
World Journal of Nuclear Science and Technology, 2012, 2, 144-149 
http://dx.doi.org/10.4236/wjnst.2012.24021 Published Online October 2012 (http://www.SciRP.org/journal/wjnst) 

An Approximation for the Doppler Broadening Function 
and Interference Term Using Fourier Series 

Alessandro da C. Goncalves1, Daniel A. P. Palma2, Aquilino S. Martinez1 
1Department Nuclear Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil 

2Brazilian Nuclear Energy Commission, Rio de Janeiro, Brazil 
Email: alessandro@nuclear.ufrj.br 

 
Received June 18, 2012; revised July 20, 2012; accepted July 31, 2012 

ABSTRACT 

The calculation of the Doppler broadening function  ,x  and of the interference term  , x   are important in the 

generation of nuclear data. In a recent paper, Goncalves and Martinez proposed an analytical approximation for the 
calculation of both functions based in sine and cosine Fourier transforms. This paper presents new approximations for 
these functions,  , x  and  ,x  , using expansions in Fourier series, generating expressions that are simple, fast 

and precise. Numerical tests applied to the calculation of scattering average cross section provided satisfactory accu- 
racy. 
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1. Introduction 

The phenomenon of thermal motion of the nuclei inside a 
nuclear reactor is well represented by the microscopic 
cross section of the neutron-nucleus interaction through 
the effect Doppler broadening. The precise determination 
of the Doppler broadening function and interference term 
are important for the calculation of the resonance inte- 
grals [1,2], self-shielding factors and for corrections of 
the measurements of the microscopic cross sections with 
the use of the activation technique [3]. 

The evaluation of the Doppler broadening function 
 , x   and of the interference term  , x   have a 

great importance in the generation of nuclear data and 
there are several methods for the calculation of both fun- 
ctions. This paper presents a new approximation for in-
terference term applied to the calculation scattering av-
erage cross section [4] using expansions in Fourier series. 
The results have shown satisfactory accuracy and do not 
depend on the type of resonance considered. In thermally 
balanced medium at temperature T the velocity of the 
target nucleus is distributed by the Maxwell-Boltzmann 
distribution [5] and the expression for the average scat- 
tering cross sections is written, using to the one level 
formalism of Briet-Wigner, as: 
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where, the interference term and the Doppler broadening 

posed by Gonçalves et al. [6], by:  
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The Equations (2) and (3) can be interpreted as sine 
an

2. Mathematical Formulation 

 and (3) it 

d cosine Fourier transforms. 

The integrals expressed by Equations (2)
is possible to find new representations for functions 
 ,x   and  ,x   using the Fourier series technique. 

 to turn  easily, Equations (2) and (3) can 
be re-written as: 
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Analy ctizing the fun on can be observed that it 
is

 G w
nction a continuous and even fu , which ensures it has a 

Fourier series representation. Thus, its Fourier series re- 
presentation is given by: 
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Replacing the Equation (5) in the Equation (4) and 
applying the properties of the error functions with an 
imaginary argument [7], one can write the following ex-
pression for the functions  ,x   and  ,x  : 
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where, 
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Replacing Equations (8) and (9) in Eq
obtains the following expression for the average scat- 
te

uation (1) one 

ring cross section: 
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3. Numerical Test 
This section contains the results obtained with Equation

ulation interference term and of 




s 

(8) and (9) for the calc
the Doppler broadening function with L = π and Nmax = 
50. In order to validate the obtained expression in this 
paper for  ,x   and  ,x  , a systematic compare- 
son was carried out with the comparison between the 
method pres ed in this p  and the 4-pole Padé ap- 
proximation method, whose functional form is: 

       
     

ent  aper

 

2 4 6

0 2 4 6
é 2 4 6

,Pad

a a hx a hx a hx
x

b b hx b hx b hx
 

  


   
 

8

0 2 4 6 8b hx

(14) 

 
        
       

3 5

1 3 5 7

é 2 4 6

7

0 2 4 6 8

2
,Pad

h a hx a hx a hx a hx
x

b b hx b hx b hx b hx
 

  


   

(15

The coefficients in Equations (14) and (15) are given 
by [8,9]. 

8
 

) 

Figures 1 to 8 show the relative errors for the calcula-
tion of  ,x   and  ,x  , using the proposed method 
paper, Equations (8) and (9), and the 4-pole Padé method, 
Equations 4) and (15) onsidering the benchmark re- 
sults from Gauss-Legendre quadrature method that is 
well described in the literature [10]. 

From the Figures 1 and 2 is possible to see that when 
the variable ξ increases, keeping the variable x constant, 
the rel

 (1  , c

ative deviations of the Padé approximation in- 
creases and are systematically higher than those of the 
proposed method, Equation (8), in the calculation of the 
function  ,x  . 

From the Figures 3 and 4 it is possible to see that 
when the va le x increases, keeping the variable ξ con-
sta

riab
nt, the relative deviations of the Padé approximation 

increases and are systematically higher than those of the 
proposed method, Equation (8), in the calculation of the 
function  ,x  .  
 

 

Figure 1. Relative error for the 4-pole Padé approximation, 
Equation (14), and for the proposed method, Equation (8), 
for x = 20.  
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Figure 2. Relative error for the 4-pole Padé approximation, 
Equation (14), and for the proposed method, Equation (8), 
for x = 35. 
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Figure 3. Relative error for the 4-pole Padé approximation, 
Equation (14), and for the proposed method, Equation (8), 
for ξ = 0.10. 
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Figure 4. Relative error for the 4-pole Padé approximation, 
Equation (14), and for the proposed method, Equation (8), 
for ξ = 0.20. 
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Figure 5. Relative error for the 4-pole Padé approximation, 
Equation (15), and for the proposed method, Equation (9), 
for x = 20. 
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Figure 6. Relative error for the 4-pole Padé approximation, 
Equation (15), and for the proposed method, Equation (9), 
for x = 35. 

ariable ξ increases, keeping the variable x con- 

 
From the Figures 5 and 6 it is possible to see that 

when the v
stant, the relative deviations of the Padé approximation 
increases and are systematically higher than those of the 
proposed method, Equation (8), in the calculation of the 
function  ,x  .  

From the Figures 7 and 8 it is possible to see that 
when the va iable x increases, keeping the variable ξ con- 
sta

r
nt, the relative deviations of the Padé approximation 

increases and are systematically higher than those of the 
proposed method, Equation (8), in the calculation of the 
function  ,x  .  
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Figure 7. Relative error for the 4-pole Padé approximation, 
Equation (15), and for the proposed method, Equation (9), 
for ξ = 0.15. 
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Figure 8. Relative error for the 4-pole Padé approximation, 
Equation (15), and for the proposed method, Equation (9), 
for ξ = 0.25. 

sion that the proposed method proved to be 
ery precise and stable, having a 0.1% maximum relative 

er

 
The analysis of the results showed in Figures 1-8 lead 

to the conclu
v

ror margin, when compared to reference values. From 
these results is possible to apply the approximate formal- 
ism presented in this paper in the calculation of the Dop- 
pler broadening function  ,x   and the Interference 
Term  ,x   in the determination of the microscopic 
average scattering cross sections. 

4. Re

The average scattering cross section 

sults 

obtained from Equa- 

found in Figures 9-11 and Figures 12-14 tion (13) are 
they shows their relative errors for the calculation of the 
average scattering cross section. The nuclear parameters 
used can be found in Table 1 [2]. 

From the Figures 9-11 it is possible to see that the re-
sults obtained with the method presented, Equation (13), 
overlapped those obtained from the numerical reference 
method, being compatible with the results obtained with 
the method proposed by Padé. 
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Figure 9. Average scattering cross sections of the E0 = 6.67 
eV resonance for the 238U isotope and T = 1500 K. 
 

22.0 22.5 23.0 23.5 24.0 24.5 25.0

0

50

100

150

200

250

TH  E
0
 = 23.43eV232

 
s
- Reference 

 
s
- Pad?

 s 
(b

ar
n)

E (eV)

 
s
- Fourier

Padé

 

Figure 10. Average scattering cross sections of the E0 = 
23.43 eV resonance for the 232Th isotope and T = 1500 K. 
 

e, 
 = 10 barn and T = 1500 K. 

Table 1. Parameter used in the calculation of for average 
scattering cross sections for the 238U, 232Th and 240Pu isotop
σ

Isotope E0 (eV)  eVn  eV     0 m  0 b
238U 6.67 0.0015 0.0230 0.20 177.14 2.4 × 104

232Th 

240  

23.43 0.0039 0.0261 0.13 94.51 1.5 × 104

Pu 20.45 0.0027 0.0322 0.17 101.16 1.0 × 104
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Figure 11. Average scattering cross sections of the E0 = 
20.45 eV resonance for the 240Pu isotope and T = 1500 K. 

 

5.5 6.0 6.5 7.0 7.5 8.0

-12

-10

-8

-6

-4

-2

0

2

4

R
e

la
tiv

e 
er

ro
r 

(%
)

E (eV)

 
1
= (

s-Reference
- 

s-Pad?
)/

s-Reference

 
2
= (

s-R ence
- 

s-Fourier
)/

s-Referenceefer

Padé 

 

Figure 12. Relative error for average scattering cross sec- 
tions of the E0 = 6.67 eV resonance for the 238U isotope and 
T = 1500 K. 

at overlap the numerical reference method. 
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From the Figures 12 to 14 it is possible to conclude 

that the expression proposed in this paper presents results 
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5. Conclusion 

This paper presents a simple and precise form
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Figure 13. Relative error for average scattering cross sec- 
tions of the E0 = 23.43 eV resonance for the 232Th isotope 
and T = 1500 K. 
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Figure 14. Relative error for average scattering cross sec-
tions of the E0 = 20.45 eV resonance for the 240Pu isotope 
and T = 1500 K. 
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