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ABSTRACT 

Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in 
regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative 
effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood 
(ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was 
evaluated with a large simulation study. Log-normal observations were generated according to the simulation models 
and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed 
least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, 
and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for 
tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct 
confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 
 
Keywords: Heteroscedasticity; Maximum Likelihood Estimation; Linear Regression Model; Log-Normal Distribution; 

Weighed Least-Squares Regression 

1. Introduction 

Measurements in occupational and environmental re- 
search, e.g. exposure and biomarkers, often have a skewed 
distribution with a median smaller than the mean and 
only positive values. It is also common with hetero-sce- 
dasticity where the variance increases with the expected 
value. Such data can often be described by a log-normal 
or quasi-log-normal distribution [1]. 

Associations (for example between exposure and 
health effects/biomarkers or between personal exposure 
and background variables) are often analyzed using re- 
gression models. Ordinary least squares (LS) regression 
analysis is a commonly used regression method, and it is 
based on the assumption of a constant variance and a 
normal distribution for the stochastic term. One way of 
handling non-normal data is with nonparametric median 
regression (or Least-Absolute-Value regression), see e.g. 
[2] where no assumptions are made about the distribution 
of the response variable. The parameter estimates are 
then found by minimizing the sum of absolute value of 
the residuals (whereas LS minimizes the sum of squared 
residuals). However, as a nonparametric method it re- 
quires larger samples and it may have multiple solutions 
[3]. 

In situations where the response variable has a skewed 
distribution and an increasing variance, it has become the 
practice to log-transform the response variable. Regres- 
sion analysis on log-transformed data have for instance 
been used to establish reference models [4], to find suit- 
able biomarkers [5], to determine suitable surrogates for 
exposure [6,7], and to estimate the cost function in health 
economics [8]. A model in which the response variable is 
log-transformed, ln(Y), will estimate the relative effect of 
each predictor, whereas in many cases it is the absolute 
effect that is desired [9]. It must also be considered that 
e.g. a t-test for comparing the expected values of two 
groups based on the mean of ln(Y) is not equal to a test 
based on the mean of the original log-normal data Y, 
since the expected value of Y is a function of both μ and 
σ, whereas the expected value of ln(Y) is a function of 
only μ. If the two σ-parameters are not equal, a t-test 
based on ln(Y) may not give the correct type I-error re- 
garding the difference between E[Y1] and E[Y2], [10,11]. 

In many cases a linear relationship between the re- 
sponse and the predictor (e.g. between personal exposure 
and background variables) is a reasonable assumption; 
for example it is realistic that the personal exposure in- 
creases linearly with time spent in a certain environment 
(e.g. time spent in traffic). This linearity will be lost in a 
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log-transformation. On the other hand, if the log-normal 
distribution is ignored in order to preserve the linearity, 
tests based on the assumption of a constant variance may 
give misleading results, [12]. 

There is a need for methods that handle log-normally 
distributed data in linear regression models, based on 
moderate sample sizes. In order to estimate the linear 
association (and the absolute effect), but still take into 
account the log-normal distribution with a non-constant 
variance, we propose a maximum likelihood (ML) based 
method for regression analysis. In this paper we have 
evaluated this new method using large scale simulations, 
which allowed us to analyze the bias, variance and dis- 
tribution of the regression coefficients resulting from the 
new method, as well as comparing it to LS- and weighted- 
least-squares (WLS) regression analysis. A data set on 
personal exposure to 1,3-butadiene in five Swedish cities 
was used to illustrate the three methods. 

2. Data 

We considered the situation where the response variable 
Y is assumed to follow a log-normal distribution (i.e. ln(Y) 
is normally distributed) and where the expected value is 
assumed to be a linear function of the predictors, 

  0 1E Y X 1Y p p .X      



 In regression analy- 
sis, some X-variables can be included because of known 
(or suspected) association with Y, in order to decrease the 
variance or lower the risk of confounder effects [5]. 
Since Y follows a log-normal distribution, ln(Y) can be 
expressed using the following model 

   2 2 ,p Z iX e  

2e N

0 1 1ln lni pY X      

where i Z~ 0, . The k

model above. Linear regression analysis on the log- 
transformed data would yield an estimate of the relative 
effect of Xk, rather than the absolute effect. This is illus- 
trated in Figure 1. 

A log-transformation is not suitable in situations when 
the aim is to estimate the absolute effect of X on Y (rather 
than the relative one). In a licentiate thesis [13] it was 
suggested that the linear regression should be estimated 
from untransformed log-normal data using maximum 
likelihood methods. In this article, the properties of these 
maximum likelihood estimates will be evaluated. 

2.1. Simulation Study 

The properties of a new method for statistical analysis 
can be derived theoretically and/or by simulations and 
examples. In a simulation study, a model for the variable 
of interest (here personal exposure) is used to generate 
samples of observations, 1 n  and then the pa- 
rameters under investigation (here regression parameters) 
are estimated from each sample. This is repeated to ob- 
tain a distinctive distribution for the estimates. Our 
simulation study allowed us to assess the bias and stan- 
dard errors of the parameters estimated resulting from the 
new maximum likelihood-based regression analysis, and 
compare these results to those of LS and WLS. 

, ,y y

We used simulation models in which the response, 
personal exposure to Particulate Matter smaller than 2.5 
μm (PM2.5), was assumed to be a linear function of back- 
ground variables (residential outdoor level of PM2.5, 
smoking and time spent in home). Two different simula- 
tion models were used to generate data. Model A had 
only one predictor, the personal exposure to PM2.5-parti- 
cles (μg/m3), Y, was assumed to be a linear function of 
the residential outdoor concentration of PM2.5 (μg/m3), 
ConcOut. Model B had three predictors and no intercept, 

̂  is an estimate of the 
absolute effect of Xk on Y. The log-transformation results 
in a distortion of the linearity, as can be seen in the  
 

 

Figure 1. A linear regression where Y|X follows a log-normal distribution. The absolute effect is 0.9 (left), the log- 
transformation stabilizes the variance but distort the linear relation (middle) and the estimation based on log(Y) result in an 
xponential function with a relative effect of 29% (right). e   
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Y was a linear function of the number of cigarettes per 
day, Smoke, number of hours spent in their own home, 
Home, and residential outdoor concentration of PM2.5 

(μg/m3), ConcOut. Since ConcOut > 0, its regression 
coefficient can be interpreted as a stochastic intercept. 
Datasets were simulated by generating normally distrib- 
uted observations from Model A: 

    20.354 2 ,i ie 

 2 2, 0.354 

 

ln ln 4.803 0.574Y ConcOut    

where i Z . Samples from Model B 
were simulated according to  

~ 0e N

 

2

ln

ln 2.092 0.761

  0.450 2 ,

i

i

Y

Smoke ConcOut

e

   

 

0.218 Home 

 2 2, 0.450 .

 

where i Z  The parameters in the 
simulation models,  0 1

~ 0e N 
, , Z    and 1 2 3 , , , Z   

ˆE

, 
were estimated from real measurement data (Johannes- 
son et al. [14]). 

The number of repetitions needed in the simulation 
study was estimated. In order to obtain a 95% confidence 
interval for  

   that is smaller than 2·0.0005, 4 mil- 
lion samples were needed. For the predictors, discrete 
values were used: ConcOut = {2, 8, 14}, Smoke = {0, 7, 
14} and Home = {8, 16, 24}. Sample sizes n = 108 and n 
= 216 were used in the simulations and the data sets were 
balanced with regard to the predictors. For Model A a 
second set is also created with a data structure similar to 
the observed one in the original dataset [14], which was 
slightly unbalanced. 

2.2. Application to Exposure Data 

The properties of the three regression methods (LS, WLS 
and ML) were illustrated using a set of data on personal 
exposure of 1,3-butadiene from five Swedish cities. 1,3- 
butadiene is an alkene and has been listed as a known 
carcinogen by the International Agency for Research on 
Cancer (IARC). Traffic and exposure to tobacco smoke 
are considered to be two sources for personal exposure to 
1,3-butadiene [15,16]. Wood burning has also been 
showed to increase personal exposure [17]. The dataset 
was collected in a study of exposure to carcinogens in 
urban air in five Swedish cities; Gothenburg, Umea, 
Malmo, Stockholm and Lindesberg, see [18], and con- 
sisted of 268 measurements of personal 1,3-butadiene 
exposures. Background data were collected by a ques- 
tionnaire. 

3. Methods 

In our investigation, the outcome variable Y was as- 
sumed to be log-normal with an expected value that was 
a linear function of the predictors; 

1
0 1, 1 1,, , p

i p pY X X
x x        




From the simulated data, the parameters of the regres- 
sion model were estimated using ordinary least-squares 
and weighted-least-squares estimation as well as maxi- 
mum-likelihood estimation, as described below. 

3.1. Least-Squares Estimates 

As mentioned before, the inference in ordinary least- 
squares regression method, LS, is made under the as- 
sumption that  2~ iid ,Y X N  

2 2
,i Yi Y i

,Y i Y

 where 
 

2ˆ MSE 
ˆ

. The standard deviation is assumed constant 
for all Y and . The covariance matrix for the  Y

vector LS  is estimated as LS    1ˆcov MSE
 X X

ˆ

, 
where X is a n × (p + 1) matrix. The standard errors, 
SE( LS ), are estimated from the diagonal elements of  

 ˆcov LS . 

3.2. Weighted-Least-Squares Estimation 

For data that cannot be considered homoscedastic, there 
are several estimation procedures, for instance the White 
heteroscedasticity consistent estimator (see e.g. [19], p. 
199). Since Y is assumed to follow a log-normal distri- 
bution, the nature of the heteroscedasticity is known; 

 22 2e 1Z
, iY i Y   

2

. The variance is a function of the 
expected value. Thus weighted-least-squares regression 
analysis, WLS, is appropriate, in which each observation 
is weighted using 

ii YW  
2 2

,
ˆ

i i LS YW Y
. The weights can be esti- 

mated from the LS regression; 
i

  

WLS̂
. The co-  

variance matrix for the vector  is estimated as 

    1

WLS
ˆcov MSEW

 X'WX

, ,  y y

0 1, , , ,

. 

3.3. Maximum Likelihood Estimation in  
Regression 

The maximum likelihood estimator (MLE) of some pa-
rameter θ is the value at which the likelihood function 
L(θ) attains its maximum as a function of θ, with the 
sample 1 n  held fixed. The log likelihood is often 
more convenient to work with and since the logarithm 
transformation is monotone, the function log L(θ|y) can 
be maximized instead. For a continuous variable the like- 
lihood function is the same as the probability density 
function, pdf. The MLE of θ can be found by differenti- 
ating log L(θ|y) with respect to θ. When θ is a scalar it is 
enough that the likelihood function is differentiable to 
get a direct estimate of θ. In a regression analysis, the 
aim is to estimate the parameter vector 

p Z      θ

1 2,, ,  ny y y

. 

Let  be a log-normal sample where 
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î  0 1i ixE Y    

 2~ ,
ii z ZY N

. 

Then  ln  

 
 where 

2
0 1 σ 2z i Z ln

i
x    

and the log likelihood function is 

   

   2
2 ln .Z i

i

y  2
0 12

ln ln ln 2π
2

1
ln ln

2

Z

i i
iZ

n
L n

y x



  


  

   
 

The derivatives were previously calculated by Yurgens 
[13] and are given below with some corrections: 

 
2

,
2

Z
i ij j

j




 
     

2

ln 1
ln lnik

ik j ij jZ

xL
y x

x 


   
 

 
 

2

2 2

ln

1
1 ln

2

n y ,
2

Z
i

       

l

m k

ik im
ij j

i jZ j ij j

L

x x
x

x

 


 


 

     
 

 

 
2

,
43

Z

ln 1
ln ln Z

i i
i jZ Z

L n
y x j j

n


  
  

       
 






 
2

3

ln 2
ln lnik

i lZ k j ij jZ

xL

x  


     
 ,i il ly x 

 
 

 
  

 
2

.
4i ij j

n
y x 

  
  

, , , ,

2

2 2 4

ln 3
ln ln

i jZ Z Z

L n

  


   
   

The maximum likelihood estimates of  

0 1 p Z     

0 1
ˆ ˆ ˆ, , ,

θ  can be found by iterations, for 
example the Newton-Raphson algorithm, see [20]. The  

covariance matrix for the vector ˆ
Z   

 

ˆ
i

θ  is  

estimated by the inverse of the observed Fisher informa- 
tion matrix (see e.g, [21]), where the elements are the 
negative second derivative of the log-likelihood. One of 
the known properties of MLE is, under some regularity 
conditions, its asymptotic normality; when the sample 
size increases the MLE of θ tend to a normal distribution 
with expected value θ and a covariance matrix equal to 
the inverse of the Fisher information matrix (see e.g, 
[21]). 

3.4. Descriptive Statistics and Inference 

In the simulation study, samples of log-normal observa- 
tions were generated and three different methods were 
used to estimate the regression coefficients. The results 
from the three methods were compared using expected 
value (mean), standard error, bias, skewness, the 95% 
central range and correlation of the regression estimates.  

The standard error of   was denoted SE  
 

ˆ
i

 and  

 îsethe sample specific standard error for  ,  , was  

the estimate of îSE  
  . The bias of an estimator, 

i i
ˆE      , was used as a measure of the systematic 

error. The skewness of an estimator was estimated as  

  3
ˆ ˆ ˆE E SE             . For log-normal data, the  

 

 2 2

e 2 e 1 skewness is    , while a symmetric  

distribution has γ = 0. It has been suggested that a sample 
with skewness less than 0.5 should be considered as ap- 
proximately symmetric while skewness above 1 may be 
considered highly skewed. The 95% central range, CR95, 
was defined as the difference between the 2.5th and 
97.5th percentiles. The sample-specific standard error of 
ˆ

Y Xμ  is  

     2
2

1

ˆ ˆ ˆˆ cov , ,
p

i i i j i jY X
i i j

se μ x se x x  
 

      

 ˆ ˆ,i jcovwhere x0 = 1 and  
ˆ ˆcov ,i j

 is the sample specific  

estimation of  


 * 0,

. 
The inference properties of the three methods were 

evaluated by comparing the results from tests of the null 
hypothesis H0:β = β*, where T   in which βT is 
the value specified in the simulation model. LS and WLS 
estimates was tested with the t-test,  

     ˆ ˆ ˆt se    , which follows a Student’s t-dis- 

tribution. The ML estimates were tested using a Wald- 
type of test statistic, which utilized the large sample 
normality of the ML-estimator and the observed Fisher 
information. Under H0, the Wald statistic  

     ˆ ˆ ˆW se    

tribution and 

 asymptotically follows a N(0, 1) 

dis  2ˆW   asymptotically follows a chi- 
, see e.

n used 
on

4. Results 

e presented in four sections; the distribution 

square distribution g. [21], Section 9.4. Other pos- 
sible large-sample test procedures for ML estimates (not 
used in this study) are the score statistic and the full like- 
lihood ratio statistic, see e.g. [21]. We chose the Wald 
statistic because of its computational advantages. 

The properties of the test statistics above, whe
 log-normal data, were evaluated by the risk of type I 

error and the power. The true probability of a type I error 
for a specified nominal α-value (denoted α*) was esti- 
mated as the proportion of test statistic values beyond the 
respective critical value. The power results were based 
on simulations in which the tested parameter (e.g. β0) 
was varied according to H1 whereas the other parameter 
(e.g. β1) was held constant. 

The results ar
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of ˆ
i  and ˆZ , predictions  ˆY X , inference and an 

app ation to xposure data fo utadiene. lic  e r 1,3-b

4.1. The Distribution of the Estimates 

 all three 

 

ˆSE1. Of the three methods, ML gave the smallest i 
  , 

11% smaller than that of LS. For LS,  0
ˆse   overesti- 

mated 0
ˆSE  

   by over 35% for the balanced data and 
about 18% for the unbalanced. For all three methods the 
standard error increased when unbalanced data were used. 
LS had the largest CR95, while ML has the smallest (the 
differences were around 12% between LS and ML and  

For data generated according to Model A,
methods produced unbiased estimates of the β-coeffi- 
cients (the absolute effect of the X-variables), see Table 
 
Table 1. The expected value (E[–]),  errors (SE[–], E[se(–)]) and skewness (γ[–]) for the estimates of β, and the ex- 

n = 108  n = 216 

 standard
pected value and standard errors for the estimate of σZ

a. 

  

  LS WLS ML LS WLS ML  

Balanced data        

β0 = 4.803 ˆE  
   4.803 4.803 4.806 4.803 4.803 4.804 

ˆSE

 

  
   0.486 0.441 0.430  0.343 0.312 0.304 

  ˆE se  
   

ˆ

0.656 0.438 0.424  0.465 0.311 0.302 

   
   

95CR

0.063 0.151 0.143  0.045 0.107 0.100 

 ̂ 
   

β1 = 0. ˆE

1.904 1.730 1.685  1.346 1.223 1.190 

574  
   

ˆSE

0.574 0.574 0.574  0.574 0.574 0.574 

  
   0.072 0.066 0.064  0.051 0.047 0.045 

  ˆE se  
   

ˆ

0.070 0.066 0.064  0.050 0.047 0.045 

   
   

95CR

0.125 0.054 0.053  0.089 0.039 0.039 

 ̂ 
   

σZ = 0. ˆ

0.282 0.260 0.252  0.199 0.183 0.178 

354 ZE     

ˆ

- 0.351 0.350  - 0.353 0.352 

 ZSE   

 

E

 - 0.028 0.024  - 0.020 0.017 

Unbalanced        

β0 = 4.803 ̂ 
   4.803 4.803 4.807 4.803 4.803 4.805 

ˆSE

 

  
   

 

0.564 0.488 0.475  0.399 0.345 0.335 

 ˆE se  
   0.665 0.484 0.469  0.472 0.344 0.334 

 ˆ  
   −0.030 0.156 0.149  −0.020 0.110 0.105 

95CR ̂ 
   

β1 = 0.574 ˆE

2.215 1.911 1.860  1.565 1.352 1.315 

 
   

ˆSE

0.574 0.574 0.573  0.574 0.574 0.574 

  
   

 

0.089 0.078 0.075  0.063 0.055 0.053 

 ˆE se  
   0.082 0.077 0.075  0.058 0.055 0.053 

 ˆ  
   0.184 0.024 0.026  0.130 0.017 0.018 

95CR ̂ 
   

σZ
ˆE

0.347 0.305 0.296  0.246 0.215 0.209 

 = 0.354  
   - 0.351 0.350  - 0.353 0.352 

 ˆSE  
  - 0.028 0.024  - 0.020 0.017 

aData were ge  Model A, 4 million iterations. For reference, the skewness of the normal distribution is γ = 0, whereas the log-normal data y1···yn nerated from
from Model A has skewness γ = 1.15.      
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3% between WLS and ML). There was a strong associa- 
tion between the LS- and ML-estimates; the correlation 
between the estimates was 0.88 and 0.90 for 0̂  and 

1̂  respectively. The association was weaker fo high 
lues. The WLS- and ML-estimates were even more 

similar, with a correlation of 0.97 for both the β0- and 
β1-estimates, and with no weakening of association for 
higher values. For σZ, both WLS and ML showed only 
small biases that decreased with increasing sample size, 
Table 1. ML gave the smallest standard error and 
seemed robust to unbalanced data. Since there is no gen- 
erally accepted method for estimating σZ with LS, no 
such results were presented. 

Data were also generated fr

r 
va

om versions of Model A in 
which one of the β-parameters was set to 0. All three 
methods produced unbiased estimates of β and the stan-
dard errors were much smaller than the results shown in 
Table 1 (both for ˆSE  

   and  ˆE se  
  ); for the 

zero-parameter the st en 45 and 
76% smaller than the corresponding value in Table 1, 
and for the other parameter the standard error was be- 
tween 26% and 52% smaller. For a situation where the 
intercept is zero (β0 = 0), ML gave the smallest ˆSE

andard error was betwe

 
   

for both parameters, 50% smaller than that of r 
both ML and WLS, 

LS. Fo
0

ˆse   was a good estimator for  

0
ˆSE  

  , but for LS  0
ˆse   overestimated 0

ˆSE  
    

by about uation or X has 80%. For a sit where the predict  
no effect on the response Y (β1 = 0), all three methods 
produced approximately the same 1̂SE  

   and  1̂se   
was a good estimator for SE 1̂  σZ-es  
(and their standard error) wer ndent of the values 
of β0 and β1 and had the same values as in Table 1. 

For data with a large variation (large σZ) we det


 . The

epe
timates

e ind

ected 
th

rding to Model B. ML  

pr

e occasional estimation problem for ML. The ML 
method is based on iterations whereas LS and WLS have 
analytical expressions for the parameter estimates, and 
ML was more sensitive to large outliers. Situations in 
which ML produces unreasonable results can sometimes 
be avoided by excluding the extreme observations, but all 
three methods will then tend to underestimate both the 
intercept and the standard errors. 

Data were also generated acco

ovided the smallest variation ( îSE  
   was between  

18% and 44% smaller than that of LS ere was a very ). Th
small underestimation of σZ, but the bias decreases with 
increasing sample size, as expected according to the 
properties of MLE. As before, ML had the smaller 

 ˆZSE  , Table 2. For both ML and WLS,  ˆse   as a 
imator for ˆSEgood est  

  . For LS,  ˆse 1  underes-  

timated 1̂SE  
   by % while s 7  3

ˆe% - 8   

îSE

did over-  

estimate  
  . The i by 12% - 13%, Table 2 ˆSE  

 
depends on the value of βi, the range and values of the 

X-variables and the value of σZ. A separate simulation 
ucted in  1, σZ =

ke and 

 

was cond  which β0 = 0, β1 = β2 = β3 =  
0.450 and where all predictors (ConcOut, Smo
Home) hade values between 2 and 14 and the results 
showed that for this situation all the standard errors were 
the same;  

     LS 1 LS 2 LS 3
ˆ ˆ ˆ 0.196SE SE SE     , 

     WLS 1 WLS 2 WLS 3
ˆ ˆ ˆ 0.169SE SE SE      

and 

     ML 1 ML 2 ML 3
ˆ ˆ ˆ 0.161SE SE SE    

Predictions 

The results in Tables 1 and 2 illustrated that  ˆ

. 

4.2. 

the  - 
values were approximately symmetrical and hence the 

o same would apply t ˆ
Y Xμ  for fixed x. All three meth- 

d estimates of the β-parameters and 
 

ods provided unbiase
thus the point estimates of μY|X will be unbiased. For ML 

and WLS,  ˆ
Y Xse μ  did adequately estimate ˆ

Y XSE μ 
  ,  

while LS produced too large standard errors for x x  
and too small for 

 
x x . This will for most values of x 

result in er nfidence intervals for L d 
produce sligh wer confidence intervals th  

roneous co S. ML di
tly narro an WLS,

ressio
see Figure 2. 

For a simple reg n model (with intercept and one 
X-variable) it can be shown that ˆ

Y XSE μ 
   has a  

minimum at 0,1 0 1
ˆ ˆx SE SE           

x 

, in Figure 2 at 

≈ 5  0,1 0 1
ˆ ˆCorr ,      . As mentioned above, this 

minimum was well estimated with both d WLS, ML an
icated a minimum at x = 8while LS ind . The incorrect 

 ˆse μ  foY X  the underestimated corre- 
lation ( 0,1< 0,1) and overestimating the standard error  

(

r LS is a result of
r ρ

 0 0
ˆ ˆE se SE        ). For a regression model with no  

and several X-variables, intercept ˆ
Y XSE μ 

   is always 
minimized for  1 2 0px x x    . For a multiple 
re h an intercept, the minimum gression model wit

 μ̂Y XSE  can be foun  d by solving the equation system 

 1 1
ˆVar

0, 1, , .
p pY X

i

i p
x

       


  
, ,x X x 

4.3. Inference 

Hypothesis testing regarding separate regression pa- 
rameters using the t-test (LS and WLS) or the Wald test 

ted. Data were generated according to (ML) was evalua
versions of Model A where one parameter was set to zero 
(βi = 0, I = {0, 1}). The null hypothesis H0:βi = 0 was 
tested against both one- and two-sided alternatives in a 
situation where H0 was true, Table 3. 
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Table 2. The expected value (E[–]), standard errors (SE[– [se(–)]) , skewness (γ[–]) and CR95 for the estimates of βa. ], E

 n = 108 n = 216 

 LS WLS ML LS ML WLS 

β1 = 2.092 ˆE  
   2.092 2.092 2.087 2.092 2.092 2.090 

ˆSE   
   0.243 0.208 0.200 0.172 0.147 0.141 

  ˆE se  
   

ˆ

0.224 0.205 0.196 0.159 0.146 0.140 

   
   

95
ˆCR

0.213 0.125 0.121 0.150 0.090 0.085 

  
   

β2 = 0.761 ˆE

0.953 0.816 0.783 0.674 0.577 0.554 

 
   

ˆSE

0.761 0.761 0.760 0.761 0.761 0.760 

  
   0.206 0.146 0.139 0.146 0.103 0.099 

  ˆE se  
   

ˆ

0.205 0.144 0.137 0.146 0.103 0.098 

   
   

95
ˆCR

0.064 0.133 0.124 0.043 0.094 0.087 

  
   

β3 = 0.218 ˆE

0.812 0.574 0.547 0.573 0.406 0.386 

 
   

ˆSE

0.218 0.218 0.220 0.218 0.218 0.219 

  
   0.116 0.068 0.065 0.082 0.048 0.046 

  ˆE se  
   

ˆ

0.131 0.066 0.063 0.093 0.047 0.045 

   
   − −

95
ˆCR

0.102 0.282 0.252 0.074 0.198 0.177 

  
   

σZ = 0.450 ˆ

0.458 0.265 0.253 0.323 0.187 0.179 

ZE     

ˆ

- 0.444 0.443 - 0.447 0.446 

 ZSE     - 0.038 0.031 - 0.028 0.022 

aData were generated from Model B, 4 million iterations. For reference, the ss of the al distribution is γ , whereas t -normal d y ···yn 
from Model B has skewness γ = 1.53. 

 skewne  norm  = 0 he log ata 1

 

 

Figure 2. The ˆ  ES μ X x0=  and  ˆ  se μE X x0=  for

s, ap ed from Model A
ed on s with sample size 

n = 108. 

0

LS-estimates produced an α* which was much smaller 
than α (α* < 0.2α, regardless of H1). This was a result of  

on of ˆSE

 

. the three method
Results were bas

plied to data generat
 4 million iteration

For a model with no intercept (β  = 0), tests of the 

the overestimati 0 
   by 0 ˆse  . For tes

be

ts of 

WLS- and ML-estimates, α* was approximately equal to 
α (within 10% of the true value). A slight skewness could 

 observed; α* ≤ α for H1: β0 > 0 and α* ≥ α for H1:β0 < 
0, while α* for H1:β0 ≠ 0 was slightly higher or the same 
as α. The source of this skewness was a positive correla- 

ˆtion between 0  and   0se ˆ ; sm alues of 0
ˆall v   

gave more extreme (n For a model egative) test-scores. 

e om Mo sis

 

where X has no effect on Y (β1 = 0), all three tests pro- 
duced α*-values close to α (within 20% of the true value). 
For ML, α* was slightly higher than for LS and WLS. 
The risk of type I error was approximately the same even 
when the sample size was doubled (n = 216). 

Data were gen rated fr del A and the hypothe  
H0:βi = βT was tested (βT was the parameter value speci- 
fied in Model A). The results for WLS and ML (data not 
shown) were that α* was within 30% and 16% of α, re- 

Copyright © 2012 SciRes.                                                                                  OJS 



S. M. GUSTAVSSON  ET  AL. 396 

spectively for nominal size 0.05 and 0.10. For nominal 
size 0.01 the relative deviation could be up to 70%. As 
before, tests of the LS-estimates of β  prod0

uch too small (α* ≤ 0.1α). Both WLS- and ML-pro- 
duced a slight skewness regarding tests of both β0 and β1, 
similar to that in Table 3. 

Data were also generated according to Model B (data 

uced an α* 
m

 

îSE

not shown) and the hypothesis H0:βi = βT was tested. For 
all three methods, α* was closest to α for nominal size 
0.10. The relative deviation was largest for nominal size 
0.01; 0.7α ≤ α* ≤ 2.2α. Again, a skewness (as above) 
could be seen in the tests of all three parameters, caused 
by the negative skewness of the test statistics. For tests of 

the LS-estimate of β1, α
* was consistently too large 

(1.04α ≤ α* ≤ 2.20α), whereas α* was consistently too 
small in tests of β3 (0.30α ≤ α* ≤ 0.76α). These erroneous 
risks were, again, the result of under- and overestimation,  

respectively, of  
 

ided and one-sided tests regarding β0 and β1
a. 

α = 0.050  α = 0.100 

, see Table 2. Tests regarding  

the LS-estimates of β2 followed the same pattern as the 
tests of all the WLS- and ML-estimates. The risk of type 
I error was approximately the same even when the sam- 
ple size was doubled (n = 216). 

The power of the tests, under the alternative hypothe- 
sis H1:β1 > 0, was estimated for both α = 0.05 and α* = 
0.05, see Table 4. When α = 0.05, ML had the highest 
power while LS had the lowest. For LS the type I error  

 
Table 3. Risk for type I error (α*) for two-s

 α = 0.010 

Alternative hypothesis H1: βi ≠ 0 βi < 0 βi > 0 βi ≠ 0 βi < 0 βi > 0  βi ≠ 0 βi < 0 βi > 0 

βi n  Test           

β0 108 LS t-test 0.000 0.000 0.000 0.001 0.001 0.003  0.004 0.007 0.016 

 108 WLS t-test 0.010 0.012 0.008 0.051 0.055 0.047  0.102 0.106 0.096 

 108 M 0.106 0.100 

 216 S t-test 0.000 0.000 0.001 0.003 0.003 0.007 0.014 

 

L Wald 0.012 0.013 0.010 0.054 0.056 0.050  0.106 

L 0.000 0.001  

216 WLS t-test 

ML W

0.010 

0.011 

0.011 

0.012 

0.009 

0.009 

0.050 

0.052 0.053 0.049 

0.053 0.047  0.100 

0.102 0.103 

0.104 0.097 

0.099  216 ald  

β1 108 LS t-test 0.010 0.010 0.010 0.050 0.050 0.050  0.100 0.101 0.100 

 108 WLS t-test 0.011 0.011 0.010 0.052 0.051 0.051  0.102 0.102 0.101 

 108 ML Wald 0.012 0.012 0.011 0.055 0.053 0.053  0.106 0.104 0.103 

 216 LS t-test 0.010 0.010 0.010 0.050 0.050 0.050  0.100 0.100 0.100 

 216 WLS t-test 0.010 0.010 0.010 0.051 0.050 0.051  0.101 0.100 0.101 

 216 ML Wald 0.011 0.011 0.011 0.052 0.051 0.052  0.103 0.101 0.102 

aD re rated odel e βi = stim re b illio ons nc

 
owe ests lter y is H1: he  risk of type I er t  a. 

 Nomin True: 

ata we  gene from M A wher  0 and e ations a ased on 4 m n iterati with bala ed data. 

Table 4. The p r for t  with a native h pothes β  > 0 w1 re the ror is se  to 0.05  

al:      

Cr .659 1.659 70itical value: 1 1.659 1.645  1.6  1.673 

β - -tes ald) LS  LS -te ald

50 0.050 

0.04 

.06 .533 .562 .528 .551 

0 

1 LS (t test) WLS (t t) ML (W   (t-test) W  (t st) ML (W ) 

0.00 0.050 0.052 0.055  0.050 0.0

0.02 0.150 0.151 0.160  0.150 0.149 0.154 

0.321 0.324 0.344  0.321 0.320 0.334 

0 0.530 0 0  0.530 0 0

0.08 0.721 0.723 0.753  0.721 0.720 0.744 

0.1 0.857 0.859 0.882  0.857 0.856 0.876 

0.12 0.936 0.938 0.952  0.936 0.936 0.949 

0.14 0.975 0.976 0.983  0.975 0.975 0.982 

0.16 0.991 0.992 0.995  0.991 0.991 0.994 

0.18 0.997 0.997 0.998  0.997 0.997 0.998 

0.20 0.999 0.999 1.000  0.999 0.999 1.000 

0.22 1.000 1.000 1.000  1.000 1.000 1.000 

a ere generated from  with diff lues but cons  4.804. Estim io ased on 1 m rations with ba ata and sam- 
ple size n = 108. 
Data w  Model A erent β1 va tant β0 = at ns are b illion ite lanced d

Copyright © 2012 SciRes.                                                                                  OJS 



S. M. GUSTAVSSON  ET  AL. 397

 
r as correct but LS and ML the critical v
were adjusted to g  = 0.05.  adjustment
still had the highest r while WLS now had a l
p r compared to LS. The relative difference bet
th ominal and tru for β1 = 0
decreases with β1. 

 similar to the geometric mean expo- 
sure (0.345 against 0.386). Thus the data can be consid- 

mod  wood-fire or been in a residence 

ods sh w ignifican rence betwe  
the LS  LS-regr  models o othenburg 
differe  indesbe  the ML-re on model 
also sh w rence betw almo and 
Lindesber = 0.041).  the ML-re n model 
showed a significantly lo posure fo smokers  

In

ation is often used to stabilize the variance, 
but this distorts the linear relationship and does not give 

 absolute effect of a predictor. 

isk w  for W alues 
ive α* After  ML 
 powe ower 

owe ween 
e n e power was largest  and 

4.4. Application: 1,3-Butadiene Exposure in Five 
Swedish Cities 

The data on 1,3-butadiene were found to be highly 
skewed (γ = 2.764) whereas the log-transformed values 
were approximately symmetrical (γ = 0.279). The me- 
dian exposure was

ered log-normal. Five predictors were included in the 
el: “Have you lit a

heated with wood burning?” (Wood burning, yes/no), 
“Are you a smoker?” (Smoker, yes/no), “Have you been 
in an indoor environment where people where smoking?” 
(ETS, yes/no), “Proportion of time spent in traffic?” 
(Traffic), and “City of residence”: Umeå (Ume), Stock- 
holm (Sthlm), Malmö (Malmo), Gothenburg (Gbg), and 
reference category Lindersberg. These predictors had 
been shown to be significant in previous studies on other 
datasets [15-17]. 

Neither Wood burning nor Traffic were significant in 
any of the regression models (for ML Traffic was bor- 
derline significant, p = 0.059), Figure 3. All three meth- 
 

o ed a s t diffe en the cities; in
- and W ession nly G
d from L rg, but gressi
o ed a significant diffe een M

g (p Only
wer ex

gressio
r non-

with no ETS (p = 0.013). There were clear differences in 
range of the confidence intervals; with one exception ML 
had the narrowest intervals and LS the widest. 

A second analysis with only the non-smokers (n = 225) 
was performed and then Traffic became significant in the 
ML-regression model (p = 0.039). Otherwise the same 
predictors were significant in all three analyses, as for the 
full dataset. 

5. Discussion 

 this study a new maximum likelihood-based method 
for estimating a linear regression model for log-normal 
heteroscedastic data was evaluated and compared with 
two least squares methods. For log-normal data, the 
log-transform

an estimate of the
Our simulation study demonstrated that the new 

maximum likelihood method (ML) provides unbiased 
estimates of the regression parameters βi, and so do the 
least squares method (LS) and the weighted least squares 
method (WLS). 

 

Figure 3. The LS-, WLS- and ML-estimations of the predictor effects, βi, and their 95% confidence intervals (CI) for 
regression analysis with 1,3-butadiene as the response.  
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One reason for proposing a new regression method is 

the need for a method to estimate a linear regression in 
the presence of heteroscedasticity. The effect of ignoring 
the increasing variance is demonstrated in the use of LS, 
where the s ror, îSEtandard er  

  , was up to 78% larger 
than that e examples that were investigated. 
Since the heteroscedasticity of the data was ignored 
when using LS, the confidence interval was too wide. 
The results of our example with 1,3-butadiene data were 
consistent with those in the simulation study; LS overall 
had the widest confidence intervals and ML the narrow- 
est for the predictor effects. 

For all three methods, estimates of the expected re- 
sponse, 

 of ML, for th

ˆ
Y Xμ , were unbiased. The confidence interval 

for ˆ
Y Xμ  is based on  ˆ

Y Xse μ , which depends on the 
value of t x0. For a model with one predictor, 
both ML  produced an almost correct confi- 
dence in  the narrowest interval at  

he predictor, 
 and WLS

terval, with

0 0,1x S 0 1
ˆ ˆE SE     

 , whereas LS had its nar- 
at 

  
rowest co

  
nfidence interval 0x X  which therefore 

nfidence intervals. 
For ML and WLS the sample-specific standard error, 

does produce erroneous co

 îse  , was a good estimator of the true standard error,  

hereas for LS, w 0
ˆse   greatly overestimated ˆSE 0 

  .  

When investigating the true risk of type I error, α*, for 
tests regarding the regression parameters, the t-tests of 
the LS-estimates of the intercepts produced an α* much 
smaller than the nominal α. This was a consequence of 
the too large  0

ˆse  , c he distribution of the 
t-statistics to have fewer observations in the tails than 
expected. For both the Wald-test (ML) and the t-test used 
for the WLS-estimates, the α* was approximately equal 
to α (for nominal size {0.01, 0.05, 0.10} the largest rela- 
tive deviations were α* = {0.021, 0.072, 0.125}). For all 
three methods, the relative deviation (

ausing t

*  ) was largest 
at nominal size 0.01, indicating a skewness of the test 
st

 both reg
inal 

atistics in the tails. Regarding the power (in tests of β1), 
ML was superior to LS, arding the true and 
nom power.  

The precision of an estimated expected value ( ˆ
Y Xμ ) 

depends both on the regression method and on the varia- 
tion of the predictors , ,  1 pX X . If a predic

he estimated effect of that 
predictor will have a large stand or. In some situa- 
tions a better estimation of the exposure might

tor has a 
very sm n t

ard err
 be achieve 

with
variatio

egressi he expo

models can also be used to estimate the exposure for a 
whole population, provided that the distribution of the 
background factors is known. 

When investigating an exposure-disease associations, 
the measured exposure sometimes include a stochastic 
error (exposuremeasured = exposuretrue + error1), which is 
unrelated to the stochastic error of the (linear) expo- 
sure-response model (response = δ0 + δ1·exposure + er- 
ror2). The issue with regression analysis where the ex- 
planatory variable has measurement errors is raised in 
[23]; given the true exposure, the measured exposure has 
a stochastic variation and different approaches to esti- 
mating the true exposure are compared. In situations with 
measurement errors, the individual- and group-based 
exposure assessment approaches are often compared, see 
e.g. [24,25]. In an individual-based approach, each per- 
son’s measured exposure is used which often leads to a 
bias of δ1 towards null. In a group-based approach, each 
person is assigned an exposure based on group affiliation, 
which is the same as estimating the exposure from a re- 
gression model with only one explanatory variable, 
Group. If several relevant explanatory variables are used 

ased ap

re-re- 

di

all variation, the

 a model that excludes predictors with very small 
n, as has been investigated in [22] for a situation 

where land-use r on is used to estimate t - 
sure. Apart from effect estimation, regression analysis 
can be used to estimate the expected value of the re- 
sponse variable given certain values of the background 
factors (e.g. to estimate the personal exposure as a func- 
tion of easily measured background factors). Regression 

an individual-b proach. A group-based design of 
ten leads to errors in the exposure which are of Berk- 
son-type (exposuretrue = exposuregroup + error3), or ap- 
proximately Berkson-type. As discussed in [24], in a true 
Berkson-error-model, the error3 is independent of expo- 
suregroup, whereas the approximate Berkson-error may 
depend of the group size. The approximate Berkson-error 
is, however, independent of error2. A group-based ap- 
proach often leads to less bias in the δ1 estimate but a 
larger standard error, see e.g. [24,26]. A group-based 
approach with a log-linear exposure-response model can 
have a substantial b

to estimate the exposure (rather than only Group) the 
standard error will decrease and, thus, be more similar to 

ias in the estimated exposu
sponse effect [27]. 

The evaluation of the new ML method, and the com- 
parison to other regression methods, was conducted by a 
simulation study and exemplified on a dataset. The 
simulation study allowed us to assess, with great preci-
sion, the bias, standard error and the distribution of the 
parameter estimates, as well as the risk of type I error 
and the power of the methods. Because of the large 
number of iterations, our results on bias, standard error 
and the inference can be considered to be valid, for 
log-normal data where the relationship is linear. The 
simulation study allowed us to compare the parameters 
of the simulation model (“true β values”) to the estimates 
from each method and also to see how these estimates 
can vary. This would not have been possible had we only 
used empirical data sets, in which the “true” values are 
seldom known. Also, to get a reliable estimate of the 

stribution of the estimated parameters, a large number 
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of data sets would be needed. 
In the simulation study, data were generated from a 

log-normal heteroscedastic distribution with certain pa- 
rameter values. However, empirical data might be only 
approximately log-normal and thus exhibit a larger vari- 
ance than the one in a perfect log-normal distribution. 
Thus the results from the simulation study might not hold 
completely for real data sets of e.g. exposure data. Also, 
in the simulation study the predictors were assumed to be 
measured without measurement errors which might be 
unrealistic for some predictors. Therefore, evaluation of 
the new ML method should also be made on several em- 
pirical data sets. 

Two specific simulation models were used in this 
study where the parameters were estimated from an em- 
pirical dataset and therefore the simulation models can be 
considered to be fairly realistic. The results on bias and 
standard error are likely to be valid also in models with 
other parameter values. The parameter estimates are un- 
biased both for a simple model (with intercept and one 
explanatory variable) and for a model with three ex- 
planatory variables and no intercept, and in both situa- 
tions ML gives the smallest standard errors. This sug- 
gests that the results can be generalized to other datasets. 

The ML estimates are derived true iterations and in 
some situations (sometimes caused by unsuitable start 
values or large variance in the data) the iterations don’t 
converges. This may lead to unrealistic estimations. In 
those cases, censoring data larger than the 95% quantile 
will stabilize the results but will cause underestimations 
of the intercept and standard errors. In those situations 
WLS will generally give the best result. 

In this study the methods have been evaluated for rela- 
tively large samples (n = {108, 216}) and the conclusion 
was that the asymptotic properties of maximum likely- 
hood estimates are valid for these sample sizes. However, 
for smaller samples, further evaluation is needed, espe- 
cially regarding the distribution of the estimates. In other 
studies regarding smaller samples of untransformed log- 
normal data, likelihood-based approaches has been sug- 
gested for constructing confidence intervals for the mean 
and mean response [28,29]. 

This study illustrated that the new maximum likely- 
hood-based regression method has good properties and 
can be used for linear regression on log-normal hetero- 
scedastic data. It provides an estimate of the absolute 
effect of a predictor, while taking the increasing variance 
into account in an optimal way. The study also demon- 
strated that the results from the weighted least squares 
regression (where the increasing variance is accounted 
for) were very similar to those from the ML method. Al- 
though ML gave slightly narrower confidence intervals 
and had higher power regarding β1, both WLS and ML 
can be recommended for linear regression models for 

log-normal heteroscedastic data. 
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