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ABSTRACT 

Fibroblasts perform critical functions during the 
normal host response to tissue injury, but the inap- 
propriate accumulation and persistent activation of 
these cells results in the development of tissue fibrosis. 
The mechanisms accounting for the aberrant accu- 
mulation of fibroblasts during fibrotic repair are 
poorly understood, although evidence supports a role 
for fibroblast resistance to apoptosis as a contributing 
factor. We have shown that TGF-β1 and endothelin-1 
(ET-1), soluble mediators implicated in fibrogenesis, 
promote fibroblast resistance to apoptosis. Moreover, 
we recently found that ET-1 induced apoptosis resis- 
tance in normal lung fibroblasts through the upregu- 
lation of survivin, a member of the Inhibitor of 
Apoptosis (IAP) protein family. In the current study, 
we sought to determine the role of survivin in the 
apoptosis resistance of primary fibroblasts isolated 
from the lungs of patients with Idiopathic Pulmonary 
Fibrosis (IPF), a fibrotic lung disease of unclear eti- 
ology for which there is no definitive therapy. First, 
we examined survivin expression in lung tissue from 
patients with IPF and found that there is robust ex- 
pression in the fibroblasts residing within fibroblastic 
foci (the “active” lesions in IPF which correlate with 
mortality). Next, we show that survivin expression is 
increased in fibroblasts isolated from IPF lung tissue 
compared to cells from normal lung tissue. Consistent 
with a role in fibrogenesis, we demonstrate that TGF- 
β1 increases survivin expression in normal lung fi-
broblasts. Finally, we show that inhibition of sur- 
vivin enhances susceptibility of a subset of IPF fibro- 
blasts to apoptosis. Collectively, these findings suggest 
that increased survivin expression represents one 
mechanism contributing to an apoptosis-resistant phe- 

notype in IPF fibroblasts.  
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1. INTRODUCTION 

Idiopathic Pulmonary Fibrosis (IPF) is a chronic lung 
disease characterized by the progressive development of 
scar tissue which can ultimately lead to respiratory fail- 
ure and death. The incidence of IPF is increasing and, 
with an average survival of 2 - 3 years following the dia- 
gnosis, the overall prognosis is poor [1-3]. Although 
several randomized clinical trials have evaluated a num- 
ber of therapeutic targets in IPF over the last decade, 
there continues to be a lack of clearly effective pharma- 
cologic therapy [4]. Despite the generally poor prognosis, 
a well-recognized clinical feature of IPF is the markedly 
heterogeneous clinical course, with some patients main- 
taining stable lung function for years while others ex- 
perience a rapid deterioration culminating in respiratory 
failure and death within months of the diagnosis [5]. It is 
critical to better understand the mechanisms of biologic 
heterogeneity that underlie the variable clinical course of 
IPF in order to identify novel targets for intervention that 
can be applied in a personalized manner [6]. 

Alveolar scarring in IPF is hypothesized to result from 
dysfunctional wound repair which is characterized by the 
accumulation of mesenchymal cells (including fibro- 
blasts and their differentiated phenotype, myofibroblasts) 
within pathologic lesions called fibroblastic foci [7,8]. 
During normal reparative responses following injury, 
mesenchymal cells perform critical functions which pro- 
vide healing wounds with tensile strength and facilitate 
the homeostatic restoration of epithelial integrity, in- 
cluding the synthesis, secretion, organization and con- *Corresponding author. 
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traction of new extracellular matrix (ECM), [1,9-11]. 
Resolution of the normal repair process requires clear- 
ance of fibroblasts via apoptosis [12,13]. However, in the 
dysfunctional repair that is evident in IPF and other dis- 
eases characterized by fibrosis, the persistence of repara- 
tive fibroblasts leads to excessive deposition and organi- 
zation of ECM [14]. Several recent studies demonstrate a 
paucity of apoptosis within the mesenchymal cells that 
comprise the fibroblastic foci in IPF, highlighting one 
mechanism that contributes to the persistence of these 
cells [15-18]. Accumulating studies also show that fi- 
brotic lung fibroblasts are resistant to a variety of apop- 
totic stimuli, further supporting a role for impaired fibro- 
blast apoptosis in the pathobiology of IPF [18-25]. How- 
ever, the mechanisms regulating resistance to apoptosis 
in lung fibroblasts have not been fully elucidated [14]. 

Recent studies suggest that Inhibitor of Apoptosis 
(IAP) family proteins can regulate susceptibility to apop- 
tosis in normal lung fibroblasts [18,20,24]. The IAP 
genes encode at least eight different proteins with diverse 
functions, including the direct and indirect regulation of 
apoptosis. The protein family is characterized by the 
presence of at least one baculoviral IAP repeat (BIR) 
domain which is critical for the ability of these proteins 
to inhibit caspase activation in vitro [26,27]. The small- 
est member of the IAP family, survivin (also known as 
BIRC5) is a 16.3 kD protein with one BIR domain that is 
predominantly expressed as a homodimer. Physiologi- 
cally, survivin serves a critical function in cell-cycle 
progression and is essential during embryonic develop- 
ment. In adult cells, however, it is typically expressed 
only in actively dividing cells [28]. As with other IAP 
family members, survivin inhibits activation of caspase 3, 
7 and 9 in-vitro. Moreover, a number of studies demon- 
strate regulation of cell susceptibility to apoptosis by 
survivin, although the precise in vivo mechanisms re- 
main unclear [27]. In accord with its crucial function in 
cell division and apoptosis regulation, inappropriate sur- 
vivin expression is associated with cancers involving 
multiple organs including lung, colon, breast, brain and 
skin [27,29,30]. We have recently shown that induction 
of survivin by the soluble fibrogenic mediator endo- 
thelin-1 (ET-1) reduces the apoptotic susceptibility of 
normal fetal lung fibroblasts and that the anti-fibrotic 
mediator prostaglandin E2 enhances fibroblast suscepti- 
bility to apoptosis while suppressing survivin expression 
[20,24]. The goal of this study was to examine the ex- 
pression of survivin in IPF lung fibroblasts and to deter- 
mine if survivin regulates IPF fibroblast susceptibility to 
Fas-mediated apoptosis. 

2. MATERIALS AND METHODS 

2.1. Cells and Cell Culture 

Normal human adult lung fibroblasts (CCL-210) were 

obtained from ATCC (Manassas, VA). Cells between 
passages 8 and 16 were cultured as previously described 
and growth arrested for 24 hours in serum-free media 
prior to experiments [20]. Patient-derived primary human 
lung fibroblasts were cultured from the lungs of patients 
with IPF or from normal lung tissue from patients un- 
dergoing thoracic surgery for non-fibrotic disease as we 
have described previously [31]. Written informed con- 
sent was obtained from all subjects in accordance with 
the University of Michigan Institutional Review Board.  

2.2. Reagents 

Porcine TGF-β1 was from R&D Systems (Minneapolis, 
MN). The activating anti-Fas antibody (clone CH11) was 
from Millipore (Billerica, MA). The mouse monoclonal 
antibody to survivin used for Western blotting was from 
Abnova. Antibodies to glyceraldehyde-3-phosphate de- 
hydrogenase (GAPDH) were from Cell Signaling (Dan- 
vers, MA). The Cell Death Detection ELISA Kit detect- 
ing histone-associated DNA fragments was from Roche 
Applied Science (Indianapolis, IN). Horseradish peroxi- 
dase conjugated secondary antibodies were from Pierce 
(Rockford, IL). The survivin inhibitor CAY10625, which 
disrupts the interaction between survivin and Smac/ 
Diablo (second mitochondrial activator of caspases/direct 
IAP binding protein with low isoelectric point), thereby 
allowing Smac/Diablo to carry out its pro-apoptotic func- 
tion, was from Cayman Chemical Company (Ann Arbor, 
MI) [32]. YM155, a functionally distinct inhibitor which 
inhibits survivin transcription [33], was from Selleck 
Chemicals (Houston, TX). 

2.3. Immunohistochemistry  

4 µm sections on polylysiene coated slides (VWR, 
Leicestershire, UK) were de-waxed and rehydrated by 
immersion in xylene followed by decreasing concentra- 
tions of ethanol. Sections were washed with tris-buffered 
saline (TBS, pH 7.6), and endogenous peroxidise activity 
was blocked by immersion in 3% H2O2 (v/v) for 30 min- 
utes at room temperature. Sections were washed twice in 
TBS and treated with a 1 in 6 solution of goat serum 
containing 4 drops/ml of Avidin block (Vector Laborato- 
ries, Peterborough, UK) for 20 minutes and incubated 
overnight with rabbit anti-survivin polyclonal antibodies 
(4 µg/ml; Santa Cruz Biotechnology) or an isotype con- 
trol in TBS with 1% bovine serum albumin and 4 drops/ 
ml of Biotin block. Following another wash, samples 
were treated with a 1:200 dilution of biotinylated second- 
dary antibody (Dako, Cambridshire, UK), washed again 
and immersed in a 1:200 dilution of Streptavadin HRP 
(Dako) for 30 minutes at room temperature. After wash- 
ing, DAB peroxidise substrate (Vector Laboratories) was 
added for ten minutes. Samples were rinsed in H2O, 
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counterstained with Gill’s Haematoxylin, dehydrated in 
Xylene and mounted using a Sakura Coveraid system.  

2.4. Quantitative Reverse Transcription 
Real-Time PCR  

Quantitative reverse transcription real time-PCR was 
performed on an Applied Biosystems (Foster City, CA) 
7300 real time PCR machine as we have reported previ- 
ously [31]. Relative quantitation was based on the ΔΔCT 
method and used predesigned primer-probe sets obtained 
from Applied Biosystems TaqMan Gene Expression As- 
says for human Survivin (BIRC5; product number 
Hs00153353_m1). 

2.5. SDS Page Electrophoresis and Western  
Blotting  

Whole cell lysates were collected and subjected to SDS- 
PAGE electrophoresis and Western blotting as previ- 
ously described [20]. All Western blots were stripped 
and re-probed for GAPDH. 

2.6. Densitometry 

Western blots were analyzed using the public domain 
NIH ImageJ program available at http://rsbweb.nih.gov/ij/ 
as previously described [20]. The relative expression of 
survivin was determined by dividing the survivin band 
density (adjusted for the background) by the density of 
the corresponding GAPDH. This ratio of survivin to 
GAPDH was then normalized by dividing these values 
by the average ratio in the “normal” fibroblasts, such that 
the average of all normal (or untreated) lung fibroblasts 
is equal to 1.0 and the IPF samples (or the TGF-β1 
treated samples) represent the fold change. 

2.7. Apoptosis 

Apoptosis was assessed by ELISA-based detection of 
histone-associated DNA fragments using the Cell Death 
Detection ELISA Kit (Roche Applied Science, Indian- 
apolis, IN) as previously described [20]. To allow com- 
parisons across experiments using different IPF fibro- 
blast cell lines, the apoptosis data is represented as the 
percentage of the absorbance of the positive control 
sample (provided by the manufacturer) that was run on 
each ELISA plate. Each IPF sample was run in triplicate. 

2.8. Statistical Analyses 

Statistical analyses were done using ANOVA with Tukey 
post-test for experiments involving multiple comparisons 
(apoptosis assays). An unpaired T-test with Welch’s cor- 
rection was used for comparisons between normal and 
IPF samples (Graphpad Prism software version 5.01 for 

Windows). The relationship between apoptosis induced 
by Fas-activating ligand combined with YM155 or 
CAY10625 was determined using a Spearman correlation 
(r).  

3. RESULTS 

3.1. Survivin Is Expressed in IPF Lung Tissue 

To determine if survivin was increased in fibroblasts 
residing in areas of active fibrosis, we used immunohis- 
tochemistry to examine survivin expression in normal 
and IPF lung biopsies (Figure 1). In normal lung tissue, 
survivin staining was observed in subsets of alveolar 
epithelial cells (Figure 1(a), arrows) and in the normal 
bronchial epithelium (data not shown). In IPF tissue, 
survivin expression was identified in interstitial cells 
within thickened alveolar septae (Figure 1(b), arrowhead) 
and in the alveolar epithelium (Figure 1(b), arrow). 
Marked survivin expression was also observed in mes- 
enchymal cells residing within the IPF fibroblastic foci 
and in the epithelium overlying the fibroblastic foci 
(Figure 1(c)). 

3.2. Survivin Expression Is Increased in IPF 
Lung Fibroblasts 

Having shown expression of survivin within fibroblastic 
foci of IPF tissue, we next sought to compare survivin 
expression in primary lung fibroblasts from patients with 
normal lung architecture to fibroblasts isolated from IPF 
lung tissue. Using quantitative real-time PCR of banked 
RNA from 12 patient-derived normal lung fibroblast cell 
lines and 21 IPF fibroblast cell lines, we found a signifi- 
cant (2-fold) increase in survivin expression in the IPF 
fibroblasts (Figure 2). While the overall difference was 
statistically significant, the distribution of survivin ex- 
pression in IPF fibroblasts was heterogeneous and ap- 
peared to segregate into two distinct groups, with ap- 
proximately half (12/21) of the IPF cell lines showing 
survivin expression that was no different than the aver- 
age expression seen in the normal lung fibroblasts (Fig- 
ure 2, white diamonds). In contrast, 9/21 IPF fibroblast 
cell lines had a more pronounced (average 3.5-fold) in- 
crease in survivin expression compared to the normal 
lung fibroblasts (Figure 2, black diamonds).  

We next assessed the relative survivin protein levels in 
12 IPF fibroblast cell lines compared to 5 normal lung 
fibroblast cell lines (Figure 3). Consistent with the RNA 
findings, survivin expression was significantly (approxi- 
mately 2.5-fold) higher in the IPF fibroblasts. Survivin 
protein expression in IPF fibroblasts was also heteroge- 
neous, with some cell lines indistinguishable from the 
average expression in normal lung fibroblasts (white dia- 
monds), and others demonstrating more than a 3-fold 
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(a)                          (b) 

 
(c)                          (d) 

Figure 1. Biopsies from architecturally normal (a) and IPF 
(b)-(d) lung were immunohistochemically stained with an an-
tibody to survivin (a)-(c) or with an isotype control antibody 
(d). (a) Architecturally normal lung tissue from a patient with- 
out pulmonary fibrosis shows heterogeneous expression of 
survivin in alveolar epithelial cells (arrows); (b) An area of 
alveolar septal thickening in a patient with IPF shows survivin 
expression in alveolar epithelial cells (arrow) and in cells em- 
bedded within the thickened interstitium (arrowhead); (c) A 
fibroblastic focus from a patient with IPF shows survivin ex- 
pression in the mesenchymal cells within a fibroblastic focus 
and in the alveolar epithelial cells overlying the fibroblastic 
focus; (d) Isotype control staining of IPF lung tissue.  
 

 

Normal IPF  
Figure 2. Quantitative reverse transcription 
real-time PCR for survivin expression in 
RNA isolated from explanted lung fi- bro-
blasts derived from 12 normal and 21 IPF 
lungs. Expression levels in the IPF fibro-
blasts appeared to segregate into a cluster 
that was indistinguishable from the normal 
lung fibroblasts (white diamonds) and group 
that had markedly increased levels of sur-
vivin mRNA (black diamonds) p = 0.05. 

 
(a) 

 

Normal IPF  
(b) 

Figure 3. (a) Cell lysates were obtained from normal and IPF 
lung fibroblasts and survivin expression assessed by Western 
blotting. The representative Western blot shows two different 
normal lung fibroblast cell lines (N) and five different IPF lung 
fibroblast cell lines (F). The blots were stripped and re-probed 
for GAPDH; (b) Relative survivin expression in the IPF fibro- 
blasts in comparison to the normal lung fibroblasts was deter- 
mined by densitometric analysis of indexed to the ratio of sur- 
vivin to GAPDH in normal lung fibroblasts. Survivin expres- 
sion in the IPF fibroblasts segregated in to low (white dia- 
monds), and high (black diamonds) levels relative to the nor- 
mal lung fibroblasts. p = 0.004. 
 
increase in survivin expression (black diamonds). 

3.3. TGF-β1 Increases Survivin Expression in 
Normal Fibroblasts 

TGF-β1 is strongly implicated in the pathogenesis of 
fibrosis and has been shown to promote myofibroblast 
differentiation, ECM deposition, and the induction of an 
apoptosis-resistant phenotype [22,23,34]. To determine if 
TGF-β1 enhanced survivin expression in normal lung 
fibroblasts, we treated CCL-210 (normal adult lung) fi- 
broblasts with TGF-β1 and assessed survivin expression 
by Western blotting. Consistent with the induction of an 
apoptosis-resistant phenotype in normal fibroblasts, TGF- 
β1 induced a robust increase in survivin expression within 
six hours of treatment (Figure 4). A similar response to 
TGF-β1 was observed in IMR-90 fibroblasts (data not 
shown). In combination with our prior study showing 
induction of survivin by ET-1, these findings suggest that 
survivin induction represents a conserved response of 
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(a) 

 

TGF-β1 (2 ng/ml)  
(b) 

Figure 4. Normal adult lung fibroblasts (CCL-210) 
were cultured to 60% confluence in DMEM supple- 
mented with 5% fetal bovine serum and growth ar- 
rested in serum-free DMEM for 24 hours prior to 
treatment with TGF-β1 (2 ng/ml) for 6 hours. (a) Sur- 
vivin expression was assessed by Western blotting. 
The blot was stripped and re-probed for GAPDH, 
and is representative of three independent experi-
ments; (b) Densitometric analysis of three independ-
ent replicates of this experiment, indexed to the ratio 
of survivin to GAPDH in untreated CCL-210 cells. 

 
normal lung fibroblasts to soluble pro-fibrotic mediators 
[20]. 

3.4. Survivin Inhibition Enhances IPF Fibroblast 
Susceptibility to Apoptosis 

In normal lung fibroblasts, enhanced survivin expression 
by ET-1 is associated with decreased susceptibility to 
apoptosis [20]. In contrast, the suppression of survivin in 
response to treatment with PGE2 is associated with en- 
hanced susceptibility to apoptosis [20,24]. Finding that 
survivin is expressed within the fibroblastic foci in IPF 
tissue, that IPF fibroblasts demonstrate increased levels 
of survivin, and that TGF-β1 induced survivin expression 
in normal lung fibroblasts, we sought to determine if 
survivin inhibition could modulate susceptibility to 
apoptosis in IPF fibroblasts. Eight patient derived IPF 
fibroblast cell lines were treated with/without Fas-acti- 
vating antibody in the presence/absence of two mecha- 
nistically distinct inhibitors of survivin (CAY10625 or 
YM155) and apoptosis was assessed at 16 hours (Figure 
5). Consistent with prior reports, treatment with Fas- 
activating ligand alone did not significantly increase IPF 
lung fibroblast apoptosis [18,34,35]. However, treatment 
with the Fas-activating antibodies in the presence of ei- 
ther survivin inhibitor was associated with a statistically 
significant increase in IPF fibroblast apoptosis. As with 

 
(a) 

 
(b) 

Figure 5. IPF fibroblasts from 8 different patients were cul- 
tured to 60% confluence in DMEM supplemented with 10% 
fetal bovine serum and growth-arrested for 24 hours in serum- 
free DMEM prior to treatment for 16 hours with/without the 
Fas-activating antibody CH11 (FasL; 250 ng/ml) in the pres- 
ence/absence of the survivin inhibitors CAY10625 (5 µM) or 
YM155 (10.0 µM), or with the survivin inhibitors alone. (a) 
Apoptosis was assessed using ELISA-based detection of his- 
tone associated DNA fragments. To allow relative comparisons 
of apoptosis across experiments, the data for each cell line is 
expressed as the percentage of the assay positive control that 
was included on each ELISA plate. The scatter plot shows the 
distribution of responses in individual cell lines along with the 
mean ± standard error for each treatment group. p = 0.038 
overall (ANOVA). p = 0.027 for FasL compared to FasL/ 
CAY10625, and p = 0.046 for FasL compared to FasL/YM155; 
(b) The correlation of apoptosis between IPF fibroblasts treated 
with FasL/CAY10625 and FasL/YM155. Each point represents 
a different IPF cell line. The Spearman correlation (r) = 0.95. 
 
survivin expression levels, the IPF fibroblast cell lines 
demonstrated heterogeneity in their apoptotic responses 
to Fas-activation in the presence of the survivin inhibit- 
tors, with enhanced apoptosis observed in only half of 
the IPF fibroblast cell lines. Neither inhibitor signifi- 
cantly increased apoptosis in the absence of Fas-activate- 
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ing antibodies. Finally, there was strong correlation be-
tween apoptosis induced by Fas-activation with YM155 
and Fas-activation with CAY1062 (Figure 5(b)), sug- 
gesting that the increased susceptibility to apoptosis was 
specifically related to survivin inhibition and not the re- 
sult of an off-target effect of the inhibitors used.  

4. DISCUSSION 

In the current study, we examined the role of survivin in 
the regulation of IPF lung fibroblast apoptosis. We show 
that survivin expression is increased in the mesenchymal 
cells within the fibroblastic foci of IPF lungs, supporting 
a role for this IAP in the apoptosis-resistant phenotype of 
these cells. Further, we demonstrate increased survivin 
expression in IPF lung fibroblasts compared to normal 
lung fibroblasts, although the expression of survivin in 
these IPF fibroblasts is heterogeneous. Additionally, we 
show that TGF-β1, like ET-1, induces survivin expres- 
sion in normal lung fibroblasts [20]. Finally, we demon- 
strate that pharmacologic inhibition of survivin enhances 
the apoptotic susceptibility of a subset of IPF lung fibro- 
blasts. Collectively, these findings indicate that increased 
survivin expression represents one mechanism by which 
IPF fibroblasts acquire resistance to apoptosis. 

IPF lung tissue is characterized by the heterogeneous 
distribution of fibroblastic foci composed of fibroblasts 
and myofibroblasts which, in contrast to the overlying 
epithelium, lack evidence of active apoptosis [2,14,15, 
17,18]. The mechanisms leading to the lack of apoptosis 
in IPF fibroblasts have not been fully elucidated. Given 
the heterogeneity seen in IPF, it is possible that different 
stimuli converge on overlapping signaling pathways and 
effector mechanisms to promote pro-fibrotic fibroblast 
phenotypes in different patients. Supporting this concept 
of mechanistic heterogeneity with phenotypic conver- 
gence in complex disease states such as fibrosis, we have 
shown that TGF-β1 and ET-1, two soluble mediators 
implicated in fibrosis in-vivo, independently promote 
fibroblast resistance to apoptosis through activation of 
the pro-survival tyrosine kinases, focal adhesion kinase 
(FAK) and phosphatidylinositol 3-hydroxy kinase/AKT 
[23,34].  

We recently demonstrated a mechanistic role for sur- 
vivin in the regulation of normal lung fibroblast apop- 
tosis, showing that FAK and PI3K/AKT activation are 
required for the upregulation of survivin by ET-1 and 
that survivin inhibition attenuates ET-1 mediated resis- 
tance to apoptosis in these cells [20]. In this study, we 
extend these findings into primary fibrotic lung fibro- 
blasts, showing that a significant subset of IPF fibroblast 
cell lines have markedly increased levels of survivin. 
Moreover, while all of the IPF lung fibroblast cell lines 
studied were resistant to Fas-mediated apoptosis, sur- 

vivin inhibition enhanced apoptosis in only one-half of 
the cell lines. The implication of this observation is that 
alternative mechanisms that are not dependent on sur- 
vivin mediate apoptosis resistance in the other half of the 
IPF fibroblast cell lines. Such segregation of IPF fibro- 
blasts into similar apoptosis-resistant phenotypes via he- 
terogeneous mechanisms is reminiscent of a prior study 
demonstrating that diminished expression of the EP2 
receptor accounted for the lack of IPF fibroblast respon- 
siveness to the anti-fibrotic mediator PGE2 in 4/9 cell 
lines while the remaining IPF fibroblasts had decreased 
responsiveness to PGE2 despite normal levels of the EP2 
receptor [36]. Interestingly, we have also shown that 
PGE2 suppresses survivin expression in normal lung fi-
broblasts, suggesting a potential mechanistic link be- 
tween PGE2 resistance and increased survivin expression 
in the IPF fibroblasts.  

Although the mechanisms by which survivin regulates 
cell apoptosis are controversial, there is abundant evi- 
dence demonstrating that survivin inhibition can enhance 
the susceptibility of cancer cells to apoptotic stimuli, 
making survivin an attractive target for anti-cancer treat- 
ments [27,30,33,37-39]. We employed two mechanisti- 
cally distinct inhibitors to assess the role of survivin in 
IPF fibroblast resistance to Fas-mediated apoptosis [32, 
33,40]. Similar to the distribution of survivin expression 
in IPF fibroblasts, inhibition of survivin significantly 
enhanced Fas-mediated apoptosis in approximately half 
of the IPF fibroblasts studied. While all pharmacologic 
inhibitors can have off target effects, we found a high 
correlation between the effects of YM155 and CAY10625 
on cell susceptibility to apoptosis (r = 0.95, p = 0.002). 
This high correlation between the effects of two mecha- 
nistically distinct inhibitors, combined with the lack of 
any significant effect on apoptosis when cells were 
treated with the inhibitors alone, suggests that the en- 
hanced apoptosis was specific to the inhibition of sur- 
vivin and did not represent an off-target effect of either 
inhibitor. 

Studies exploring a relationship between survivin and 
fibrosis are lacking. Our previous in vitro studies support 
a link between survivin and a pro-fibrotic fibroblast 
phenotype [20,36]. Additionally, several studies have 
linked survivin expression with PI3K/AKT activation, 
findings consistent with the established roles of PI3K/ 
AKT signaling in pulmonary fibrosis [18,41-44]. In vivo, 
only one prior study has shown a link between survivin 
and fibrosis [45]. In that study, which employed a murine 
model of reversible liver fibrosis, survivin expression 
was significantly increased during the establishment of 
fibrosis. Moreover, the resolution phase of this fibrosis 
model, which is dependent on hepatic stellate cell (myo- 
fibroblast) apoptosis, coincided with the reduction of 
survivin expression to pre-fibrosis levels. However, a 
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mechanistic link between survivin and fibrosis was not 
examined, and no reports have shown that survivin is 
required for the establishment of fibrosis or that suppres- 
sion of survivin is necessary for the reversal of fibrosis. 
Together with the current demonstration that inhibition 
of survivin can restore susceptibility of IPF fibroblasts to 
Fas-mediated apoptosis, these findings suggest that sur- 
vivin may represent a potential target for anti-fibrotic 
therapies.  

In conclusion, this study is the first to show that sur- 
vivin is expressed in the fibroblastic foci of IPF tissue. 
Moreover, it is the first study to examine survivin ex- 
pression in IPF fibroblasts and to assess the impact of 
survivin inhibition on fibroblast susceptibility to apop-
tosis. Our findings demonstrate that survivin expression 
is increased in a subset of IPF fibroblasts and that it is 
possible to enhance the susceptibility of these cells to 
Fas-mediated apoptosis by inhibiting survivin. The het- 
erogeneity of survivin expression in IPF fibroblasts, and 
the heterogeneous responses to apoptotic stimuli seen in 
the presence of survivin inhibitors, may be a reflection of 
the biologic and clinical heterogeneity observed in pa- 
tients with IPF. Further studies are required to elucidate 
the mechanisms by which survivin regulates apoptosis 
susceptibility in these cells, and to determine if survivin 
inhibition can modulate fibrosis in vivo. 
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