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ABSTRACT 

Modelling of intraday increases in peak electricity demand using an autoregressive moving average-exponential gener-
alized autoregressive conditional heteroskedastic—generalized single Pareto (ARMA-EGARCH-GSP) approach is dis-
cussed in this paper. The developed model is then used for extreme tail quantile estimation using daily peak electricity 
demand data from South Africa for the period, years 2000 to 2011. The advantage of this modelling approach lies in its 
ability to capture conditional heteroskedasticity in the data through the EGARCH framework, while at the same time 
estimating the extreme tail quantiles through the GSP modelling framework. Empirical results show that the ARMA- 
EGARCH-GSP model produces more accurate estimates of extreme tails than a pure ARMA-EGARCH model. 
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1. Introduction 

Peak electricity demand modelling is a policy concern 
for countries throughout the world. Many countries are 
investing heavily in the construction of new (reserve) 
generating plants in order to increase electricity supply 
during peak demand periods. Most countries including 
those with emerging economies have embarked on use of 
new and smart energy saving technologies and have put 
in place integrated demand side management and energy 
efficient strategies and policies in an effort to reduce 
consumption. In this paper we discuss the distribution of 
intraday changes in daily peak electricity demand and the 
modelling of extreme quantiles using an autoregressive 
moving average-exponential generalized autoregressive 
conditional heteroskedasticity-generalized single Pareto 
(ARMA-EGARCH-GSP) approach. We define intraday 
changes as daily increase/decrease in peak electricity 
demand in daily peak demand (DPD) where DPD is the 
maximum hourly demand in a 24-hour period. The paper 
focuses on positive intraday changes. Modelling of un-
expected extreme positive intraday increases is important 
to load forecasters, systems operators and demand man-
agers in planning, load flow analysis and scheduling of 
electricity. 

The use of extreme value distributions requires that the 
assumptions of independent and identical distributed 
observations are met [1-4]. These assumptions provide 

obstacles to the straightforward application of extreme 
value to both financial market returns and electricity re-
turn series [2,4]. To overcome this problem, we adopt the 
approach used by [4]. Using a two stage approach, [4] 
estimate a GARCH model in stage one with a view to 
filtering the return series to get nearly independent and 
identical distributed residuals. In stage two, the extreme 
value theory (EVT) framework is then applied to the 
standardized residuals. The relative performance of value- 
at-risk (VAR) models on daily stock market returns is 
discussed in [5]. VAR is a measure of the risk of a port- 
folio. An EVT approach is used to generate VAR esti- 
mates and provide tail forecasts. Results from this study 
indicate that EVT based VAR estimates are more accu- 
rate at higher quantiles. The modelling approach dis- 
cussed in this paper is important for assessing risk in 
intraday increases in peak electricity demand forecasting. 
This is supported by [6] who use the generalized extreme 
value (GEV) theory and block maxima approach to esti- 
mate the maximum load forecast errors in order to assess 
risk in long-term electricity load forecasting. An applica- 
tion of [4] modelling approach to electricity demand 
forecasting is discussed in literature. Reference [2] ap- 
plies a generalized Pareto distribution (GPD) to an auto- 
regressive GARCH filtered price change series. Empiri- 
cal results from this study show that a peaks-over- 
threshold method provides accurate results in modelling 
tails of hourly electricity price changes. Reference [7] 
propose a model that accommodates autoregression and *Corresponding author. 
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weekly seasonalities in both the conditional mean and 
conditional volatility of daily electricity spot price re- 
turns. The tails of the distribution are then modelled us- 
ing the EVT approach. The developed EVT-based model 
performs well in forecasting out-of-sample VAR. The 
rest of the paper is organized as follows. In Section 2 we 
describe the data and provide a brief discussion of the 
return series data. Section 3 discusses the modelling ap- 
proach together with the models used in this paper. The 
empirical results are presented in Section 4, and the con- 
clusion is presented in Section 5. 

2. Data 

Hourly electricity data is collected for years 2000 
through to 2011 from Eskom, South Africa’s power util- 
ity company. The hourly data is then divided into blocks 
of 24 hours each resulting in 4271 observations. All 
hours in a 24 hour block are from the same date. In each 
block the maximum hourly demand is recorded, and is 
referred to as daily peak demand (DPD). We see from the 
graphical plot of DPD in Figure 1 that these data exhibit 
strong seasonality with a steep positive linear trend. 
Formal unit root tests are conducted using the Aug-
mented-Dickey Fuller test. Results indicate that the 
natural logarithm of the first difference of DPD is sta- 
tionary. Based on the stationarity requirements we calcu- 
late the intraday percentage changes t  that are called 
the return series data, as given in Equation (1). 

             (1) 

where t , 1t  are the current and one period lagged 
DPD respectively. The returns t  given in Equation (1) 
are explained in detail in Appendix A.  

 r

The DPD return series given in Figure 2 shows that 
volatility occurs in bursts with a large number of extreme 
observations and exhibits the presence of volatility clus-
tering. 

The kernel density of DPD return series given in Fig-
ure 3 shows that the empirical distribution of the data is 
non-normal. The density is estimated using kernel den-
sity estimation [8]. 

3. The Models 

Electricity returns are highly volatile and display season-
alities in both their mean and as well as volatility, exhibit 
leverage effects and clustering in volatility, and feature 
extreme levels of skewness and kurtosis [7]. This re-
quires the use of ARMA-GARCH extreme value theory 
modelling framework discussed in [2,4]. 

3.1. ARMA-EGARCH Model 

Assuming a conditional normal distribution, we adopt an 
ARMA(p,q)-EGARCH(1,1) model with the following 
mean and variance structures  r

Mean equation: 
 

 

Figure 1. Daily peak demand (2000-2011). 
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Figure 2. Plot of DPD return series (2000-2011). 
 

 

Figure 3. Kernel density of DPD return series (2000-2011).   
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where t  is the return series of DPD, as defined in 
Equation (1). The EGARCH model was developed to 
capture the leverage effect in financial time series data 
[9]. Negative shocks in financial markets (bad news) 
generally have larger impacts on market volatility than 
positive shocks (good news). The presence of a leverage 
effect can be tested by the hypothesis that   ; if 

0 

,

, then the impact is asymmetric. The EGARCH 
(1,1) model is used because the inequality constraints on 
the parameters,    and  , given in Equation (3) are 
not imposed; oscillatory behaviour in the conditional 
variance is permitted as the coefficient   can either be 
positive or negative, and the persistence of volatility 
shocks can be measured easily [10]. Reference [9] dis-
cusses in detail the advantages of using the EGARCH 
approach instead of the standard GARCH model. 

3.2. Generalized Single Pareto (GSP)  
Distribution 

Reference [11], show that above a reasonably high 
threshold,  , the tail of a generalized burr gamma (GBG) 
distribution can be approximated by a Generalized Pareto 
(GP)-type distribution. The GP-type distribution, which 
is a peak over threshold (POT) distribution, is an ap-
proximation of the GPD with only one parameter to es-
timate. The distribution and survival functions of the 
GP-type distribution that we refer to as the generalized 
single Pareto (GSP) distribution with shape parameter   
(also known as the extreme value index (EVI)) are given 
in Equations (4) and (5) respectively. 
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An expression for the tail quantiles  , associated  
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      (6) 

A derivation of the quantile function is given in Ap-
pendix B1. Let t    be the return series as 
defined in Equation (1). We then fit a GSP distribution to 
the residual  t we obtained after fitting the ARMA- 
EGARCH model to t . In order to extract upper ex- 
tremes from this sequence, t

r
 , we take the exceedances 

over a predetermined high threshold  . We determine 
the threshold   using the generalized Pareto quantile 
plot as discussed in [1]. Equations (2), (3) and (6) com- 
bine to form the ARMA-EGARCH-GSP model. 

4. Empirical Results 

4.1. ARMA(p,q)-EGARCH(1,1) Model Results 

In Table 1 we present descriptive statistics of the return 
series data (for which there are 4270 observations). The 
skewness and kurtosis presented in Table 1 show that the 
return series data are non-normal. The Jarque-Bera test is 
carried out to check whether the skewness and kurtosis 
are consistent with a normal distribution. 

Our ARMA(p,q)-EGARCH(1,1) model is given as 
follows: 
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    (7) 

As shown in Figure 1 electricity demand in South Af-
rica exhibits strong seasonality. For DPD, seasonality is 
strong over the week, month and year. The following 
terms are therefore included AR(7), AR(28), AR(365) 
and MA(7) in the model given in equation (7) in order to 
filter out this seasonality from the data before fitting the 
GSP distribution. Several ARMA(p,q)-EGARCH(1,1) 
models are considered and the model with the smallest 
Akaike information criterion (AIC) is selected. The 
model parameters are estimated using the maximum like-
lihood method under the assumption that the errors are 
conditionally normally distributed. The estimates are 
obtained by [12] algorithm using numerical derivatives. 
The parameter estimates of the best model along with 
their p-values in parentheses are presented in Table 2. 

The LjungBox test results given in Table 2 indicate 
 

Table 1. Descriptive statistics of the returns. 

 Mean Median Max Min Std. Dev. Skew. Kurtosis Jarque-Bera 

Returns 0.012 –0.559 13.553 –13.365 4.346 0.908 3.517 
635.369 
(0.0000) 
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Table 2. ARMA(p,q)-EGARCH(1,1) model. 

Mean Equation 

Parameter 0  1  2  3  

Coefficient –3.851(0.002) 0.006(0.070) 0.979(0.000) 0.021(0.004) 

Parameter 4  1  2   

Coefficient 0.009(0.009) –0.135(0.000) –0.932(0.000)  

Variance Equation 

Parameter         

Coefficient –0.115(0.000) 0.349(0.000) 0.867(0.000) –0.249(0.000) 

Model Diagnostics 

a   7Q  28Q   ARCH 7   ARCH 28   

248.3(0.000) 376.9(0.000) 0.059(0.032) 0.012(0.384)  

Note: aQ(7) is the Ljung-Box tests for serial correlations in the standardized residuals with 7 lags while ARCH(7) is Engle’s LM test of ARCH effects up to the 
7th order. P-values are shown in parentheses. In all cases 5% level of significance is used. 

 
that there is some autocorrelation remaining and most of 
the heteroskedasticity has been removed. It should be 
noted that it may not be possible to remove all autocor- 
relation because we are dealing with high-frequency 
data. 

4.2. Threshold Estimation 

We fit a GSP distribution to the upper tail of the 
 residuals. A Pareto quantile plot is used to 

obtain the threshold. The Pareto quantile plot is defined 
as the scatter plot of the following points:  

1993n 

, 1log , log where
1 t n jn

    
1, 2, ,

j
j n

   

y

 exp 2 7.3891.  

  (1) 

The observation on the -axis where the plot starts to 
follow a horizontal straight line is taken as the threshold. 
In this case  There are 26 ex-
ceedances. The Pareto quantile plot is shown in Figure 4. 

4.3. GSP Distribution Parameter Estimates 

We now consider the error terms greater than   to be 
GSP distributed. The parameter   is estimated, using 
the ML method, as ˆ 0.0717  . The derivation of the 
ML estimator of   is given in Appendix B2.  

The QQ plot of the residual observations in Figure 5 
suggests that the GSP distribution is a relatively good fit 
to the data. 

The unconditional GSP distribution quantiles of the 
residual distribution are now estimated using the quantile 
function ,t p

 

Figure 4. Generalized pareto quantile plot on the positive 
residual (εt) observations. 
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where 

  given in Equation (6) after substituting in 
the estimated parameter values. In the second stage of the 
modelling process we calculate the conditional tail quan- 
tiles,  of our original return distribution as ,t pY

                    

and t  are the conditional mean and volatility from the 
ARMA-EGARCH model. Equation (8) is used to estimate 
the conditional tail quantiles of the original return series. 

4.4. Evaluation of Estimated Tail Quantiles at 
Different Probabilities (Number of  
Exceedances) 

The estimated tail quantiles at different probabilities us-  
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Figure 5. QQ plot of εt,p above τ = 7.3891. The horizontal 
axis represents the standard theoretical quantiles while the 
empirical quantiles are plotted on the vertical axis. 
 
ing the conditional GSP distribution are evaluated. The 
estimated number of exceedances is then compared to the 
exceedances from fitting ARMA-EGARCH model. A 
summary of the results is given in Table 3. 

The 90th observed quantile (  residuals) is 
obtained for example as follows: (0.9  1993 = 1794) 
the 1794th ordered observed residual in the data set is 
3.0353 and the number of exceedances above 3.0353 is 
200, given in parenthesis. Using the quantile function 
given in Equation (6) for the GSP distribution yields 

1993n 


 0.07170.1 1 ,0.1

1 7.3891(0.0717)

0.0717
        3.8299

t



 

where 7.3891 is the threshold and 0.0717 is the ML es-
timate of  . The number of observations that are larger 
than the estimated tail quantile ( ,0.1t 3.8299 

7.3891

) are then 
counted and found to be 137. Overall the ARMA- 
EGARCH-GSP model produces more accurate estimates 
of extreme tails than a pure ARMA-EGARCH model as 
shown in Table 3. 

4.5. Frequency Analysis of Exceedances (by 
Month) 

There are 26 exceedances above the threshold  
(   ). A summary of the monthly frequency 
analysis of the exceedances over the period, years 2000- 
2011 is presented in Table 4 and the histogram is given 
in Figure 6. 

Over the sampling period large intraday increases are 
most frequently experienced in April followed by Janu- 
ary. This frequency analysis of extreme intraday in- 
creases is important to system operators and decision 
makers in the electricity sector as it helps them in plan- 
ning and scheduling electricity. 

Table 3. Evaluation of estimated tail quantiles (number of 
exceedances). 

 Quantiles Observed ,t p ARMA-EGARCH  
model 

GSP  
distribution 

90th quantile 3.0353 (200) 2.7118 (255) 3.8299 (137)

95th 4.5264 (101) 3.4505 (172) 5.1123 (75)

99th 7.7914 (21) 4.8360 (84) 8.3474 (18)

99.5th 9.0606 (11) 5.3433 (69) 9.8598 (6)

99.9th 10.5256 (3) 6.3892 (39) 13.6757 (0)

 
Table 4. Monthly frequency of exceedances (2000-2011). 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Freq 7 0 2 9 3 1 0 2 0 0 0 2

 

 

Figure 6. Histogram of the frequency of occurrence of 
exceedances (εt,p). 

5. Conclusion 

In this paper the modelling and tail estimation of intraday 
increases in peak electricity demand using an ARMA- 
EGARCH-GSP approach is discussed. The advantage of 
this modelling approach lies in its ability to capture con-
ditional heteroskedasticity in the data through the 
EGARCH framework, while at the same time estimating 
the extreme tail quantiles through the GSP modelling 
framework. Empirical results show that the ARMA- 
EGARCH-GSP model produces more accurate estimates 
of extreme tails than a pure ARMA-EGARCH model. 
Finally, we state some remaining issues. Interesting areas 
for future research would involve the modelling of the 
time-of-the-year seasonality of the volatility and also the 
use of other methods to determine the threshold. These 
will be studied elsewhere. 
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Appendix A: Log Return 

The log return is defined as  
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Appendix B1: Derivation of the Quantile 
Function for GSP Distribution 

The distribution function of GSP distribution is given by 
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Appendix B2: Derivation of the Maximum 
Likelihood Estimator of η from the GSP 
Distribution 

The distribution function of the GSP distribution is 
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The probability density function  is then given 
as 

 
1 1

1
1

1 1t tw



  

 

 
 

   
  

 

 tLLet   be the maximum likelihood function, 
Then 
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ˆ to obtain   as the ML 

estimator of  . 
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