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ABSTRACT 

The two statistical principles of maximum entropy and maximum likelihood are investigated for the three-parameter 
kappa distribution. These two methods become equivalent in the discrete case with , 0x    where 0  

 
 

1 2 1 1, 0,1,2,k k   

 

, for the maximum entropy method. 
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1. Introduction 

Statistical entropy deals with a measure of uncertainty or 
disorder associated with a probability distribution. The 
principle of maximum entropy (ME) is a tool for infer- 
ence under uncertainty [1,2]. This approach produces the 
most suitable probability distribution given the available 
information as seeks the probability distribution that 
maximizes the information entropy subject to the infor- 
mation constraints, typically via the method of Lagrange 
multipliers. More precisely, the result is a probability 
distribution that is consistent with the known constraints 
expressed in terms of averages or expected values of one 
or more quantities, but is otherwise as unbiased as possi- 
ble—i.e. one obtains the least-biased estimate possible on 
the given information, maximally noncommittal with re- 
gard to missing information. 

A family of positively skewed distributions known as 
kappa distributions introduced by Mielke [3] and Mielke 
and Johnson [4], is very popular for analyzing precipita- 
tion data (cf. Park et al. [5], Kysely and Picek [6], Du- 
puis and Winchester [7]). Various methods of estimation 
for this type of data include the L-moment, Moment, and 
Maximum Likelihood (ML) techniques. Many research 
papers have shown that the ML is too sensitive to ex- 
treme values, especially for small samples although but it 
may be satisfactory for large samples, and the final esti- 
mate is not always a global maximum because it can de- 
pend upon the starting values. The ME can remove this 
ambiguity, as various authors have shown—e.g. Hradil 
and Rehacek [8], and Papalexious and Koutsoyiannis [9]. 
Singh and Deng [10] considered the ME method for the 
four-parameter kappa distributions, which include the three- 

parameter kappa distribution (K3D) introduced by Meilke 
[3]. In this study, we investigate the theoretical back- 
ground for parameter estimation by the ME method in 
the K3D case. The limitation of its performance com- 
pared to the ML method is also discussed. 

2. Three-Parameter Kappa Distribution 

Let a random variable be denoted by X. The distribution 
function of the three-parameter kappa distribution (K3D) 
is 

1

, , 0
x

f x x


    

 

  
   

    
   

, ,

    (1) 

where   

 

denote the location, scale and shape pa- 
rameters respectively (Park et al. [5]), and the corre- 
sponding cumulative distribution function of the K3D is 

1

, 0.
x x

F x x
  

 


     

      
     

    (2) 

It is notable that the K3D distribution function, Equa- 
tion (1), involves adding the location parameter   to 
the two-parameter kappa distribution (K2D), in contrast 
to Meilke [3] where only a new shape parameter   is 
introduced. 

3. The Entropy Framework 

3.1. Entropy Measure and the Principle of 
Maximum Entropy 

The concept of entropy was originally developed by 
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Ludwig Boltzmann in statistical mechanics. A famous 
and well justified measure is the Boltzmann-Gibbs- 
Shannon (BGS) entropy  

   ln dx f x x

 

0

S f


            (3) 

for a continuous non-negative random variable X, where 
f x  is the probability density function of X. The given 

information used in the principle of maximum entropy 
(ME) is expressed as a set of constraints representing 
expectations of functions  jg X

1,2, ,j j n  

 
0

d 1f x x


—i.e.  

     
0

d ,j jE g X g x f x x c    


    (4) 

ME distributions emerge by maximizing the selected 
form of entropy, subject to Equation (4) and the obvious 
additional constraint 



 
1

n

j j
j

.                (5) 

As precisely mentioned, the maximization is usually 
accomplished via the method of Lagrange multipliers, 
such that the general solution form of the ME distribu- 
tions from maximizing the BGS entropy Equation (3) 
(Levine and Tribus, [11]) is 

  0expf x   g x 


 
 

 


, 1,2, ,j n

,        (6) 

where j   , are the Lagrange multipliers 
linked to the constraints in Equation (4) and 0  is the 
multiplier linked to the additional constraint Equation 
(5). 

3.2. Justification of the Constraints 

Samples are drawn from positively skew or heavy-tailed 
distributions, located on the right far from the mean. Sta- 
tistically, such values are considered to be outliers and 
consequently strongly influence the sample moments. 
The logarithm function is applied to the data set to 
eliminate the influence of extreme values. The maximum 
entropy distribution is uniquely defined by the chosen 
constraints, which normally contain information from 
observations or theoretical considerations. Thus in geo- 
physical applications for example, important prior char- 
acteristics of the underlying distribution should be pre- 
served—e.g. a J-shaped, Bell-shape or heavy-tailed dis- 
tribution. The constraints should also be chosen based on 
the suitability of the resulting distribution in regard to the 
empirical evidence. More details on appropriate con- 
straints are discussed in [11]. In this study, we choose a 
single constraint to express the features of the distribu- 
tion given the empirical evidence.  

3.3. The Estimation of Maximum Entropy 

There are four steps in the ME method to estimate the 
objective distribution—viz. 

1) Specification of appropriate constraints; 
2) Construction of the Lagrange multipliers; 
3) Derivation of the entropy function of the distribu- 

tion; and 
4) Derivation of the relation between the Lagrange 

multiplier and the constraints. 
Step 1 Specification of Appropriate Constraints. 
Taking the natural logarithm, from (1) we have 

  1
ln ln ln

x
f x


  
  

         
     

 

      (7) 

To establish the entropy as expressed in Equation (3), 
multiply Equation (7) with f x

(0, )
  and integrate over 

the entries space   to obtain 

 
0

1
ln ln d

x
S f x x


  
  

           
     

    (8) 

which is to be subject to the constraints 

 
0

ln d ln
x x

f x x E
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 

                  
           



 
0

d 1f x x


 (9) 

 .                    (10) 

Step 2 Construction of the Lagrange Multipliers. 
From Equation (6) 

  0 1exp ln
x

f x


  


         
    

,    (11) 
 

,where 0 1   are the Lagrange multipliers. Substituting 
Equation (11) into Equation (10) we have 

0 1
0

exp ln d 1
x

x


  


          
     



 

,    (12) 

such that 

  
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0

exp exp ln d

d d

1 d

1 1 d         (13)
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

On setting 
x

z



 

   
 

 such that  

  1 1
d dx z z

  


 , and 
z

u


 z u such that d d . 

Since  from Equation (13) we require  0exp 0 
 1 1 2 ,   0,1,2, ,k k    implying  

 0 1 2 1 1    , 0,1,2,k k   . 
Consequently, 
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   (14) 

Then on taking logarithms we have 

    0 1

1

ln 1 1 ln
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1ln 1

1 1
.

   



   

        
  

 

 
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

 

Step 3 Derivation of the Entropy Function of the Dis-
tribution. 

Substituting Equation (14) into Equation (11) gives 

 
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and again taking the natural logarithms, we have 
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,
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and hence from the definition of entropy, Equation (3), 
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    (15) 

Step 4 Derivation of the Relation between the La- 
grange Multipliers and Constraints. 

Let 
1

a


  such that 
2

d da
1

,


   11b  

1d db

 such 
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2
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. 

Since    ln t t
t


 


 is the digamma function, it 

follows that 
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, 

and 
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, ,

. 

There are four parameters in Equation (15)—viz. 
    and 1 . To maximize Equation (15), we need 
to set the following partial derivative to zero: 
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 

                             
 

x 
 

 
        
  

ln                
x






 
             
  

               (20)

    

 where     2
C b

1 2
a 


  

, ,

 is a constant. 

The parameter estimation for the K3D (i.e. of   
0

) 
from the ME for    and  

 0 1 2 1 1 0,1,k k    

 

2, ,  are obtained from 
Equations (18)-(20), respectively. By the definition of  
expectation of random variable  

x

E Y y P Y y  
all

  

assume that  P Y y  equal to 1, thus Equation (18), 

1 1

,

i

i

x

x

 

 


 


 

     
  
  

       

1

n

i

x

E
x



 


 
  
           

     (21) 

and apply this assumption to Equations (19) and (20). 

4. The Maximum Likelihood Estimation 

From Equation (1), the log-likelihood function can be 
written as 

1

ln , ,

1
ln ln

n
i

i

L

x
n



  

  
  

        
     


    (22) 

where ix  is the i-th value of the random variable X  
and  is a sample size. Multiply with –1 and differen- 
tiating Equation (22) partially with respect to each pa- 
rameter, we obtain the MLE by equating each of the fol- 
lowing partial derivatives to zero: 

n

 

1

1

ln 1

i

n

i
i

x

L
x









 








  
                 

        (23) 
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1
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i
i

x

n
L

x








   





  
                      

     (24) 



B. KUMPHON 419

2
1

1

1
ln ln

1 1
1 l

n
i

i

n

i
i

xn
L

x








  


 







  
         




    ni ix x 
 


                         





, 0x




(25) 

By Equation (21), a comparison of the equations of the 
ME and the MLE immediately reveals that Equation (18) 
is equivalent to Equation (23), Equation (19) to Equation 
(24) and Equation (20) to Equation (25), where    
and  0 1 2 1 1k k     0,1, 2, . Consequently, 
the two methods become equivalent for discrete random 
variables. 

5. Conclusion 

A positive skewness distribution, the three-parameter kappa 
distribution, is considered. Parameter estimation by the 
maximum likelihood method requires a certain cutoff in 
the parameter space or a best starting value, for otherwise 
the solution may appear under-determined instead of a 
unique answer (there can exist a concave set). The prin- 
ciple of maximum entropy is another tool to address this 
problem under constraints that show the characteristic of 
the distribution given the empirical evidence, using the 
method of Lagrange multipliers. For 

 0 1 2 1 1k k     , 0x0,1, 2, ,  and    the 
principle of maximum entropy method is equivalent to 
the maximum likelihood method for the discrete case. 

REFERENCES 
[1] E. T. Jaynes, “Information Theory and Statistical Me- 

chanics,” Physical Review, Vol. 106, No. 4, 1957, p. 620. 
doi:10.1103/PhysRev.106.620 

[2] E. T. Jaynes, “Prior Probabilities,” IEEE Transactions on 
Systems Science and Cybernetics, Vol. 3, No. 4, 1968, pp. 

227-241. doi:10.1109/TSSC.1968.300117 

[3] P. W. Mielke, “Another Family of Distributions for De- 
scribing and Analyzing Precipitation Data,” Journal of 
Applied Meteorology, Vol. 12, No. 2, 1973, pp. 275-280.  
doi:10.1175/1520-0450(1973)012<0275:AFODFD>2.0.C
O;2 

[4] P. W. Mielke and E. R. Johnson, “Three-Parameter Kappa 
Distribution Maximum Likelihood Estimates and Likeli- 
hood Ratio Tests,” Monthly Weather Review, Vol. 101, 
No. 9, 1973, pp. 701-707.  
doi:10.1175/1520-0493(1973)101<0701:TKDMLE>2.3.C
O;2 

[5] J. S. Park, S. C. Seo and T. Y. Kim, “A Kappa Distribu-
tion with a Hydrological Application,” Stochastic Envi- 
ronmental Research and Risk Assessment, Vol. 23, No. 5, 
2009, pp. 579-586. doi:10.1007/s00477-008-0243-5 

[6] J. Kysely and J. Picek, “Probability Estimates of Heavy 
Precipitation Events in a Flood-Prone Central-European 
Region with Enhanced Influence of Mediterranean Cy- 
clones,” Advances in Geosciences, Vol. 12, 2007, pp. 43- 
50. doi:10.5194/adgeo-12-43-2007 

[7] D. J. Dupuis and C. Winchester, “More on the Four-Pa- 
rameter Kappa Distribution,” Journal of Statistical Com- 
putation and Simulation, Vol. 7, No. 2, 2001, pp. 99-113. 
doi:10.1080/00949650108812137 

[8] Z. Hradil and J. Rehacek, “Likelihood and Entropy for 
Statistical Inversion,” Journal of Physics: Conference Se- 
ries, Vol. 36, 2006, pp. 55-59. 

[9] S. M. Papalexious and D. Koutsoyiannis, “Entropy Base 
Derivation of Probability Distributions: A Case Study to 
Daily Rainfall,” Advances in Water Resources, 2012, in 
Press. doi:10.1016/j.advwatres.2011.11.007 

[10] V. P. Singh and Z. Q. Deng, “Entropy-Based Parameter 
Estimation for Kappa Distribution,” Journal of Hydro- 
logic Engineering, Vol. 8, No. 2, 2003, pp. 81-92. 
doi:10.1061/(ASCE)1084-0699(2003)8:2(81) 

[11] R. D. Levine and M. Tribus, “The Maximum Entropy 
Formalism,” MIT Press, Cambridge, 1978. 

 

 

 

 
 

Copyright © 2012 SciRes.                                                                                  OJS 

http://dx.doi.org/10.1103%2FPhysRev.106.620
http://dx.doi.org/10.1109%2FTSSC.1968.300117
http://dx.doi.org/10.1175%2F1520-0450%281973%29012%3C0275%3AAFODFD%3E2.0.CO%3B2
http://dx.doi.org/10.1175%2F1520-0450%281973%29012%3C0275%3AAFODFD%3E2.0.CO%3B2
http://dx.doi.org/10.1175%2F1520-0493%281973%29101%3C0701%3ATKDMLE%3E2.3.CO%3B2
http://dx.doi.org/10.1175%2F1520-0493%281973%29101%3C0701%3ATKDMLE%3E2.3.CO%3B2
http://dx.doi.org/10.1007%2Fs00477-008-0243-5
http://dx.doi.org/10.5194%2Fadgeo-12-43-2007
http://dx.doi.org/10.1080%2F00949650108812137
http://dx.doi.org/10.1016%2Fj.advwatres.2011.11.007
http://dx.doi.org/10.1061%2F%28ASCE%291084-0699%282003%298%3A2%2881%29

