problems. For simplicity we have 
carried out all the calculations using the numbers 
reported in Table 4. We remark, however, that the 
numbers reported on waiting lists are fictitious but to 
some extent realistic. 

To find replicating utilities, we use the construction 
described in Proposition 5.3 in Appendix 1. The result is 
shown in Table 5. 

The numbers in parenthesis are based on the fictitious 
waiting list numbers. Hence the strength of preferences 
we can infer from the data in Table 2 is given by Table 6. 

If we take the canonical structure as our model, we 
may infer that that the patients with preference for the 
scarce gender (female doctors), have high utilities for 
correct matching compared with the reference groups, 
and that female patients wanting a male doctor while 
being assigned to a female doctor tend to have utilities 
slightly below the reference group zero. 

Be aware, however, that this inference may be due to 
technical artifacts linked to the implicit assumptions 
caused by a special choice of reference groups. The 
canonical choice corresponds to an assumption where 
male patients wanting a male doctor are in effect 
indifferent to the gender of their doctor, and that may 
very well be an artificial assumption. 

3.3. Modeling and Further Inference 

We will now look into the modeling aspects of alter- 
native representations. While the utilities reported in 
Table 5 are the unique utilities on the form (2) that 
replicates the counts in Table 4, there are several other 
utility matrices that offer perfect replication. Also, 
observations of this type are subject to considerable 
amounts of randomness. Perfect replication is hence 
relatively unimportant, and models offering less than 
perfect fit may be superior if they carry more transparent 
information. 

A main issue in this context is to quantify disutilities 
of incorrect patient/doctor matching. It is straight- 
forward to verify that the solution of (1) is fixed if we 
add the same constant to all utilities within the same 
group, i.e., our model is sensitive to utility differences 
but does not depend on the general level of utility. 
Without loss of generality we can hence assume that all 
utilities for correct patient/doctor matching are equal to 
zero. These assumptions lead us to consider utility 
matrices on the form: 

2 13 14 14 11 12

1 3 23 24 221 22

0 0
        

0 0

a b b ca b b

a a b b cb b

 
  
 

U   (4) 

Table 2. Adjusted data from Table 1. 

Patient group mm mf fm ff 

M-doctor 455 12 69 164 
F-doctor 19 14 2 265 
Total 474 26 71 429  

Table 3. Scaled counts in each group per 1000 patients served. 

Patient group
mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 455 12 69 164 - - - - (70)

F-doctor 19 14 2 265 - - - - (30)

Total 474 26 71 429 - - - - 100
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Table 4. Scaled counts with artificial waiting list data. 

Patient group mm mf fm ff mm-w mf-w fm-w ff-w vac

M-doctor 455 12 69 164 (8) (4) (9) (1) (70)
F-doctor 19 14 2 265 (2) (6) (4) (6) (30)

Total 474 26 71 429 (10) (10) (13) (7) 100

Table 5. Canonical utilities acording to (2) with Table 4 data. 

P mm Mf fm ff mm-w mf-w fm-w ff-w vac

M 0 0 0 0 (-7.7) (-4.7) (-5.7) (-8.7) 0 
F 0 3.3 -0.4 3.7 (-8.2) (-3.7) (-5.6) (-6.1) (2.3)

Table 6. Canonical utilities (2) inferred from Table 2. 

Patient group mm mf fm ff 
mm 
-w 

mf 
-w 

fm 
-w 

ff-w vac

M-doctor 0 0 0 0 - - - - 0 

F-doctor 0 3.33 -0.37 3.66 - - - - - 

 
Here a1, a2, a3, a4 are the disutilities of incorrect 
patient/doctor matching. The question is now if it is 
possible to find utility matrices of the form (4) replicating 
the counts in Table 4. The transformation defined by 
Formula (11) in Appendix 1 transforms any utility 
matrix U to an equivalent matrix U on the form (2). 
  Equivalent means that the two matrices produce 
exactly the same counts when they are used in (1). Using 
(11) on the matrix in (4) we obtain Formula (5). We see 
that we do not have identifiability, unless we add 
restrictions. Nevertheless it is possible to infer some 
non-trivial relationships. If the utility matrix in (5) 
equals the matrix specified in Table 5 or 6, we get the 
equations 

2 1

3 1

4 1

3.33

0.37

3.66

a a

a a

a a

  
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                (6) 

If we eliminate a1 from the first and the third equation 
and rearrange the terms, we see that: 

3 1

4 2

0.37

0.33

a a

a a

 
 

               (7) 

By assumption, the utilities for correct patient/ doctor 
matching are all equal to zero, and hence (by context) 
utilities for incorrect matching must all be negative (if 
they are not, agents must have been allocated to wrong 
groups). In (7) a1, a2 are the disutilities of incorrect 
matching for men, and a3, a4 are the disutilities of 
incorrect matching for women. From (7) we can draw 

the conclusion that disutilities of incorrect matching are 
larger for women. 

If we go one step further, we can introduce the addi- 
tional assumptions: a1 = a2 = am and a3 = a4 = af , i.e. that 
all men have the same disutility of incorrect matching, 
and all women have the same disutility of incorrect 
matching. In this case the system is overidentified, and 
perfect fit cannot be obtained. As mentioned above, 
perfect fit is relatively unimportant, however, and we 
can instead search for the best possible fit using utility 
matrices on the form 

13 14 111 12

23 24 221 22

0 0
        

0 0
m f

m f

a b b ca b b

a a b b cb b

 
  
 

U   (8) 

The best replication, in the sense that we get an 
approximate solution to (6), is then 

am = – 1.66   af = – 2.02             (9) 

In this case all the relevant parameters are identified 
by our assumptions, and we maintain the conclusion 
from (7), i.e., that disutilities of incorrect matching are 
larger for women. It is somewhat surprising that this 
rather crude approach produces the near perfect fit 
shown in Table 7 (to be compared with observations in 
Table 2).  

If we want to infer disutilities for vacancies or for 
being on waiting lists, we would have needed data for 
the allocation of these groups. Such data are missing.  
Nevertheless we will look into some general issues 
connected to these data. 

If we compare the lower right corners in Table 5 and 
Eq.5, we obtain the equation c2 – c1 – a1= (2.33). This 
equation could in principle offer an alternative line to 
identification. If we assume that the disutilities for 
vacancies are equal for both gender of doctors, i.e., that 
c1 = c2, we could infer the value a1 = (– 2.33). This 
value could then have been inserted in (6) to identify the 
remaining disutilities in (6).  

To proceed one step further, assume that all disutilities 
for being on waiting lists are equal, i.e., that bij = b for 
all i = 1,2 and j = 1, …, 4, and that the disutilities for 
vacancies are equal for both gender of doctors, i.e., that 
c1=c2=c. Then we could try to find the best possible fit 
using utility matrices on the form 

0 0
        

0 0
m f

m f

a a b b b b c

a a b b b b c

 
  
 

U      (10) 

When modeling the utility structure with sufficient 
assumptions to get excess degrees of freedom, we essen-        

        

       

        

13 1 14 1 411 1 12 1 2

2 1 3 1 4 1 23 1 24 1 4 2 1 121 1 22 1 2

0 0 0 00
         

0

b c b c ab c b c a
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tially have an estimation problem with an opportunity to 
judge the sampling error. It may then be helpful to bring 
the problem within the framework of conventional contin- 
gency table theory. In our application this may be done by 
lifting the 2 × 4-block of waiting list patients up as a 
second layer on top of the 2 × 4-block of assigned patients. 
On top of the block of vacancies we add a block of struc- 
tural zeros. Thus we have a three-way table of size 2 × 5 × 
2 with the correct marginal features. By taking logarithms 
in the representation (1), we get a linear expression for the 
log-counts. Our modeling assumptions then give rise to a 
log-linear model with a specific parametric structure to be 
estimated, and for which readily available and applicable 
general theory exists. In the model (10), we have 4 para- 
meters am, af, b and c, in addition to the 8 scaling cons- 
tants Ai, Di, i = 1, 2 and Bj, j = 1, 2, 3, 4. These parameters 
may then be estimated by maximum-likelihood principle, 
for which asymptotic theory is available and provides 
approximate standard errors of estimates, see, e.g. Bishop 
et al (1975). 

Remark. To estimate the parameters in (10) we would 
have needed to make use of the artificial data in Table 4. 
These data were not available and were included for 
illustration only. To some extent the method suggested 
for (10) is also relevant for the analysis of (8). As shown 
in Table 7, a simplistic approach already produces near 
perfect fit, and alternative/more refined methods would 
not change this. For these reasons we will not pursue this 
further. 

4. CONCLUSIONS 

In [1] Ubøe and Lillestøl proposed a new type of statis- 
tical model to study the allocation of groups of patients 
to different types of doctors according to given pre- 
ferences. This paper clarifies the inverse problem of how 
to identify preferences based a given allocation. 

As an illustration of the theory we have applied the 
model to patient list data from the Norwegian patient list 
system in general practice. However, this type of model 
can be used to infer preferences from much more refined 
systems than the one we have studied here. We only  

Table 7. Counts using am = – 1.66, af = – 2.02. 

Patient group mm mf fm ff 

M-doctor 455 12 69 163 

F-doctor 19 14 2 266 

Total 474 26 71 429 

made use of two types of doctors and four groups of 
patients, while the model allows arbitrary many types of 
doctors and arbitrary many groups of patients. 

The revealed preferences from the Norwegian patient 
list data turned out to be very reasonable, and mostly in 
accordance with prior beliefs. The main empirical find- 
ing that disutilities for incorrect matching are larger for 
women than for men appears to be a relatively robust 
conclusion that can be inferred from different model 
formulations. 

Despite the weakness of our data, they may give some 
backing for the health authorities, e.g., when asking 
questions like: What changes are likely to happen when 
the fraction of female doctors is on the rise? This may be 
answered by using the model in the forward manner, as 
described in [1], and in more detail in [5]. Revealed 
disutilities are then used as input, representing the 
current preference status. It would clearly be of interest 
to have periodic updates on patient allocations and 
preferences to investigate the stability of disutilities. 
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APPENDICES 

Appendix 1: Proof of Theorem 2.1 

Consider the following matrix transformation 

1 1 11

1( ) 1(2 1)

1 1(2 1) 11

1, ,

1, ,2

2 1

ts t s

ts ts s S S

ts t S

U U U U s S

U U U U s S S

U U U U s S
 



     
     
     

   (11) 

LEMMA 5.1 
Let  tsUU be given, let { }tsU U   be defined by 

(11) and let P  and P  denote the corresponding 

distributions of patients in (1) when we use U and U , 

respectively. Then P P  . 

PROOF 
Let A1, …, AT, B1, …, BS denote the balancing factors 
solving (1) when we use U, and define 

  
  

1 111 2 1

1 1 2 1

exp 1, ,

exp 1, ,

t t t S

s s s S

A UA

B

U U t T

B U U s S





    

   




   (12) 

If s = 1, …, S we get 

exp( ) exp( )t s ts t s tsAB UA U B            (13) 

If s = S + 1, …, 2S we get 

    
   

1 1 2 1

1 1 2 1

exp( ) exp

exp( )

exp( )

t s S ts t s S s S S

ts s S S

t s S ts

D D B U U

U U U

D B

B U

U

   

 



 

  



 

 (14) 

If s = 2S + 1 we get 

 

 

1 111 2 1

1 111 2 1

exp( ) exp( )

exp( )

exp( )

t ts t t S

ts t S

t ts

A U U U

U U U

A U

U

A U





  

   



 

  (15) 

which proves the lemma. 

PROPOSITION 5.2 

Let (1)U  and (2)U  denote two utility matrices, and 

assume that (1) (2)P P  in (1). Using the transforma- 

tion in (11) we have (1) (2)U U  . 

PROOF 
We have to prove that the balancing factors must be 
equal, and then it follows from (1) that all the utilities 
must be equal as well. It follows from Lemma 2.1 that 

(1) (2) P P , and observe from (11) that (1)
1(2 1)SU    

(2)
1(2 1) 0SU    by definition. Since 

(1) (1) (2) (2)
1 1(2 1) 1 1(2 1)exp( ) exp( )S SA U A U         (16) 

it follows that (1) (2)
1 1A A  . Now put t = 1 and s = 1, …, 

S, and observe from (11) that (1) (2)
1 1 0s sU U    by 

definition. Hence from (1) we get 
(1) (1) (1) (2) (2) (2)

1 s 1 1 s 1exp( ) exp( )s sA B U A B U         (17) 

Since (1) (2)
1 1A A   it follows that (1) (2)

s sB B   for all s 

= 1, …, S. We then put s = 1 and t = 1, …, T, and 
observe from (11) that (1) (2)

1 1 0t tU U    by definition. 

From (1) again we get 
(1) (1) (1) (2) (2) (2)

1 1 1 1exp( ) exp( )t t t tA B U B UA         (18) 

Since (1) (2)
1 1B B   it follows that (1) (2)

t tA A    for all 

t = 1, …, T. We have hence proved the proposition. 

Proof of Theorem 2.1 
By assumption we can find a matrix U that replicates P . 

According to Lemma 5.1 U  also replicates P . By 

construction U  is on the special format given by (2). 
Hence there exists a matrix on the form (2) that 
replicates P . Conversely if a matrix is of the form 
given by (2), it does not change when we apply the 
transformation given by (11). Uniqueness then follows 
from Proposition 5.2. 

PROPOSITION 5.3 
Let{ }obs

tsP  be the observed numbers on the patient lists. 

The replicating matrix in Theorem 2.1 can then be 
constructed as follows. Put: 

ln( ) 1, ,

ln( / ) 1, , 2

ln( ) 2 1

obs
ts

obs
ts ts t

obs
ts

P if s S

U P D if s S S

P if s S

  


   
  

     (19) 

If we put 1tA  , 1sB   in (1), it is easy to verify that 

the model in (1) replicates the observed pattern. The 
unique replicating matrix in Theorem 2.1 can then be 
found applying the transformation in (11) to the utilities 
in (19). 

Appendix 2: Inference under Partial  
Information 

Assume that we know the number of patients on the 
patient lists and the number of vacancies, but do not 
know how many patients that are waiting for a vacancy. 
Is it then possible to infer the strength of preferences of 
the patients on the patient lists? The answer is yes, and 
this can be demonstrated as follows: 

Assume that (0)
tsP  s = 1, …, S, t = 1, …, T is given, 

and let (1)
tsP  and (2)

tsP  be arbitrary numbers for s = S + 

1, …, 2S + 1, t = 1, …, T. Define the following aggre- 
gated quantities 
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(0) (0) (0) (0)

1 1
, ,

S T

t ts t tsS T
L P E P

 
    

2 1( ) ( ) ( ) ( )
1 1

, , 1,2
S Ti i i i

t ts s tsS S T
L P E P i



  
     

THEOREM 5.4 
For i = 1,2 put (0) ( ) (0) ( ),i i

t t t s s sL L L E E E    and find a 

unique matrix ( )iU  of the form (2) such that the system 
given by (1) replicates the numbers 

(0)

( )

1, , , 1, ,

1, , 2 1
ts

ts i
ts

P if s S t T
P

P if s S S

     
   

   (20) 

If (2) (1)
1(2 1) 1(2 1)/S SK P P   then the two utility matrices 

(1)U and
(2)U are connected through the formula (here 

referred to as Eq.21): 

 

 

 

 

(1)

2
(2) (1)

1

2
(1)

1

1, , , 1, ,

ln ln( ) 1, , 2 , 1, ,

ln ln( ) 2 1, 1, ,

ts

ts
ts ts

ts

ts
ts

ts

U s S t T

P
U U K s S S t T

P

P
U K s S t T

P



    


 
            
           

 
PROOF 

Define a new utility matrix U  by the right hand side of 

(21) and let (1)
tA , t = 1, …, T and (1)

sB  s = 1, …, S 

denote the balancing factors solving (1) using the 

replicating utilities (1)U  Now put (2) (1)
t tA A K   and 

(2)
sB  (1) /sB K .  

If s = 1, …, S, t = 1, …, T we get by (1) 
   

     

1 1(2) (2) (1)

1 1 1 (0)

exp( ) / ( )

exp( )

t s ts t s ts

t s ts ts

A B A K B Kexp U

A B U

U

P

  

 


 

If s = S + 1, …, 2S, t = 1, …, T we get by (1) 

   
 

 

(2)

2
1 1

1

(2)
(1) (2)

(1)

exp( )

/ ( ln ln( ))

ln( )

t s S ts

ts
t s S ts

ts

ts
ts ts

ts

D B

P
D B Kexp U K

P

P

U

P P K
P





 
    

 

  



 

If s = 2S + 1, t = 1, …, T we get by (1) 

 
 

 

2
1(2) (1)

1
exp( ) ( ln ln( ))ts

t ts t ts

ts

P
A U A Kexp U K

P

 
     

 
  

(2)
(1) (2)

(1)
ts

ts ts
ts

P
P P

P
    

The marginal constraints are automatically satisfied when 
the model replicates each entry in the matrix. Note that  

 
 

 
   
2

1 2 1(1) (1)
1(2 1) 1 1

1 2 1

 ln ln 0
S

S s ts

S

P
U U K U

P






 
     
 
 

  

and that if s = 1, …, S , then ts tsU U . This proves that 
U is of the form (2). Hence if we put (2)  U U  this 

matrix is the unique matrix on the form (2) that 
replicates the system in (20) when i = 2. 

As we can see from Theorem 6.1, the utilities  s 
= 1, …, S, t = 1, …, T do not depend on the values of 

tsP  for s = S + 1, …, 2S + 1, t = 1, …, T. Hence we 
have the following corollary: 

COROLLARY 
Assume that tsP  s = 1, …, S, t = 1,…,T are known, 
while data on tsP  for s = S + 1, …, 2S + 1, t = 1, …, T 
are missing. If we choose 0tsP   for s = S + 1,…, 2S 
+ 1, t = 1,…,T arbitrarily, we can still infer the correct 
values on tsU for s = 1, …, S, t = 1, …, T. 

Remark. From the bottom line in Formula (21) we see 
that we can also obtain strength of preferences for 
vacancies in cases where information on the number of 
patients waiting for vacancies is missing. Clearly, 
however, it is impossible to infer strength of preferences 
for groups of patients waiting for vacancies unless we 
have data for these groups. 

Appendix 3: Numerical Methods 

How to find a numerical solution to (1) when utilities U 
and marginal constraints L and E are given? We need to 
find numerical values for the S + T balancing factors 
A1, …, AT, B1, …, BS. This is done as follows: 

Initially we put all the balancing factors equal to 1. 
Then for t = 1, …, T we update At using 

  (2 1)1
exp

t
t S

s ts t Ss

L
A

B U P 




           (22) 

Once these are updated, then for s=1,…,S we update 
Bs using 

   ( )1
( exp exp )

s
s T

t ts t t s St

E
B

A U D U 




     (23) 

We then repeat the updates in (22) and (23) until the 
system settles. The algorithm is a variant of the Bregman 
balancing algorithm, see Bregman (1967). Like the stan- 
dard Bregman algorithm this algorithm is surprisingly 
efficient, and solves large systems in a very short time.  


