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ABSTRACT 

Trauma is the most common cause of death to young 
people and many of these deaths are preventable [1]. 
The prediction of trauma patients outcome was a 
difficult problem to investigate till present times. In 
this study, prediction models are built and their ca-
pabilities to accurately predict the mortality are as-
sessed. The analysis includes a comparison of data 
mining techniques using classification, clustering and 
association algorithms. Data were collected by Hel-
lenic Trauma and Emergency Surgery Society from 
30 Greek hospitals. Dataset contains records of 8544 
patients suffering from severe injuries collected from 
the year 2005 to 2006. Factors include patients' de-
mographic elements and several other variables reg-
istered from the time and place of accident until the 
hospital treatment and final outcome. Using this 
analysis the obtained results are compared in terms 
of sensitivity, specificity, positive predictive value and 
negative predictive value and the ROC curve depicts 
these methods performance. 
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1. INTRODUCTION 

One of the most common and rapidly growing causes 
of death and disability worldwide, regardless of each 
country’s development level, is traumatic injury [2]. 
Every day 16,000 people die [3] and trauma is the 
leading cause of death in the age of 44 years [4] and the 
fourth leading cause of all ages after cardiovascular, 
neoplastic, and respiratory diseases. In 1996 the Na-
tional Academy of Sciences and National Research 
Council published a report which characterized the 
injury as the “neglected disease of the modern world”. 

Due to technological advancements in healthcare 
domain, an enormous amount of data has been col-
lected over the last few years. This fact is followed by 
clinician’s willingness to explore different technologies 
and methodologies to analyze these data because their 
assessment may lead to trends and patterns within the 
data previously unknown which could significantly 
enhance their understanding of disease management. 
Interest in developing prognostic models for binary 
outcomes has emerged as an essential tool for evalua-
tion of medical treatment. Multiple models exist to as-
sist with prediction of the outcome of injured patients 
and many comparisons between different methods exist 
[4]. Traditionally, researchers have used the regression 
techniques which are not ideal in handling multidimen-
sional, complex biologic data stored in large databases 
and are time consuming. Therefore, due to the fact that 
there is no consensus as to an optimal method, it is in-
teresting to explore different methods. 

Data mining methods were developed to overcome 
these limitations. With these techniques, a priori know- 
ledge of variable associations is unnecessary. In con-
trast to an a priori approach to the selection of predictor 
variables, data mining allows the discovery of previ-
ously unknown variable relationships by exploring a 
wide range of possible predictor variables. The process 
of data mining is to find hidden patterns and associa-
tions in the data. The utility of data mining methods to 
derive medical prognostic models from retrospective 
data, can contribute to increased availability and vol-
ume of medical data gathered through systematic use of 
laboratory, clinical and hospital information systems. 
Also, it can lead to construction of interpretable prog-
nostic models, handling of noise and missing values, 
and discovery and incorporation of non-linear patterns 
and feature combinations. 

This paper investigates the utility of machine learn-
ing techniques to construct outcome prediction models 
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for severe trauma patients and examines measures that 
will improve the quality of treatment and therefore sur-
vivability of patient through optimal management. The 
study is organized as follows. Section 2 introduces the 
dataset that was used to investigate the plausibility of 
modeling the outcome. Statistical methods used for that 
purpose were classification, association and clustering 
algorithms. The results of data analysis, and their eval-
uation according to their predictive ability are reported 
in Section 3. Section 4 summarizes the results and pro-
vides conclusion of the paper. 

2. MATERIALS AND METHODS 

2.1. Patient Population and Variables 

Our database consisted of cases collected during the 
project, entitled “Report of the epidemiology and man-
agement of trauma in Greece”, which was initiated in 
October 2005 and lasted for twelve months. Study in-
cluded patients from a range of 30 teaching, and general 
hospitals who were admitted with a primary diagnosis of 
injury. Information was gathered for these trauma pa-
tients admitted for at least one day in hospital. To avoid 
biasing estimates, persons who arrived dead or died at 
the Emergency Room of each hospital were excluded 
from the analysis. The data and injury scoring was per-
formed by a highly-trained coordinator. 

Input variables which were extracted and included to 
the models concerned demographics, mechanism of in-
jury, month of admission to hospital, whether the patient 
was referred from another hospital, prehospital care, 
hospital care and procedures, and outcomes at discharge. 
Various injury severity scores were also considered in-
cluding Injury Severity Score (ISS) [5], Abbreviated 
Injury Scores (AIS) [6], and the Glasgow Coma Score 
(GCS) [7]. For all models, there was a single output 
variable: probability of death. 

Trauma registry was followed by extensive correction 
and verification of the data. During preprocessing analy-
sis missing data were also handled. Despite the chal-
lenges inherent when data are missing, information 
could be gained when a thoughtful and systematic ana-
lytical approach is used [8]. For that purpose Multiple 
imputation (MI) was an appropriate method that was 
used to handle Missing At Random Data in our dataset 
[9] in order to minimize bias and increase the validity of 
findings. In this method, multiple (m) versions (typical 
range 5-20) of the data set are created using available 
data to predict missing values. These data sets are then 
used to conduct m analyses, which are then combined 
into one inferential analysis. The particular appeal of this 
method is that once completed data sets have been de-
veloped, standard statistical methods can be used. Ad-
justing multiple imputation issues to data mining meth-

ods, derived datasets were compared in terms of per-
formance (correctly classified datasets) and the one with 
the most correctly classified training and test sets was 
chosen. 

The analysis was carried out using the SPSS 17.0 and 
SPSS Clementine 12.0 statistical software. 

2.2. Data Mining Algorithms 

In this section, we present the data mining methods that 
were applied to analyze the trauma data. These methods 
may be categorized according to their goal as feature 
selection methods, decision tree learners, binary classi-
fier comparison metrics, clustering algorithms and gen-
eralized rule induction algorithms. 

2.2.1. Feature Selection 
In order to reduce data set size, minimize the computa-
tional time and improve model accuracy, a set of vari-
ables selection criteria may be used. Such criteria are the 
maximum percentage of records in a single category 
criterion, as fields which have too many records falling 
into the same category may be omitted and the maxi-
mum number of categories as a percentage of records 
criterion, as if a high percentage of the categories con-
tains only a single case, the field may be ignored. There 
are two more variable selection criteria, the minimum 
standard deviation criterion and the minimum coefficient 
of variation criterion. According to these, fields with 
standard deviation or respectively coefficient of variance 
less than or equal to the specified minimum measure 
may be of limited use. The coefficient of variance is de-
fined as the ratio of the predictor standard deviation to 
the predictor mean. 

A common technique used in data mining is ranking 
the attributes based on the measure of importance which 
is defined as (1-p), where p is the p-value of a chosen 
statistical test such as the Pearson's chi-square statistic, 
the Likelihood-ratio chi-square statistic, the Cramer’s V 
or Lambda statistic. More details can be found among 
others in [10-12] and [13]. The Pearson’s chi-square sta-
tistical test, is a test of independence between X, where 
X is a predictor with I categories, and Y, where Y is the 
target value with J categories, that involves the differ-
ence between the observed and the expected frequencies. 
The expected cell frequencies under the null hypothesis 

of independence are estimated by . .ˆ i j
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Under the null hypothesis, Pearson’s chi-square con- 

verges asymptotically to a chi-square distribution 2
dx  

with degrees of freedom d = (I – 1)(J – 1). Now, the 
p-value based on Pearson’s chi-square 2X  is calculated 
by p-value = Prob 2 2( )dx X , where 

2 2
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2.2.2. Decision Trees 
Decision tree models are a structural description which 
gives the opportunity to develop classification models 
that may be used to predict or classify future data sets, 
according to a number of provided decision rules. Future 
data with unknown classification may be classified just 
by routing down the tree according to the tests in nodes 
and assigning the class of the reached leaf. Some of the 
advantages of this approach are that it is easy under-
standable, can be transformed into a set of rules (if-then 
rules) that interpret the data set and finally that the pro-
vided tree includes only the important attributes that 
really contribute to the decisions making. The Classifi-
cation and Regression Tree (C&RT) is a method based 
on recursive partitioning to split the training set into 
subsets so as to obtain more homogeneous subsets than 
in the previous step. The split is based on the reduction 
in an impurity index, and in this study we used the Gini 
index. CHAID algorithm, or Chi-square Automatic In-
teraction Detection, is based on the significance level of 
a statistical test and is a non-binary tree method, that is, 
it can produce more than two categories at any particular 
level in the tree. C5.0 algorithm works for data sets 
where the target field is categorical and builds decision 
tree by splitting the sample based on the field that pro-
vides the maximum information gain at each level. 

2.2.3. Clustering 
Clustering is concerned with grouping records with re-
spect to similarity of values for a set of input fields 
without the profit of prior knowledge about the form and 
the characteristics of the groups. 

K-means is an iterative algorithm which tries to dis-
cover k clusters, where (k) is defined by the user, so that 
records within a cluster are similar to each other and 
distinct from records in other clusters. There are differ-
ent distance measures, such as Euclidean distance, 
Manhattan distance and Mahalanobis distance, but in our 
application we used the Euclidean distance. 

The TwoStep cluster method is a scalable cluster 
analysis algorithm designed to handle very large data 
sets and both continuous and categorical variables or 
attributes. It requires only one data pass. It has two steps 
1) pre-cluster the cases (or records) into many small 
sub-clusters 2) cluster the sub-clusters resulting from 

pre-cluster step into the desired number of clusters. The 
TwoStep algorithm uses an hierarchical clustering me-
thod in the second step to assess multiple cluster solu-
tions and automatically determine the optimal number of 
clusters for the input data. To determine the number of 
clusters automatically, TwoStep uses a two-stage proce-
dure that works well with the hierarchical clustering 
method. In the first stage, the BIC (distance measure) for 
each number of clusters within a specified range is cal-
culated and used to find the initial estimate for the num-
ber of clusters. TwoStep can use the hierarchical cluster-
ing method in the second step to assess multiple cluster 
solutions and automatically determine the optimal num-
ber of clusters for the input data. 

2.2.4. Association Rules 
Association rule mining finds interesting associations 
and/or correlation relationships among large set of data 
items. Association rules show attribute value conditions 
that occur frequently together in a given data set. A typ-
ical and widely-used example of association rule mining 
is Market Basket Analysis. Association rules provide 
information of this type in the form of if-then statements. 
These rules are computed from the data and, unlike the 
if-then rules of logic, association rules are probabilistic 
in nature. In association analysis the antecedent and 
consequent are sets of items (called itemsets) that are 
disjoint (do not have any items in common). In addition 
to the antecedent (the if part) and the consequent (the 
then part), an association rule has two numbers that ex-
press the degree of uncertainty about the rule. The first 
number is called the support for the rule. The support is 
simply the number of transactions that include all items 
in the antecedent and consequent parts of the rule. (The 
support is sometimes expressed as a percentage of the 
total number of records in the database). The other 
number is known as the confidence of the rule. Confi-
dence is the ratio of the number of transactions that in-
clude all items in the consequent as well as the antece-
dent (namely, the support) to the number of transactions 
that include all items in the antecedent. Clementine uses 
Christian Borgelt’s Apriori implementation. Unfortu-
nately, the Apriori [14] algorithm is not well equipped to 
handle numeric attributes unless it is discretized during 
preprocessing. Of course, discretization can lead to a 
loss of information, so if the analyst has numerical in-
puts and prefers not to discretize them, may choose to 
apply an alternative method for mining association rules: 
GRI. 

The GRI methodology can handle either categorical or 
numerical variables as inputs, but still requires categori-
cal variables as outputs. Rather than using frequent item 
sets, GRI applies an information-theoretic approach to 
determine the interestingness of a candidate association 
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rule using the quantitative measure J. GRI uses this 
quantitative measure J to calculate how interesting a rule 
may be and uses bounds on the possible values this 
measure may take to constrain the rule search space. 
Briefly, the J measure maximizes the simplicity, good-
ness-of-fit trade-off by utilizing an information theoretic 
based cross-entropy calculation. Once a rule is entered in 
the table, it is examined to determine whether there is 
any potential benefit to specializing the rule, or adding 
more conditions to the antecedent of the rule. Each spe-
cialized rule is evaluated by testing its J value against 
those of other rules in the table with the same outcome, 
and if its value exceeds the smallest J value from those 
rules, the specialized rule replaces that minimum-J rule 
in the table. Whenever a specialized rule is added to the 
table, it is tested to see if further specialization is war-
ranted, and if so, such specialization is performed and 
this process proceeds recursively. The association rules 
in GRI take the form If X = x then Y = y where X and Y 
are two fields (attributes) and x and y are values for 
those fields. The advantage of association rule algorithm 
over a decision tree algorithm is that associations can 
exist between any of the attributes. A decision tree algo-
rithm will build rules with only a single conclusion, 
whereas association algorithms attempt to find many 
rules, each of which may have a different conclusion. 
The disadvantage of association algorithms is that they 
are trying to find patterns within a potentially very large 
search space and, hence, can require much more time to 
run than a decision tree algorithm. 

2.2.5. Model Performance 
After categorizing the features and inducing outcome 
prediction models, different statistical measures can be 
used to estimate the quality of derived models. In present 
study discrimination and calibration were calculated. 
The discriminatory power of the model (Classification 
accuracy (CA)) measures the proportion of correctly 
classified test examples, therefore the ability to correctly 
classify survivors and nonsurvivors. In addition, models 
were assessed for performance by calculating the Re-
ceiver-Operating-Characteristic (ROC) curves, con-
structed by plotting true-positive fraction versus the 
false-positive fraction and comparing the areas under the 
curves. Sensitivity and specificity measure the model’s 
ability to “recognize” the patients of a certain group. If 
we decide to observe the surviving patients, sensitivity is 
a probability that a patient who has survived is also clas-
sified as surviving, and specificity is a probability that a 
not-surviving patient is classified as not-surviving. The 
Area under ROC curve (AUC) is based on a non-para-
metric statistical sign test and estimates a probability that 
for a pair of patients of which one has survived and the 
other has not, the surviving patient is given a greater 

probability of survival. This probability was estimated 
from the test data using relative frequencies. A ROC of 1 
implies perfect discrimination, whereas a ROC of 0.5 is 
equivalent to a random model. The above metrics and 
statistics were assessed through stratified ten-fold 
cross-validation [15]. This technique randomly splits the 
dataset into 10 subgroups, each containing a similar dis-
tribution for the outcome variable, reserving one sub-
group (10%) as an independent test sample, while the 
nine remaining subgroups (90%) are combined for use as 
a learning sample. This cross-validation process contin-
ues until each 10% subgroup has been held in reserve 
one time as a test sample. The results of the 10 mini-test 
samples are then combined to form error rates for trees 
of each possible size; these error rates are applied to the 
tree based on the entire learning sample, yielding reli-
able estimates of the independent predictive accuracy of 
the tree. The prediction performance on the test data 
using cross-validation shows the best estimates of the 
misclassification rates that would occur if the classifica-
tion tree were to be applied to new data, assuming that 
the new data were drawn from the same distribution as 
the learning data. Misclassification rates are a reflection 
of undertriage and overtriage, while correct classifica-
tion of injured patients according to their need for TC or 
NTC care reflects sensitivity and specificity, respectively. 
Of the two misclassification errors, undertriage is more 
serious because of the potential for preventable deaths, 
whereas overtriage unnecessarily consumes economic 
and human resources. 

Given a classifier and an instance, there are four possi-
ble outcomes. If the instance is positive (P) and it is classi-
fied as positive, it is counted as a true positive (TP); if it is 
classified as negative (N), it is counted as a false negative 
(FP). If the instance is negative and it is classified as nega-
tive, it is counted as a true negative (TN); if it is classified 
as positive, it is counted as a false positive (FP). 

Given a classifier and a set of instances (the test set), a 
two-by-two confusion matrix (also called a contingency 
table) can be constructed representing the dispositions of 
the set of instances. A confusion matrix contains informa-
tion about actual and predicted classifications done by a 
classification system. Performance of such systems is 
commonly evaluated using the data in the matrix. This 
matrix forms the basis for many common metrics. We will 
present this confusion matrix and equations of several 
common metrics that can be calculated from it for each 
training, validation and test set in our study. The numbers 
along the major diagonal represent the correct decisions 
made, and the numbers of this diagonal represent the errors, 
the confusion, between the various classes. 

The common metrics of the classifier and the addi-
tional terms associated with ROC curves such as 
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 Sensitivity = TP/(TP + FN) 
 Specificity = TN/(FP + TN) 
 Positive predictive value = TP/(TP + FP) 
 Negative Predictive value = TN/(FN + TN) 
 Accuracy = (TP + TN)/(TP + FP + FN + TN) 
are also calculated for each training, test and validation set. 

3. RESULTS 

Altogether, 8544 patients were recorded with 1.5% mor-
tality rate (128 intrahospital deaths). The models were 
therefore trained with a dataset heavily favoured towards 
survivor. For each of them the binary response variable y 
(death: 1, otherwise: 0) is reported. There were ap-
proximately 780.000 data points (92 covariates, 8544 
cases). In order to reduce the dimension of the problem 
we followed the procedure of feature selection, to exe-
cute and detect the most statistically significant of them, 
according to Pearson’s chi-square. The final data set 
which is used for further analysis, included all of the 
8544 available patients and the 36 selected factors (fields 
for data mining). The data set was divided randomly into 
three subsets: the training set, containing 50% of cases 
(t.i 4272), the test set, containing 25% of cases (2136) 
and validation set with 25% of cases (2136). After 
medical advice, all of the factors were treated equally 
during the data mining approach, meaning that there was 
no factor that should be always maintained in the model. 
Defining maximum percentage of records in a single 
category equal to 90%, maximum number of categories 
as a percentage of records equal to 95%, minimum coef-
ficient of variation equal to 0.1 and minimum standard 
deviation equal to 0.0, we removed some factors of low 
importance. Moreover, applying the Pearson’s chi-square 
statistic with respect to the categorical type of the target 
field and significance level a = 5%, we finally identified 
the 36 important variables displayed in C. Koukouvinos 
webpage, http://www.math.ntua.gr/~ckoukouv. 

There were no clear results from C&RT algorithm be-
cause it could not generate a rule set (condition too com-
plex). The summary of C5.0 and CHAID model’s predic-
tive ability measured by percentages of correct classified 
records is displayed in Table 1. The percentage of records 
for which the outcome is correctly predicted, represents 
the overall accuracy of the examined method. 

Tables 2, 3 and 4 display the confusion matrix for each 
set for C5.0 algorithm. 

The metrics for the training set were: Sensitivity 
(84.6%), Specificity (98.4%), Positive predictive value 
(45.8%), Negative Predictive value (99.8%), Accuracy 
(98.9%). 

The metrics for the test set were: Sensitivity (72.7%), 
Specificity (98.9%), Positive predictive value (26.6%), 
Negative Predictive value (99.8%), Accuracy (98.83%). 

The metrics for the validation set were: Sensitivity 

(64.28%), Specificity (99.2%), Positive predictive value 
(36%), Negative Predictive value (99.76%), Accuracy 
(98.97%). 

The C5.0 tree may be converted into set of rules 
which are listed in Table 5. In each rule assigned the 
major classification of the corresponding node. Ruleset 
for 0 (life) contains 4 rules and ruleset for 1 (death) con-
tains 3 rules. 

 
Table 1. C5.0 and CHAID model’s predictive ability. 

Correctly classified 
Algorithm

Training set Test set Validation set

C5.0 98.94% 98.84% 98.97% 

CHAID 98.31% 98.6% 98.79% 
 
Table 2. The confusion matrix for the training set for C5.0 
algorithm. 

Training set 
Outcome

0(–) life 1(+) death  

0(–) life  4178             6 

1(+) death  39              33 

 
Table 3. The confusion matrix for the test set for C5.0 algo-
rithm. 

Test set 
Outcome

0(–) life 1(+) death 
 
 

0(–) life 2113            3 

1(+) death 22             8 
 
Table 4. The confusion matrix for the validation set for C5.0 
algorithm. 

Validation set 
Outcome 

0(–) life 1(+) death  
 

0(–) life 2111            5 
1(+) death 17             9 

 
Table 5. Ruleset for C5.0 algorithm. 

IF THEN 

x3 <= 8.203 and x27 in [0 1 2 3 4] and x71 = 1 
and x9 > 8.755 

life 

x3 <= 8.203 and x27 in [0 1 2 3 4] and x71 in 
[2 4] 

life 

x3 <= 8.203 and x27 = 5 and x26 in [12 25  
28 31] 

life 

x3 > 8.203 life 

x3 <= 8.203 and x27 in [0 1 2 3 4] and x71 = 1 
and x9 <= 8.755 

death 

x3 <= 8.203 and x27 in [0 1 2 3 4] and x71 in 
[3 6] 

death 

x3 <= 8.203 and x27 = 5 and x26 in [15 24] death 
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Also the CHAID tree may be converted into set of 
rules which are listed in Table 6. In each rule assigned 
the major classification of the corresponding node. Rules 
for 0 (life) contains 14 rules. 

Finally, we evaluated the performance of the afore-
mentioned classification algorithms by means of ROC 
curves methodology, complemented by determination of 
the areas under the curves, as presented in Table 7. 

We observe from the results derived from ROC curves 
methodology that CHAID algorithm has the biggest 
AUC = 0.888 which indicates an excellent performance 
of classifiers and a very good discriminating ability 
about the patient's outcome (life or death). C5.0 algo-
rithm has the biggest value for the overall accuracy and a 
very satisfactory AUC = 0.709 which indicates a good 
performance of classifiers and a satisfactory discrimi-
nating ability about the patient's outcome. The C&RT 
algorithm has AUC = 0.5 which indicates a random per-
formance of classifiers and an unreasonable discrimi-
nating ability to diagnose patients with and without the 
disease/condition. It is therefore natural not to trust the 
results of C&RT algorithm, as expected, from our pre-
vious effort to build a decision tree and a ruleset for 
C&RT where we observed that there were no clear re-
sults from the Clementine because it could not generate 
a rule set (conditions too complex). Generally, Classifi-
cation algorithms were successful on trauma data set. 
The classification accuracy was especially high, reach-
ing accuracy of 99% of correct classifications. 

In Figure 1 we present the evaluation of testing set for 
all the classification algorithms by means of ROC 
curves. 

 
Table 6. Ruleset for CHAID algorithm. 

IF THEN 

x71 = 1 and x3<=13.081 life 

x71 = 1 and x3 > 13.081 life 

x71 = 2 and x19<= 3 and x50 = 0 life 

x71 = 2 and x19<= 3 and x50 = 1 life 
x71 = 2 and x19 > 3 and x19 <= 3.945 
and x50 = 0 

life 

x71 = 2 and x19 > 3 and x19 <= 3.945 
and x50 = 1 

life 

x71 = 2 and x19>3.945 and x19<= 4 life 
x71 = 2 and x19 > 4 and x19 <= 4.888 and 
x11 <= 17827.408 

life 

x71 = 2 and x19 > 4 and x19 <= 4.888 and 
x11 > 17827.408 

life 

x71 = 2 and x19 > 4.888 life 

x71 = 3 or x71 = 4 life 

x71 = 6 and x3<=11.447 life 
x71 = 6 and x3 > 11.447 and x28 = 0 life 

x71 = 6 and x3 > 11.447 and x28 = 1 life 

At clustering we specified as minimum number of 
clusters 2 and as maximum number of clusters 15 where 
we received detailed clustering of the records (distribu-
tion of variables with a percentage > 85% for its values). 
The clusters are obtained automatically from the per-
formance of TwoStep algorithm, using only the most 
significant fields of the Trauma data set as they have 
been derived from feature selection algorithm. The 
number of clusters was 5 grouping 336, 914, 1227, 1050, 
729 number of records. 

For the clustering analysis, we performed additionally 
the K-means algorithm and we determined 5 clusters as 
default so that records within a cluster are similar to each 
other and distinct from records in other clusters, where 
we also received detailed clustering of the records. Five 
clusters are obtained from the performance of K-means 
algorithm, using only the most significant fields of the 
Trauma data set as they have been derived from feature 
selection algorithm. Each cluster contained 1280, 1010, 
379, 935, 652 records. 

Hence, we achieved the first goal of clustering, that is 
the decomposition of the data set into categories of sim-
ilar data. Clusters are defined by their centers, where a 
cluster center is a vector of values for the input fields. 
Results deriving from clustering analysis, are reported as 
following: for discrete fields the mean value for training 
records assigned to each cluster is presented. For con-
tinuous fields we present only the major value of the 
variable, the major percentage which belongs to each 
cluster. Both algorithms gave identical rules. The TwoS-
tep created the most multitudinous cluster containing 
 
Table 7. Performance of the classification algorithms. 

Area Under the Curve 
Algo-
rithm Overall accuracy  AUC 

 
 

CHAID 98.602          0.888 

C5.0 98.835          0.709 

C&RT 98.602          0.500 
 

 

Figure 1. Evaluation of Testing set for CHAID, C5.0, C& RT 
algorithms. 
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1227 cases which were middle aged (50 years old on 
average, (o.a)), weighted 73.2 kg (o.a), had white cells 
10537 (o.a), glucose levels 125 (o.a), creatinine 1.04 
(o.a), urea 40 (o.a), good evaluation of disability (4.3, 
o.a), not severely injured (Injury Severity Score 
mean=6.2), high GCS (14.76, (o.a)), 84 pulses (o.a), 
systolic arterial pressure 130.5 (o.a), diastolic arterial 
pressure 77.5 (o.a), Ht 40 (o.a), Hb 13.4 (o.a). Addition-
ally these patients were not pale (96.4%), had not ephi-
drosis (97.3%), had hydration with fluids (88.8%), had 
done radiography and CT (92.1%, 89.5% respectively), 
and were admitted to hospital clinic after the Emergency 
Room treatment (90.6%). 

Using association rules, we performed the General-
ized Rule Induction (GRI) algorithm in order to summa-
rize patterns in the data using a quantitative measure for 
the interestingness of rules. The consequent (the “then” 
part of the rule) is restricted to being a single value as-
signment expression (Y = 1 death) while the antecedent 
(the “if” part of the rule) may be a conjunction of ex-
pressions of only the most significant fields of the 
Trauma data set as they have been derived from feature 
selection algorithm. Each rule in the final ruleset has 
associated support, confidence, based on the number of 
records for which the antecedent and the entire rule are 
true. Defining minimum antecedent support equal to 0%, 
minimum rule confidence equal to 50%, maximum 
number of antecedents equal to 3, maximum number of 
rules  equal to 100 and choosing only true values for 
flags, resulted in the appearance only of the set of rules 
with consequent y = 1 death. Four association rules are 
obtained from the performance of GRI algorithm and 
this set of association rules is presented in Table 8. 

According to the results derived from the implementa-
tion of GRI association rule, mortality is predicted with 
higher percent of support (1.03%) and confidence 60% 
when G.C.S (x3) is smaller than 6. 

Moreover the model suggests with the highest confi-
dence that people with a cutpoint of G.C.S under 6 al-
though that are transferred to hospital with ambulance 
and they don't suffer from lower limbs injury they are 
predicted to die (Support: 0.96%, Confidence: 63.41%). 

4. CONCLUSIONS 

In conclusion, the selection of the most important factors 
 
Table 8. Ruleset for GRI algorithm. 

IF THEN 
x3 < 5.97405 and x25 = 1 
and x108 = 0 

death 

x3 < 5.97405 and x108 = 0 death 

x3 < 5.97405 and x25 = 1 death 

x3 < 5.97405 death 

determining the outcome of injured patients is critical, 
particularly when the problem is high dimensional. 
Therefore in order to detect the requested information, it 
is imperative to use expertise and cutting-edge statistical 
methods that would meet these needs. Data mining can 
be considered as an in-depth research to find information 
previously not seen in many of the collected data and has 
recently been used to medical data [16] often giving 
useful information for patterns. In our study, the results 
were encouraging because the implemented algorithms 
generated useful rules that are logical, consistent with 
the medical experience and provide more specific in-
formation which may assist as guidelines for trauma 
management. Specifically, we found that the CHAID 
and C5.0 algorithms offer an extensive knowledge of the 
classification of injuries including combinations of fea-
tures that lead to death or good outcome. Also the 
K-mean and TwoStep algorithms produce casualties with 
common features and the classification is particularly 
interesting in the latter case where groups are not deter-
mined by the analyst. The comparison of data mining 
methods in terms of evaluation of medical diagnostic 
procedures for sensitivity, specificity, Positive Predictive 
value, Negative Predictive Value, confirmed that the 
extraction of data from a medical basis as this, may con-
tribute to detect factors or combinations of factors that 
can predict reliably trauma patients outcome. 
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