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ABSTRACT

The calculation of the Doppler broadening function W(x,ef ) and of the interference term ;((x, & ) are important in the

generation of nuclear data. In a recent paper, Goncalves and Martinez proposed an analytical approximation for the
calculation of both functions based in sine and cosine Fourier transforms. This paper presents new approximations for

these functions, (//(x,é) and ;((x,ef), using expansions in Fourier series, generating expressions that are simple, fast

and precise. Numerical tests applied to the calculation of scattering average cross section provided satisfactory accu-

racy.
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1. Introduction

The phenomenon of thermal motion of the nuclei inside a
nuclear reactor is well represented by the microscopic
cross section of the neutron-nucleus interaction through
the effect Doppler broadening. The precise determination
of the Doppler broadening function and interference term
are important for the calculation of the resonance inte-
grals [1,2], self-shielding factors and for corrections of
the measurements of the microscopic cross sections with
the use of the activation technique [3].

The evaluation of the Doppler broadening function
l//(x,f) and of the interference term ;((x,f) have a
great importance in the generation of nuclear data and
there are several methods for the calculation of both fun-
ctions. This paper presents a new approximation for in-
terference term applied to the calculation scattering av-
erage cross section [4] using expansions in Fourier series.
The results have shown satisfactory accuracy and do not
depend on the type of resonance considered. In thermally
balanced medium at temperature T the velocity of the
target nucleus is distributed by the Maxwell-Boltzmann
distribution [5] and the expression for the average scat-
tering cross sections is written, using to the one level
formalism of Briet-Wigner, as:

5. (ET)=0,

I R
- — 1
T ‘/’(x,§)+00 KZ(X’§)+GP‘” )

where, the interference term and the Doppler broadening
function are written, according with approximations pro-
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posed by Gongalves ef al. [6], by:

;((x,f):ZTe & 'sin(wx)dw ()

) cos(wx)dw (3)

The Equations (2) and (3) can be interpreted as sine
and cosine Fourier transforms.

2. Mathematical Formulation

The integrals expressed by Equations (2) and (3) it
is possible to find new representations for functions
w(x,&) and y(x,&) using the Fourier series technique.
In order to turn its use easily, Equations (2) and (3) can
be re-written as:

{Z}u,g)=IG<w>e‘”{C°S(WX) }dw N

25in(wx)

w?

=)

where, G(w)=e * .
Analyzing the function G(w)can be observed that it
is a continuous and even function, which ensures it has a
Fourier series representation. Thus, its Fourier series re-

presentation is given by:

G(w) :a7°+iaﬂ COS(MTWJ &)

n=1
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Replacing the Equation (5) in the Equation (4) and
applying the properties of the error functions with an
imaginary argument [7], one can write the following ex-
pression for the functions l//(x,(f ) and ;((x,é ) :

LI
l//Fourier (xﬂf) 2L(1+x )ef(fj

(®)
TS () Re [2(5.0)]
X Fourier (X,f) = L(%\/iz)erf(éj +
Jr ©))
+2§L n ) L(x.EL)Re [Z(&,L)]
where,
(nxgY
[(mr)2+L2(1+x2)Je [ 2L j
£ (ve.L)= (10)

r(1+x )2 +(nm)’ (2 -2 +(”“/L)2)

L) x[LZ(sz)—(”“)zJe["ij (1
e L2(1+x2)2+(nn)2(2_2x2+(”“/L)2)

(12)

Z(n& L) =erf [Mj
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Replacing Equations (8) and (9) in Equation (1) one
obtains the following expression for the average scat-

tering cross section:
L rn 4Rx
+
S

= 0'05\/—
O—.Y( > )
Qéf{rﬂmﬁrngI«[anL]+a
g

_2L@+x
Fm"

3§ nujJJ%[ZnéLﬂ}

(13)
3. Numerical Test

This section contains the results obtained with Equations
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(8) and (9) for the calculation interference term and of
the Doppler broadening function with L = m and Ny,x =
50. In order to validate the obtained expression in this
paper for ;((x,f) and l//(x,f) , @ systematic compare-
son was carried out with the comparison between the
method presented in this paper and the 4-pole Padé ap-
proximation method, whose functional form is:

ay +ay (hx)’ +a, (hx)" +ag (hx)°

Y paac (é‘,x) - bo +b2 (hx)z +b4 (hx)4 -i-b6 (hx)6 +b8 (hx)8
(14)
2h a (hX)+ a, (hx)3 + as (hx)s + &4 (hx)7
Hrae (6X) = ( )

by +b, (hx)’ +b, (hx) +by (hx)" +bg (hx)"

(15)

The coefficients in Equations (14) and (15) are given
by [8.,9].

Figures 1 to 8 show the relative errors for the calcula-
tion of w(x,&) and y(x,&), using the proposed method
paper, Equations (8) and (9), and the 4-pole Padé method,
Equations (14) and (15), considering the benchmark re-
sults from Gauss-Legendre quadrature method that is
well described in the literature [10].

From the Figures 1 and 2 is possible to see that when
the variable ¢ increases, keeping the variable x constant,
the relative deviations of the Padé approximation in-
creases and are systematically higher than those of the
proposed method, Equation (8), in the calculation of the
function w(x,¢&).

From the Figures 3 and 4 it is possible to see that
when the variable x increases, keeping the variable ¢ con-
stant, the relative deviations of the Padé approximation
increases and are systematically higher than those of the
proposed method, Equation (8), in the calculation of the
function w(x,¢&).

rrrrrrrrr &=1 OZ(WPadé-“IReferenoe)/ \PReference

5| —— &= 102(\|founer-\|)Referenoe)/\pReference
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Figure 1. Relative error for the 4-pole Padé approximation,
Equation (14), and for the proposed method, Equation (8),
for x = 20.
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Figure 2. Relative error for the 4-pole Padé approximation,
Equation (14), and for the proposed method, Equation (8),
for x = 35.
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Figure 3. Relative error for the 4-pole Padé approximation,
Equation (14), and for the proposed method, Equation (8),
for £ =0.10.
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Figure 4. Relative error for the 4-pole Padé approximation,
Equation (14), and for the proposed method, Equation (8),
for £=0.20.
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Figure 5. Relative error for the 4-pole Padé approximation,

Equation (15), and for the proposed method, Equation (9),
for x = 20.
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Figure 6. Relative error for the 4-pole Padé approximation,
Equation (15), and for the proposed method, Equation (9),
for x = 35.

From the Figures 5 and 6 it is possible to see that
when the variable ¢ increases, keeping the variable x con-
stant, the relative deviations of the Padé approximation
increases and are systematically higher than those of the
proposed method, Equation (8), in the calculation of the
function y(x,&).

From the Figures 7 and 8 it is possible to see that
when the variable x increases, keeping the variable ¢ con-
stant, the relative deviations of the Padé approximation
increases and are systematically higher than those of the
proposed method, Equation (8), in the calculation of the
function y(x,&).
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Figure 7. Relative error for the 4-pole Padé approximation,

Equation (15), and for the proposed method, Equation (9),
for £=0.15.
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Figure 8. Relative error for the 4-pole Padé approximation,
Equation (15), and for the proposed method, Equation (9),
for ¢=0.25.

The analysis of the results showed in Figures 1-8 lead
to the conclusion that the proposed method proved to be
very precise and stable, having a 0.1% maximum relative
error margin, when compared to reference values. From
these results is possible to apply the approximate formal-
ism presented in this paper in the calculation of the Dop-
pler broadening function w(x,ef ) and the Interference
Term y(x,&) in the determination of the microscopic
average scattering cross sections.

4. Results

The average scattering cross section obtained from Equa-
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tion (13) are found in Figures 9-11 and Figures 12-14
they shows their relative errors for the calculation of the
average scattering cross section. The nuclear parameters
used can be found in Table 1 [2].

From the Figures 9-11 it is possible to see that the re-
sults obtained with the method presented, Equation (13),
overlapped those obtained from the numerical reference
method, being compatible with the results obtained with
the method proposed by Padé.
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Figure 9. Average scattering cross sections of the E, = 6.67
eV resonance for the 22U isotope and T = 1500 K.
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Figure 10. Average scattering cross sections of the E, =
23.43 eV resonance for the >**Th isotope and T = 1500 K.

Table 1. Parameter used in the calculation of for average
scattering cross sections for the 228U, #*Th and *°Pu isotope,
o=10barnand T = 1500 K.

Isotope  Ey(eV) T,(eV) T,(eV) ¢ A(m) o, (b)
=8y 6.67  0.0015 0.0230 020 177.14 2.4x10*
22Th 2343 0.0039 0.0261  0.13 9451 1.5x10*
20py 2045 0.0027 0.0322 0.17 101.16 1.0x10*
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Figure 11. Average scattering cross sections of the E, =

20.45 eV resonance for the *°Pu isotope and T = 1500 K.
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Figure 12. Relative error for average scattering cross sec-
tions of the Eq = 6.67 eV resonance for the 28U isotope and
T = 1500 K.

From the Figures 12 to 14 it is possible to conclude
that the expression proposed in this paper presents results
that overlap the numerical reference method.

5. Conclusion

This paper presents a simple and precise formulation for
the Doppler broadening function v (x,&) and of the
interference term y(x,&) based in sine and cosine
Fourier transforms proposed by Goncalves et al. Expand-
ing the function G(w)in Fourier Series was possible to
obtain an accurate analytical expression for the average
scattering cross section, Equation (13), that can be an
alternative to other methods existing in the literature.
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Figure 13. Relative error for average scattering cross sec-

tions of the E, = 23.43 eV resonance for the Z?Th isotope
and T = 1500 K.
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Figure 14. Relative error for average scattering cross sec-
tions of the E, = 20.45 eV resonance for the **°Pu isotope
and T = 1500 K.
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