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ABSTRACT 

We consider a network of computer data centers on the earth surface delivering computing as a service to a big number 
of users. The problem is to assign users to data centers to minimize the total communication distance between comput-
ing resources and their users in the face of capacity constrained datacenters. In this paper, we extend the classical planar 
Voronoi Diagram to a hyperbolic Voronoi Diagram on the sphere. We show that a solution to the distance minimization 
problem under capacity constraints is given by a hyperbolic spherical Voronoi Diagram of data centers. We also present 
numerical algorithms, computer implementation and results of simulations illustrating our solution. We note applicabil-
ity of our solution to other important assignment problems, including the assignment of population to regional trauma 
centers, location of airbases, the distribution of the telecommunication centers for mobile telephones in global telephone 
companies, and others. 
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1. Introduction 

Cloud Computing could transform the way we use com-
puter hardware by eliminating the need to own a com-
puter. Instead of placing expensive, fully loaded com-
puters in every school, students all over the world could 
provision computing resources as they need them. A 
Gartner research report places the total savings of mov-
ing away from individually managed desktop computers 
at 41%. Behind the Public Cloud is a physical network of 
data centers with millions of servers, hidden from us 
through virtualization. Virtualization offers Public Cloud 
providers the flexibility to assign each application to run 
on any of its available physical servers. 

The vision of less expensive Tablets powered by the 
remote computing resources of the Cloud is still in its 
early days. Combined, the emerging Tablet computers 
coupled with central Cloud Computing facilities to host 
applications and data will significantly improve schools 
ability to increase the use of computers in the classroom, 
allowing students to expand computing power on de-
mand for educational applications anytime anywhere. 
However, with the transition to the cloud, students’ desk-
tops must be moved from local in-classroom computers 
to large, centralized datacenters. These facilities are 
typically hundreds, if not thousands, of miles away from 
the schools and the homes of students. This distance in-

troduces network delay between the students and their 
desktops. The utility of these students’ remote desktops 
depends on minimizing this network delay. 

Presently, the approach cloud providers use to allocate 
users to a datacenter is referred to as Global Server Load 
Balancing, or GSLB. A user accesses a computer in the 
cloud using an Internet domain name. The domain name 
(for example, www.whitehouse.gov) is translated by a 
Domain Name Service (DNS) into an Internet Protocol 
(IP) address pointing to a specific computing device. 
Where there are multiple datacenters that could satisfy 
the request, the DNS is programmed to return the IP ad-
dress of the closest computing device, or the one with the 
least network delay. The decision of where to put a user 
is made individually for each connection request. This 
approach works well for accessing websites where the 
content is replicated across all cloud locations, such as 
search engines, social network sites, news, and weather. 
For student’s desktops, a more static assignment is 
needed. The CAP Theorem [1] states that a distributed 
system cannot simultaneously provide Consistency, 
Availability, and Partition Tolerance. Even if students 
could afford the cost of replicating their desktops con-
tinually between the multiple geographically disperse 
datacenters selected by a latency-based GSLB, the need 
for desktop consistency over a WAN would exacerbate 
the impact of Availability events or Partitioning events. 
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When based in a cloud, students’ desktops require a con-
tinual static binding to the network access point of the 
student. The cloud-based desktop should be highly 
available (for example, using an Availability Zone [2] 
architecture such as employed by Amazon Web Services). 
Latency-based GSLBs are not useful for such constant 
binding of two locations on the earth’s surface. A form of 
GSLB is required which can statically assign students to 
cloud datacenters. 

One other problem remains. Cloud datacenters, despite 
their large capacity, are finite in size. They can become 
constrained in capacity. The solution for balancing stu-
dents across cloud facilities must take into account occa-
sional capacity constraints and allow weighting of as-
signment to potentially more distant facilities to com-
pensate. 

2. Problem Formulation 

Combined, the emerging tablet computers coupled with 
central cloud computing facilities to host applications 
and data significantly improve schools’ ability to in-
crease the use of computing in the classroom. Cloud 
Computing can provide computing as a service to mil-
lions of students world-wide. These students would need 
tablet computers connected to the cloud via common 
Wi-fi networks and the Internet. The remaining technol-
ogy required to connect these tablets is a placement ser-
vice capable of considering proximity and any capacity 
constraints. Proximity is important due to network delay 
and the high correlation of this delay to physical distance. 
Because the relationship between students and their data 
is continuous, existing GSLB (as described above) will 
not meet this need. The new placement technology would 
need to consider occasional capacity constraints as data-
centers are physical buildings limited by critical, long- 
lead-time resources. These include electrical power, 
cooling capacity and servers, which require many weeks 
to order, ship, and install. The ideal placement technol-
ogy could consider an entire population of students and 
optimally assign it to either the closest datacenter or an 
alternate should capacity in that datacenter be unavail-
able. We would like to develop an algorithm which could 
globally optimize for the variables of population, dis-
tance, and specific points of capacity on the earth’s sur-
face representing datacenters. 

Our starting point in developing a mathematical 
framework is to model the network of computer data-
centers as a set 1 n  on the earth’s surface, 
represented by a sphere 

 , ,S S 
R > 0R of a radius . Each 

datacenter jS  is described by its geographical coordi-
nates, the latitude j  and the longitude j . The popu-
lation of students (users) is a set 1 , , NU U . Our 
task is to create an efficient algorithm to solve the mini-

mization problem for the total distance  between the 
data centers and the students. We assume that each stu-
dent k  is assigned to a data center  



U j k , and the total 
distance is the sum of the distances between the users 
and the corresponding data centers,  

S

    
1

, ,
N

kj k
k

j d S U


            (1) 

where j j k U

 

 is the function assigning the user k  
to the data center j kS . For any two points x, y on the 
sphere we denote  ,d x y  the distance between x and y 
on the sphere, that is the length of the arc of the great 
circle connecting x to y. We also must solve the minimi-
zation of the total distance under certain constraints. In 
real life some data centers become capacity constrained, 
so the solution must take computing capacity into con-
sideration. We will assume that each data center jS  has 
a capacity jC

 0j k

 

 which characterizes how many users it 
can service. For simplicity we assume here that all users 
are equal in terms of the requested volume of services. It 
is easy to extend our model to the case when different 
users request different volume of services. 

The assumption of the limited capacity for the data 
centers leads to the minimization problem with con-
straints: find an assignment function  such that  

   0min ,
j C

j j




 

   

              (2) 

where  

   


# :

for 1, , .

m mC j j k N k j k m C

m n

    

 



 

   (3) 

Observe that # :N k j k m 
S

 U

   

m  is just the num-
ber of users assigned to the data center m . Since the 
number of users is usually large, it can be useful to con-
sider a (nonnegative) measure  of users on the 
sphere. In this case, the total distance functional looks 
like  

   , ,
R

j Uj d S U d U


           (4) 

 where j U  is the assignment function of the users to 
the data centers. 

Respectively, constraint (3) takes the form  

       


:

for 1, , .

mC j j U U j U m C

m n

   

 


    (5) 

To solve the minimization problem we explored the 
possibility of extending classic Voronoi Diagrams. Vo-
ronoi Diagrams are a well-known geometric tool for an-
swering distance related queries. Informal use of Voronoi 
Diagrams can be traced back to Descartes in 1644. In 
1854 British physician John Snow used a Voronoi Dia-
gram to illustrate how the majority of people who died in 
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the Soho cholera epidemic lived closer to the infected 
Broad Street pump. There have been numerous applica-
tions in science and technology since [3-8]. 

Voronoi Diagrams have the unique property that any 
point within a Voronoi cell is closer to the vertex of that 
cell than any other vertex. As we considered how the 
edges of a Voronoi cell behave in reaction to vertices 
constrained in the number of points they could service, 
we found another well-known geometric construct, the 
hyperbola, to be especially applicable. Our result is de-
scribed below in Theorem 3.1, where we show that the 
solution to the minimization problem in the face of ca-
pacity constraints is given by a new, extended form of 
Voronoi Diagram, hyperbolic Voronoi Diagrams on the 
sphere. We believe this form of Voronoi Diagram could 
prove useful in solving many problems beyond the stu-
dent-tablet assignment issue we are tackling here. 

3. Solution of the Constrained Minimization 
Problem 

Let us begin with the unconstrained minimization prob-
lem. In the absence of the capacity constraint, minimiza-
tion problem (2) can be solved by assigning each user U 
to its closest data center jS , so that  0

 j U  is the clos-
est data center to U. Geometrically, we partition the 

ere 

S

sph R  into th ls  me cel   of the Voronoi Dia-
gram V on the sphere with th ints e po mS  (Figure 1). 

 cell mThe   is defined as the set of nts on poi R  
which are closer (or at the same distance) to mS  than to 

her lS ’s, thot at is  

   : , ,m R m for all = .lx d x S d x S    l m

 

   (6) 

Observe that the cells m  are convex spherical poly-
gons on the sphere R


. With the Voronoi Diagram we 

associate a graph V . The vertices of the graph V  are 
the vertices of the polygons  m , and the edges of the 
graph V  are the sides of the polygons m   . The De-
launay Triangulation, associated with the Voronoi Dia-
gram, is the dual graph D  to V , with vertices   Sm  
and edges connecting vertices m ,  if and only if the 
cells 

S lS

m , l  have a common side. 
Thus, in the absence of the constraint, we assign to 

each data center  all users in the cell mS m  of the  
 

 

Figure 1. Voronoi diagram V on the sphere with the points 

Voronoi Diagram. To describe the minimizing assign-
ment in the presence of the constraint we will introduce 
hyperbolic Voronoi Diagrams on the sphere. To get an 
insight into the minimization problem, it’s easiest to start 
by considering the case of a small number of data centers 
and then formulate a general result. Begin with two data 
centers. 

Two data centers. For two data centers 1 , 2 , the 
Voronoi Diagram is described by the spherical bisector 
of 1 , 2 . The bisector is the arc of the great circle 
perpendicular to the arc of the great circle through 1 , 

2  at the middle point (Figure 2(a)). The bisector parti-
tions the sphere into two hemispheres, 1

S S

S S
S

S
 , 2 , and in 

the absence of the constraint we assign all users k  in U

1  to 1  and all users in 2S   to . Let us denote 2S

m  the set of users in m , that is  

 , 1, 2m k mU m   .             (7) 

Suppose now that the data center 1  has a limited 
capacity 1  and the numbers 1  of the users in 1

S
C N   is 

bigger than 1 . Some users must be redistributed in the 
cell 1

C
  from the data center 1  to the one  (Figure 

2(b)). This will increase the total distance by  
S 2S



 mS . 

    
12

2 1, , ,
k

k k
U

j d S U d S U


          (8) 






 

where 12 1 
S

 is the set of users redistributed from S1 
to 2  (Figure 3(a)). The goal is to minimize  j

12

 
under the fixed number of the users in  , since  
 

 
(a) 

 
(b) 

Figure 2. Two data centers with and without capacity con-
straints. (a) Without constraints; (b) With constraints. 
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12 1 1N C  .                 (9) 

This minimization condition implies that if ,  
are any two users such that 

kU lU

12kU   and U 1 12\l   , 
then  

       2 1, , ,l ld S U

kU

lU 2S  j

 

 

1

1

, 0

, .

k k

k k

d S U

U d S U

   

  

d d

2d

2 1, ,k kd S U d S U d S U     (10) 

because otherwise we can switch  back to S1 and 
 to  and in this way decrease  in (8). Let  

 ,S 

 

12

1 12

1 2

2 2
\

max

and

min ,

k

k

U

U

d d U

d d S




 



 

    (11) 

Then (10) means that 2 1 . Let  be any num- 
ber between  and . Then  

d

1d

   

 

2 1

2 1

,

, .

k k

k k

S U d

d S U

   

  

 0S  2k

 
12

1 12\

max ,

min ,

k

k

U

U

d S U d

d S U




 



 

      (12) 

Since 2 1k k   for U ,d S U d ,U   , the 
latter relation can be extended to  

 

 
12 2

1 12\

max ,

min ,

k

k

U

U

d S U d

d S U

 



 

 

2 1

2 1

,

, .

k k

k k

S U d

d S U

   

   

 

 

     (13) 

Consider the spherical hyperbola on the sphere R  
(cyan line on (Figure 3(b))), defined as a locus of points 
x satisfying the equation,  

 d x S  1 2, , .d d x S            (14) 

It partitions the sphere R D
S 

1D

 2,d d x S

 2,d d x S

D D
S S



 into two regions 1  and 

2  such that 1 1  and 2 2  (Figure 3(b)). The 
regions  and  are described as  
D S D

2D
D

 1 1: ,D x d x S          (15) 

and  

 2 1: ,D x d x S          (16) 

The regions 1 , 2  are the cells of the hyperbolic 
Voronoi Diagram of the points 1 , 2  with the pa-
rameter d. We obtain from (13) that to minimize the total 
distance j

1D
D 1S

S S
S

j m

  we have to find such d that the number 
 of users in the region  is equal to the capacity 
 and to assign all users in  to the data center . 

1N

1C 1

Now let’s look at the case of three data centers. 
Three data centers. For three data centers 1 , 2 , 

3  the above considerations prove the following. Sup-
pose that 0  is the minimizing assignment, and let 

 
(a) 

 
(b) 

Figure 3. Solution for two data centers with capacity con-
straints. (a) Illustration for (13); (b) Regions D1, D2. 
 

   

   

max , ,

min , , .

k m

k l

m k l k ml
U

m k l k
U

d S U d S U d

d S U d S U





   

   





d

12 23 31 0.d d d

      (17) 

In general, the numbers ml  are not unique, because 
they can be chosen from the intervals (17). I can state 
that it is possible to choose these numbers in such a way 
that  

 , 
 be the set of users which  assigns to m , 
. Then there exists numbers  such that for 

,  

1, 2,3,m  S
1,2,3m 

=m l

0j

mld

  

12

             (18) 

Geometrically this equation means that the three 
spherical hyperbolas,  , 23 , and 31 , where  

    : , , ,ml m ml lx d S x d d S x   

12 23 31d d d

     (19) 

intersect in one point. Suppose, for the sake of contradic-
tion, that (18) is not possible. The set of all possible val-
ues of the sum  

12 23 31

12 23 31

min min min

max max max .

d d d x

d d d

 is the interval,  

  

  

d d d

        (20) 

If this interval does not contains 0, then the sum 

12 23 31 

12 23 31min min min 0.d d d d

 is either always positive or always nega-
tive. Suppose, for the sake of definiteness, that it is al-
ways positive, so that  

   

12d 23d 31d

1kU 

      (21) 

Take the minimal values of , , . Then we 
obtain from (17) that there exists 2lU ,  , and 

3pU   such that  
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 
 
 

l

d S U d

d S U d

d S U d

 
 
 

1 2 12

2 3 23

3 1 31

, , ,

, , ,

, , .

k k

l

p p

S U d

S U d

S U d

 

 

 

U

        (22) 

Let us move k  from 1  to 2 , l  from 2U   to 

3 , and pU  from 3  to 1 . Then the number of us-
ers in 1 , 2 , 3  will not change but the total dis-
tance will decrease by  

       3

31

, ,

0,

l ld S U

d d

  

   

j

23d 31d

1d

2d 3d

12 1 2

23 2 3

31 3 1

,

,

.

d d d

d d d

d d d

 
 

 

 ,l k ld S U d 

R
 ,m l ld S x d 

d d d

mD

m 1,2,3m 
d d

C

1C C C
1,2,3m 

0d d  d
N

C
0 d d

m

1,3m

   
1 2 2

3 1 12 23

, ,

, ,

k k

p p

d S U d S U d S U

d S U d S U d d

   
    

 (23) 

  (Figure 4(c)).  

hence 0  is not the minimal total distance assignment. 
This contradiction proves the possibility of choosing the 
numbers ,  and  in such a way that (18) 
holds. 

12d

Equation (18) implies that there exist numbers , 
,  such that  

                (24) 

So, by (17),  

 


: ,

for all , 1,2,3.

m k m k mU d S U d

l m m

 

 


  (25) 

This result can be restated as follows. Partition the 
sphere  into the three cells,  

  


: ,

for all , 1, 2,3,

m mD x d S x d

l m m

 

 
    (26) 

of the hyperbolic Voronoi Diagram with the parameters 

1 , 2 , 3 . Then to minimize the total distance func-
tion assign the users in the cell  to the data center 

, . S
The parameters , 2 , 3  are determined by the 

capacities , 2 , 3 . We assume that the total capac-
ity 1 2 3  of the data centers exceeds the number 
of users, because otherwise it would be impossible to 
service all users. The following three cases can appear: 

1d

1C
 

C
CC C

1) No constraints are active, which happens when the 
capacities , 2 , 3  are big enough. In this case 

1 2 3 , so that m , , are the classi-
cal Voronoi cells on the sphere (Figure 4(a)).  

0d d d  D

2) One constraint is active, say, 1C . In this case, 

1 , 2 3 , and the parameter 1  is deter-
mined by the condition that the number 1  of users in 
the cell  is equal to  (Figure 4(b)).  

0d 

1 1

3) Two constraints are active, say, 1C , 3 . In this 
case, 1 , 2 , 3 , and the parameters 1 , 

 are determined by the conditions that the number 
 of users in the cell  is equal to C  for 

D C

0 dd

3d

mN

0

mD

The subsequent sections present numerical algorithms, 
computer implementation and results of simulations il-
lustrating the solution for 2, 3, and 4 data centers, and 
also, for a big number of data centers. 

General case. The general hyperbolic Voronoi Dia-
gram of points  , , nS S

S md
1  is defined as follows. Sup-

pose that to each point m  a number  is assigned. 
Then the hyperbolic Voronoi Diagram  

   1, , , ,nV d d d d   

with the parameters d mS

mD mS
m  and the points  , is de- 

fined as follows. The cell  of the point  is de- 
fined as  

   


: , ,

for all .

m R m m l lD x d x S d d x S d

l m

    



ml

  (27) 

  separating two neighboring cells ,  mDThe curve 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Three data centers. (a) No constraints; (b) One 
constraint; (c) Two constraints. 
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lD

 , ,l ld x S d

4. Numerical Algorithms and Computer 
Simulations 

 has the equation,  

 , m md x S d          (28) 
For the computer simulations we wrote a system of pro-
grams using the MATLAB 2010 software. Specifically, 
we wrote programs for constructing the Voronoi Dia-
grams and Delaunay Triangulations on the sphere, both 
classical and hyperbolic, for calculating the total popula-
tion in each of the Voronoi cells, and a program with an 
iterative algorithm for finding a hyperbolic Voronoi Dia-
gram which minimizes the total distance functional under 
given constraints. We have modeled different types of 
the constraints:    

so ml  is a part of the spherical hyperbola on the sphere 

R



. A vertex  of the hyperbolic Voronoi Diagram is a 
point which belongs to three or more cells. The graph 

V  of the hyperbolic Voronoi Diagram 

v

 d  V d
 v  e

 

 con- 
sists of the vertices  and the edges , which are 
the curves  separating neighboring cells. ml

A solution to the constrained minimization problem 
can be obtained as follows. There is a natural assumption 
that the total capacity of all data centers is not less than 
the number of the users,  1) no constraints;  

1

n

m R
m

C 


 

 U
 j U

, ,d  j
D



ly if mU D 

S S
S

S

2) limited number of users in the specific cells;  
.               (29) 3) equal numbers of users in each Voronoi cells.  

In this section we discuss our algorithm in details and 
present results of our simulations under the constraints (a) 
and (b) for 2, 3, and 4 data centers. The case of many 
data centers will be discussed later.  

Otherwise, it would be impossible to service all the 
users. 

Theorem 3.1 For any measure  a minimizer 

0  exists, which can be obtained as follows. There 
exist numbers  1 n  such that the minimizer 0  
is obtained by assigning all users in the cell m  of the 
hyperbolic Voronoi Diagram  to the data center 

, so that  

d

V d

mS

Two data centers. 1 , 2 . As an illustration, start 
with 1  in Seattle (the magenta diamond in the left up-
per corner in Figure 5) and 2  in Atlanta (the red dia-
mond in Figure 5), assuming that all users are located in 
the USA. Let’s also assume that all citizens of the USA 
are the users. The arc  1 2  of the great circle con-
necting 1  to 2  is shown by the yellow line in Fig-
ure 5. Observe that in Figure 5 the background is the 3D 
projection of the earth from Google Earth. The center of 
the projection is chosen at some point with the latitude 

,S S
S S

0

 0 if and onj U m .      (30) 

A full proof of this theorem can be obtained by extending 
the logic described for three data centers to a general 
case. We omitted it here due to length.    
 

 

Figure 5. The solution to the constrained minimization problem with 2 data centers, in Seattle (the magenta diamond in the 
left upper corner) and Atlanta (the red diamond). The arc of the great circle connecting Seattle to Atlanta is shown by the 
yellow line. The cyan line is the spherical bisector between Seattle and Atlanta. The thin magenta lines show spherical hy-
perbolas which are the successive approximations to the hyperbolic Voronoi Diagram on the sphere, with the constraint of 80 
million users in the Atlanta data center. The thick red line is the final approximation. The region inside the red line contains 
79.4 million citizens, which are assigned to the Atlanta data center. 
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and the longitude 0 . Notice that the great circle con-
necting Seattle to Atlanta (the yellow line) is not a per-
fect straight line, and it is slightly curved in the projec-
tion. 

 

The spherical bisector 0  of , ,  1S 2S

  1 2, ,S d x S



 0 : ,Rx d x        (31) 

(the cyan line in Figure 5) is a great circle through the 
midpoint of the arc 1 2  and perpendicular to ,S S
 1 2 . The bisector divides the sphere ,S S R  into two 
hemispheres, Seattle  and Atlanta . Estimating the popu-
lation in the two hemispheres suggests that about 73 mil-
lion citizens live in Seattle  and about 236 million in 

Atlanta . If the goal were to minimize the total distance 
without any constraint, then the simple answer would be 
to assign all the users in Seattle  to the data center in 
Seattle, and all the users in Atlanta , to the data center in 
Atlanta. 

But what if the data center in Atlanta has a capacity of 
only 80 million users? Then we need to redistribute some 
users from Atlanta to Seattle. Since the goal is to mini-
mize the total distance, the answer is to find a hyperbola  

  1: ,R   2, ,x d x S    d x S d      (32) 

such that the population in Atlanta  is close to 80 million, 
but not more. This can be found by successive approxi-
mations and by a multiscale analysis of the population 
distribution. 

To analyze the population distribution, start with a 
large scale distribution, in which the states are repre-
sented by their geographic centers and the whole state 
population is put in the state geographic center. By suc-
cessive approximations, the hyperbola (32) can be found 
which gives a large scale solution to the constrained 
minimization problem. Then, a finer scale is used in 
which the population of the states near the hyperbola of 
the large scale solution is represented by smaller units. 
This results in a solution to the constrained minimization 
problem at the finer scale. Then, if needed, a second finer 
scale can be considered, and so on. In the multiscale 
analysis of the population distribution, we consider big 
metropolitan areas like New York, Chicago, Houston, etc. 
as point masses, with all the population of the metropoli-
tan area concentrated in one point. 

For the large scale solution to the constrained minimi-
zation problem, use successive approximations of the 
parameter d in (32). In the first step , where  (1)d d

 1 2

1
,

2
d d S S

  (1)
2,d x S d



(1)              (33) 

The hyperbola  

 1 1: ,Rx d x S        (34) 

crosses the arc 1 2,S S 1 at the point X  such that  

 1 2 1 2

1
, , ,

4
d X S d S S

(1)
(1)

          (35) 

see a thin magenta line in Figure 5. An analysis of the 
population distribution gives that about 127 million citi-
zens live in the region Seattle  and about 182 million in 
the one Atlanta , with respect to the hyperbola 1 . It is 
still more than 80 million. Therefore, the second step is 
to take the hyperbola 2  through the point 2X  on the 
arc  1 2,S S

 

 such that  

 2 2 1 2

1
, , ,

8
d X S d S S

(2)
(2)

         (36) 

the second magenta line in Figure 5, resulting in about 
209.6 million citizens living in the hemisphere Seattle  
and about 99.4 million in the hemisphere Atlanta , with 
respect to the hyperbola 2 . We continue with this, tak-
ing the third, fourth, and subsequent approximations. The 
first four approximations are shown by thin magenta 
lines in Figure 5. Observe that the successive hyperbolas 

j  are jumping back and forth. 
We find that the 8-th approximation gives 75.1 million 

and the 9th one, 83.8 million. After that, all the subse-
quent approximations oscillate between these two num-
bers. The reason is the large scale representation of the 
population. The difference of 8.7 million comes from the 
state of New Jersey. Therefore, we consider a finer scale 
for the representation of the population distribution in 
New Jersey and other states near the hyperbola. In the 
finer scale we find, by successive approximations, a so-
lution with 79.2 million population inside hyperbola (32). 
This solution is shown by a thick red line in Figure 5. In 
a similar way, if needed, subsequent approximate solu-
tions with even better approximation to 80 million can be 
obtained. 

Three data centers. The next step is to move on to 
three data centers 1 , 2 , and . As an illustration, 
we will consider 1  in Seattle,  in Atlanta, and  
in New York, see Figure 6. 

S S 3S
S 2S 3S

   
Focus on the three bisectors,  

 : , , , ,ij R i jx d x S d x S i j     (37)    

(the cyan lines in Figure 6), which intersect at some 
point 0X  (the red point in Figure 6). The point 0X  is 
the vertex of the spherical Voronoi Diagram with the 
three points , 2 , and 3 . The bisectors ij1S S S  , ema-
nating from 0X  to the opposite point 0 π X  on the 
sphere R , are the edges of the Voronoi Diagram. By an 
analysis of the population distribution, there are about 
72.9 million people who live in the cell Seattle , 144.1 
million in Atlanta , and 92.1 million in NY . To restrict 
the population in the Atlanta cell by 80 million, there 
must be a number d such that considering the cells 1 , 

2 , 3  of the hyperbolic Voronoi Diagram,    
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Figure 6. The spherical Voronoi Diagram for the 3 data centers, in Seattle, Atlanta, and New York. The arcs of the great cir-
cles connecting Seattle to Atlanta, Seattle to New York, and Atlanta to New York are shown by yellow lines. The cyan lines 
are the spherical bisectors between these cities. The cyan lines intersect at a point which is the vertex of the Voronoi Diagram. 
 

    , ,j: , ,ij R i i jx d x S d d x S    

 1 2 3, , 0d d d 

d i j 

 , ,0d

(1)d d

 (38) 

with the parameters , the popula-
tions in the Atlanta cell is close to 80 million but under 
80 million. This is done by iterations (successive ap-
proximations) and by a multiscale representation of the 
population distribution. 

Start with the large scale representation of the popula-
tion distribution. At the first step of the successive ap-
proximations take , where  

 2 3

1
,

2
d d S S

(2)d d

(1)

 2 3,d S S

              (39) 

and  is the distance between Atlanta and New 
York. This results in a population of 75.4 million in the 
Seattle cell, 92.4 million in the Atlanta cell, and 141.1 
million in the New York cell. Since the population in the 
Atlanta cell is bigger than 80 million, the second step 
takes , where  

 2 3

3
, ,

4
d d S S

(3)d d

(2)               (40) 

and we find the population of 77.4 million in the Seattle 
cell, 58.3 million in the Atlanta cell, and 173.2 million in 
the New York cell. The third step takes , where  

 2 3

5
, ,

8
d d S S

this point, steps switch to a finer representation of the 

oximation is shown by a thick red line 
on

w consider four data cen-
te

1S s i Sea  

4S
 Delaunay Triangulation on the 

sp
i Diagram (t

(3)               (41) 

and results in the population of 77.4 million in the Seattle 
cell, 77.0 million in the Atlanta cell, and 154.5 million in 
the New York cell. And so on. After several iterations 
the numbers begin oscillating between two values, and at 

population distribution near the hyperbolas and continue 
the iterations.  

The final appr
 Figure 7. It gives the population of 77.5 million in the 

Seattle cell, 79.8 million in the Atlanta cell, and 151.7 
million in the New York cell. 

Four data centers. Let us no
rs 1S , 2S , 3S , and 4S . As an illustration, assume 

that  i n ttle, 2S in Atlanta, 3S  in New York, 
and  in Phoenix.  

Figure 8 depicts the
here for 1 2 3 4, , ,S S S S  (the yellow lines) and edges of 

the Vorono he cyan lines). The edges of the 
Voronoi Diagram are the arcs of the bisectors between 

iS , jS , i j . There are 4 Voronoi cells  j , so that 

j jS  . An nalysis of the population distr on gives 
4 million are in the Seattle cell 1

 a ibuti
that 30.  , 141.2 million 
in the Atlanta cell 2 , 92.1 million in t New York cell 

3

he 
 , and 45.3 millio in the Phoenix cell 4n  . 

Suppose that the Atlanta data center h a as capacity of 
80 million, and each of the other centers has a big capac-
ity. Then a new number d is required such that consider-
ing the cells 1 , 2 , 3 , 4  of the hyperbolic Vo-
ronoi Diagram,  

    , , , ,ij R i i j j:x d x S d d x S d i j       (42) 

with the parameters    1 2 3 4, , , 0, ,0,0d d d d d
 cell 2

, the 
population in the Atlanta   is close to 80 m

 pa-
ra  

illion 
but not more. This is done by iterations and by the mul-
tiscale representation of the population distribution. 

After several successive approximations of the
meter d, the population in the Atlanta cell begins to 
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Figure 7. The solution to the constrained minimization problem with the 3 data centers, in Seattle, Atlanta, and New York. 
The solution is shown by a thick red line. 
 

 

Figure 8. The Voronoi Diagram on the sphere for the 4 data centers, in Seattle, Atlanta, New York, and Phoe x. The arcs of 

scillate between 73.0 million and 86.0 million. An the Atlanta cell is 79.3 million, which is close to 80 mil-

s. Namely, in the 
ori

ni
the Delaunay Triangulation on the sphere for the 4 centers are shown by yellow lines. The cyan lines are the edges of the Vo-
ronoi Diagram. 
 
o
analysis of the population distribution shows that the 
oscillations are due to the state of Illinois, with the popu-
lation of 13 million. Therefore, the next step is to con-
sider a finer representation of the population distribution 
in Illinois and some other states near the edges of the 
Voronoi Diagram, continuing the iterations of the pa-
rameter d. Finally, the result is the hyperbolic Voronoi 
Diagram shown in Figure 9, in which the population in 

lion. The populations in the other cells are: 30.4 million 
in the Seattle cell, 130.5 million in the New York cell, 
and 68.8 million in the Phoenix cell.  

It is worth noticing the bifurcation of the hyperbolic 
Voronoi Diagram during the iteration

ginal Voronoi Diagram on Figure 8 the Seattle and 
Atlanta cells have a common boundary within the figure, 
while in the final hyperbolic Voronoi Diagram on Figure    
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Figure 9. The solution to the constrained minimization problem with the 4 data centers, in Seattle, Atlanta, New York, and 

Gi n  on the sphere 

Phoenix. The solution is shown by a thick red line. Observe the bifurcation of the Voronoi Diagram from Figure 8. 
 

 they do not have a common boundary within the figure. 9

5. The Voronoi Diagram on the Sphere and 
the Convex Hull 

ven n points  1, ,S S R , the Vo-
ronoi cell j  o  f the point jS  is defined the set of 
points whic re closer to 

as 
h a jS  (or at the same distance) 

than to any other point iS  th respect to the spherical 
metric on 

wi

R . The Voronoi cell is a convex spherical 
polygon and e set of vertices of all Voronoi cells is the 
set of vertices of the spherical Voronoi Diagram. 

There is a nice relation between the spherical Voronoi 
D

 th

iagram and the convex hull H of the points  1, , nS S  
in the 3D space. This relation was observed by ], 
[10] (see also [11]). Namely, looking at any facet m

 Brown [9
F  of 

the convex hull H and the plane mP  through mF , the 
plane mP  intersects the sphere R  by a circ  mle  . 
Then th  center mv  of the circle e m  on the sphere R  
is a vertex of the Voronoi Diag . More precis , 

m Rv   is the center of the spherical cap m , bounded 
b  circle m

ram ely

y  the  , which contains no points jS  inside 
the cap. The se   mv  coincides with the set o  vertices 
of the Voronoi Diagram. This gives a powerful method 
of the construction of the spherical Voronoi Diagram. In 
particular, since the convex hull of the points  1, , nS S  
can be constructed in  lnn n  operations, 
cal Voronoi Diagram nstructed in 

t f

the spheri-
can be co  lnn n  

operations as well. 
Two neighboring facets mF  and lF  of th  

hu
e convex

 t ticll share an edge mle  and wo ver es iS  and jS , 
the end-points of the edge mle . The arc of th  Delaun y 
Triangulation connecting S  and 

e a

i jS  is th c of th

the half-planes through m

e ar e 

formed by great circle which lies in the dihedral domain 
F  and lF , which is vertically 

opposite to the one containi g the co vex hull H. 

6. Numerical Algorithm for Many Centers 

In the case of many data centers  1, , nS S , th

n n

e first 
m. 
ta 

ers mN  i

step is construction of their spherical Voronoi Diagra
The next step is to compare the capacity mC  of the da
center mS  with the number of us n the Vo-
ronoi cell m  containing mS . The following assump-
tion is made, which seems plausible for the computer 
cloud n works: for most mS ’s the capacity mC  is big 
enough so i does not create any constraint. Mathemati-
cally, there is an assumption that for these mS ’s we have 
an unlimited capacity, mC  . It is also plausible to 
assume that the cells with constraints are isolated. Both 
assumptions stem from the practical obs rvation that 
capacity constraints res lt suboptimal operational 
characteristics for computer clouds, and are therefore 
uncommon. In this case we need to change the Voronoi 
Diagram only locally. This can be done similarly to the 
described above procedure for a small number of data 
centers.  

As an example, look at a model minimization problem 
for 10 data centers in Seattle, Atlanta, New York, Phoe-
nix, San Francisco, Denver, Houston, Chicago, Boston, 
an

et
t  



e
u  in 

   

d Miami (see Figure 10). The Voronoi Diagram on the 
sphere for these centers is shown by the cyan line. The 
distribution of the population in the Voronoi cells looks 
as follows: Seattle—13.8 million, Atlanta—48.5 million, 
New York—61.5 million, Phoenix—6.7 million, San 
Francisco—41.1 million, Denver—18.6 million, Houston 
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Figure 10. The solution to the constrained minimization problem with 10 data centers, Seattle, Atlanta, New York, Phoenix, 
San Francisco, Denver, Houston, Chicago, Boston, and Miami. The Voronoi Diagram on the sphere with th e 10 points is 

that the data 

ied the minimization problem for the 
n distance in a computer cloud under 

he numb cell 

es
shown by the cyan line. In this case, there are two constraints: in San Francisco the capacity is equal to 15 million users and 
in Atlanta it is 20 million. The constraints change the Voronoi Diagram locally near Atlanta and San Francisco to the hyper-
bolic diagram. The changes are shown in red. 
 
—31.5 million, Chicago—57.6 million, Boston—10.9 

illion, and Miami—18.7 million. Suppose 
jS . 

m
centers in Atlanta and San Francisco have limited capaci-
ties of 20 and 15 million users, respectively. Then their 
users must be redistributed to the neighboring centers. To 
solve the minimization problem with these constraints, 
the hyperbolic Voronoi Diagram is first constructed. 
Then the iterative method described above is applied 
together with the multiscale analysis of the population. 
As a result, the hyperbolic Voronoi Diagram on the 
sphere depicted in Figure 10 is arrived at. It differs from 
the initial Voronoi Diagram only locally, near Atlanta 
and San Francisco. The change from the initial Voronoi 
Diagram to the new one is shown in red in Figure 10. 

7. Conclusions 

In this work we stud
total communicatio
the condition of restricted capacity of the data centers. 
We assumed that the earth is a perfect sphere of radius R, 
so that the earth distance between two points is the length 
of the smaller arc of the great circle connecting these 
points. Our main result is Theorem 3.1, which shows that 
a solution to the minimization problem is given by a hy-
perbolic Voronoi Diagram constructed on the data cen-
ters 1, , nS S . The parameters 1, , nd d  of the hyper-
bolic Voronoi Diagram can be found from the condition 
that t er of users in each 

center 
We discuss numerical algorithms and computer im-

the

r umerical solution for a small number of 
da

lems. We can mention the problem of 
lo

onsistent, Available, Partition-Tolerant 
Web Services,” ACM SIGACT News, Vol. 33, No. 2, 
2002, pp. 51-5 64601

plementation for the construction of  hyperbolic Vo-
ronoi Diagrams satisfying the capacity conditions. We 
conside the n

ta centers, 2, 3, and 4, and for a large number of data 
centers. In the latter case we make a plausible assump-
tion that most of the data centers have sufficient capacity 
to service the clients, and the data centers of insufficient 
capacity are isolated. This allows local construction of 
the hyperbolic Voronoi Diagram from a standard Vo-
ronoi Diagram. 

Although we discuss the application to the computer 
cloud only, it is interesting to note that our solution and 
numerical algorithm can be used to solve other important 
assignment prob

cation of air-bases [8], the assignment of population to 
regional trauma centers, the distribution of facilities in 
global Internet companies like Amazon.com, the distri-
bution of the telecommunication centers for mobile tele-
phones in global telephone companies, data collection 
centers, and others. 
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