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ABSTRACT 

H0i-eigenwave characteristics of a periodic iris-loaded circular waveguide (PICW) are examined, as concerns the ei-
genmode behavior vs arbitrary variations of the geometric parameters and the Bragg bandwidths vs the parameter of 
filling ld /  extremums. 
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1. Introduction 

The periodic iris-loaded circular waveguide, Figure 1, 
has long since found its several important applications, 
e.g. in the particle acceleration field [1], and thus stimu-
lated its electromagnetics studies. Despite this even its 
eigenwave characteristics available are not to be regarded 
as generally satisfactory [1,2]; foremost theoretically and 
a good deal so [2], whereas exactly knowing the ropes 
wouldn’t do any harm in all respects. 

Certain conceptual points as to the eigenwave pro- 
pagation in PICW are given in [2] to get those waves 
theory building started. As the next step and immediate 
continuation, this paper is concerned with characteriza-
tion of one of the PICW particular wave types - its 
H0i-eigenwaves. 

It is not that only the PICW asymmetric and sym-
metric E0i-waves, in view of their acknowledged com-
plexity [1,3], cannot be properly perceived except by 
rigorous computations. Any simplified modeling, e.g. 
as that of l  0, d  0 in [3], and others like it, are 
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Figure 1. Periodic iris-loaded circular waveguide 

rather unsatisfactory, concerning even the simplest 
guided wave type of H0i-waves. And in fact, there is no 
other way at all for dealing adequately with the PICW 
eigenwave problem except via rigorous computations; 
which is certainly one of the major difficulties in their 
investigation. 

This way, the H0i-waves are generally looked at on the 
dispersion side of their electromagnetics; and all of the 
necessary terms, notions and ways employed are intro-
duced and discussed in detail in [2]. 

2. Arbitrary Geometric Parameters 

As some work model of PICW to be employed through-
out this investigation [2], and in this section in particular, 
radius b is held constant b  3, the long period l = 3 and 
the short one l = 0.75 are examined in detail, as one of 
the wide and one of the narrow cells are considered, and 
radius a is optimally varied. 

The multi-mode Brillouin diagrams is the most suita- 
ble instrument for the purpose. 

The PICW dispersion curves are drawn below with so- 
lid lines, those of the regular waveguide b = 3 with dot-
ted lines, and those of the regular waveguide r = a with 
dashed ones. 

2.1 Period l = 3 

At the narrow iris for d = 2.8, the effect of radius a varia-
tions is represented in Figure 2 for the junior 12 modes 
and a  {2.8, 2.4, 2, 1.2, 0.4}. 

The initial periodicity dispersion (i.p.d.) is quite in ef-
fect at a = 2.8, and H01, H04 are the regular PICW modes 
originated in accordance with the regular waveguide r = 
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3 modes rr HH 0201, , respectively. All the other eigen-

modes are the periodicity ones generated by the former: 
H02, H03 and H011, H012 by H01 ( rH01 ), H05, H06 and H09, 

H010 by H04 ( rH02 ). The modes H011, H012 are the most 

complex ones due to the effect of rH03  mode involved. 

Down to a = 2, all the senior modes of those presented 
are clearly piecewise composed. Ultimately, at a = 0.4, 
the closed- off H05, H06 and H011, H012 get in very close 
vicinities in between. 

There are three regular waveguide r = b modes r
iH0 , i 

= 1,2,3, in the bandwidth. And as radius a decreases, a 
monotonous growth of all of the eigenfrequences for 

,0iH  i = 1,…,12, occurs, except in the regular frequen-
cies: { rrr HHHHHH 0301102050101 ,,  }=0.5 for 3 > 
a > 1.2, { rrr HHHHHH 0301002040101 ,,  }=0.5 for 

02.1  a . 
In the waveguide with a fairly thick iris, e.g. d = 0.3, 

the effect of radius a variations is represented in Figure 
3, the junior 12 modes, a{2.8, 2.4, 2, 1.2, 0.8, 0.4}. 

Here, the regular waveguide r = a i.p.d. effect is valid 
up to a = 2 for all of the modes, except in a few of the 
Bragg bands. At a = 2.8,  = 0, the modes H01, H05 are 

the regular ones (by rr HH 0201, , respectively), the mode 
H05 being only a slightly composed one (the fragment f-1, 
Figure 4); H02, H03; H04, H06; H011, H012 and H07, H08; H09, 
H010 are the periodicity modes by rH01  and rH02  re-
spectively. The fragments f-1,2,3, Figure 4, demonstrate, 
in particular, a significant localization of the periodicity 
partial-wave effect closely around the Bragg wave-points; 
as well as some other exact details of the mode forming. 
For example, in f-2, 5.0 , the modes H07, H010 are 
formed after rH01 , the modes H08, H09 after rH02 , and 
the corresponding Bragg bands are one inside the other. 
In f-3, ,0  H07, H08 are formed after rH02  and H09, 
H010 after rH01 , and the two Bragg bands go one by one. 

A certain regular-waveguide r = a modeling may be in 
some validity in this case, whereupon the eigenfrequency 
equals the regular model’s one for the upper boundaries 

u
i  of the appropriate Bragg bandwidths i  so that 

r
i

u
i H0  = 0.5. 

2.2 Period l = 0.75 

At the wide cell d = 0.65, radius a variations are demon-
strated in Figure 5, 12 modes, a  {2.8, 2.4, 2, 1.2, 0.4}. 
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Figure 2. l = 3, d = 2.8; the effect of radius a variations (a) a = 2.8; (b) a = 2.4; (c) a = 2; (d) a = 1.2; (e) a = 0.4  
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Figure 3. l = 3, d = 0.3; radius a variations (a) a = 2.8; (b) a = 2.4; (c) a = 2; (d) a = 1.2; (e) a = 0.8; (f) a = 0.4  

 
 l = 3, d = 0.3, a = 2.8            l = 3, d = 0.3, a = 2.8              l = 3, d = 0.3, a = 2            l = 0.75, d = 0.65, a = 2.8

 
f-1                           f-2                          f-3                            f-4 

 l = 0.75, d = 0.65, a = 1.6                         l = 0.75, d = 0.2, a = 2                         l = 0.75, d = 0.2, a = 1.6

 
f-5                                           f-6                                          f-7 

Figure 4. Some particularities of the eigenmode formation as radius a varies 
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Figure 5. l = 0.75, d = 0.65; radius a variations (a) a = 2.8; (b) a = 2.4; (c) a = 1.6; (d) a = 1.2; (e) a = 0.4  



H0i-Eigenwave Characteristics of a Periodic Iris-Loaded Circular Waveguide 

Copyright © 2010 SciRes.                                                                               JEMAA 

439

 
At a = 2.8, the modes H0i, i = 1,2,3,6,11, are the regu-

lar ones in one-to-one correspondence with r
iH0 , i = 

1,2,3,4,5, consequently. Of the rest modes, H04, H05 (by 
rH01 ), H07, H08 (by rH02 ), H09, H010 (by rH03 ) and H012 

(by rH04 ) are the periodicity ones. Eventually, at a=0.4, 

the closed-off H04, H05 and H07, H08 and H011, H012 are 
very close in between. 

The piece-wise mode composition due to a lot of the 
inner Bragg wave-points and the wave propagation up to 
rather small radius a values, characterize the waves. Two 
particular cases as to the mode forming are shown in 
detail in the fragments f-4 and f-5, Figure 4. 

The regular-waveguide r = b modeling scheme is not 
relevant in this case, even to the extent it has been in {l = 
3, d = 2.8} event; much less is the r = a scheme. 

At the thick iris d = 0.2, the effect of radius a varia-
tions is demonstrated in Figure 6 for the junior 12 modes, 
a  {2.8, 2.4, 2, 1.2, 0.4}; with two detailed fragments 
on the particularities of the mode forming, f-6 and f-7, 
Figure 4. 

As radius a goes down, the i.p.d. is still mainly in ef-
fect up to a = 1.2; which is evidenced by a fairly straight 
geometry of the dispersion curves. 

The regular-waveguide r = a modeling scheme as that 
in the previous thick-iris event, Figure 3, principally 
holds true in this case also , and even more accurately. 

The fragments f-1 to f-7, Figure 4, exhibit some par-
ticular features of the eigenmode formation and trans-
formation in the waveguide. As the values of d and a 
parameters vary, the standard i.p.d. scheme of the perio-
dicity mode origin in pairs at }5.0,0{ , and their  

further forming at 0 <   < 0.5, somewhat changes to 
include at least three interacting eigenmodes. As it is in 
f-1, H05 being the regular mode (  = 0); in f-4, H06 the 
regular mode, in f-6, H05 the regular mode (0 <   < 
0.5); in f-7, H07 the regular mode (  = 0.5). In f-2, f-3, 
(  = 0.5), mentioned above, all of the modes involved 
are the periodicity ones which, at least after the disper-
sion way of analysis, quite conform to the standard i.p.d. 
scheme [2]. 

3. The Bragg Bandwidths Extremums 

Another view on the H0i-eigenwave behavior is via their 
Bragg bandwidths )(i  extremum characteristics vs 

the parameter of filling 0 <  = d/l < 1 [4]. In essence, 
this is the d-parameter variation in the waveguide in ef-
fect, looked at under a quite promising aspect as to the 
PICW characterization. For one thing, such graphic rep-
resentation of those bandwidths behavior as that, e.g., in 
Figure 7, enables to look simultaneously at both stop and 
pass bandwidths characteristics. And second, the other 
PICW eigenwave types do display a good deal of analo- 
gical behavior, with certain peculiarities of their own [4]. 

In this section, the period values considered are l = 5, 3, 
1.8, 1, 0.75. According to the classifications in [2], l = 5, 
3, 1.8 are the long periods, l = 1, 0.75 are the short ones; 
and thus, some borderline set of the period values is ex-
amined below.  

The general rule for the periodicity modes originated 
by a given regular one in PICW (after the i.p.d.) is that 

)(i ,   = 0, 0.5, have i maxima and i-1 minima 
over the interval 0 <  < 1; while )(i   0 as   0 
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Figure 6. l = 0.75, d = 0.2; radius a variations (a) a = 2.8; (b) a = 2.4; (c) a = 2; (d) a = 1.2; (e) a = 0.8; (f) a = 0.4  
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(a)                                                                    (b) 

 
(c)                                                                    (d) 

Figure 7. l = 5, a = 2.8; the Bragg bandwidths 1
iΔ ( ) = 1, 2, 3, 4, 5, 9,11ω θ , i  

 
(infinitesimally thin slot) and )(i   w > 0 as   

1 (infinitesimally thin iris). 
In Figure 7, l = 5, d = 4.8, a = 2.8, there are the Bril-

louin diagram for 12 junior modes, Figure 7 (a), and 
seven of its Bragg bandwidths )(1 i , i = 1,2,3,4,5,9, 

11, represented via their upper and lower boundaries u
b  

and l
b  vs  , l

bi
u
bii   , Figures 7 (b), (c) and (d). 

The bandwidths )(),( 1
9

1
2    and )(),( 1

11
1
4    

are of a similar origin by their regular “parent” modes: 
)(),( 1

4
1
2    are originated by rH01 , )(),( 1

11
1
9    

by rH02 . And while the partial-wave interactions for the 

bandwidths )(1 i , i = 1,2,3,4,5, are originally entirely 

symmetrical, they are not so for )(1  j , j = 9,11. Be-

cause the nonsymmetrical partial-wave interactions in the 
appropriate inner B. w.-p. (0 <   < 0.5) do have their 
effects regarding )(),( 1

11
1
9    bandwidths, though 

quite slightly there. 
The graphic representation of the PICW pass ),(j  

5,4,3,2j , and stop ,5,...,2,1),(  ii   bandwidths 
of Figure 7 (b) (and every vertical line const  there, 
yields us those in PICW) is equivalent to the continuum 
of the Brillouin diagrams of Figure 7 (a) for ,1,0 iH i  

5,...,2 , d  [0,1]. In view of the relationship of equiva-

lence between the wave and the dispersion equations [see, 
e.g. 2], Figure 7 (b) has, in its way, everything on the 

iH0 -waves, i = 1,2,…,5, as a function of d.  
The effects of radius a variation for l = 3, )(1 i , i = 

1,2,3, are shown in Figures 8 (a)-(c), accordingly. 
The bandwidths )(),( 1

5
1
2   , l = 1.8, a = 2.8, are 

presented in Figures 9 (b) and (c). 
)(),(),(),( 1

10
2
6

1
11

1
6   , l = 1, a = 2.9, are 

presented in Figures 10 (b)-(e), accordingly. The band-
widths )(),( 1

10
2
6    for the inner B. w.-p.s are 

much harder to examine, because their eigenvalue B  
shifts as  varies. Nevertheless certain extremums of the 
bandwidths are obviously available in this case also. 

And finally, )(),( 1
9

1
4   , l = 0.75, a = 2.8, are 

given in Figures 11 (b) and (c). The presence of the inner 
Bragg wave-points for all of the eigenmodes on the short 
[2] periods (wherein l = 1, l = 0.75 are such ones), with 
their asymmetrical partial-wave interactions, does distort 
the regularity of the max/min pattern of above; which can 
be seen in )(1

4   case, Figure 11 (b). Yet for )(1
9  , 

Figure 11 (c), these extremums are still clearly available. 

4. Conclusions 

Under the fundamental primary-causal influence of the 
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(a)                                         (b)                                     (c) 

Figure 8. l = 3; the Bragg bandwidths 1
iΔ ( ) = 1, 2, 3ω θ , i , as radius a varies 

 

 
(a)                                        (b)                                      (c) 

Figure 9. l = 1.8, a = 2.8; the Bragg bandwidths 1
iΔ ( ) = 2, 5ω θ , i  

 

 
(a)                                         (b)                                       (c) 

 
(d)                                                                            (e) 

Figure 10. l = 1, a = 2.9; the Bragg bandwidths 1
iΔ ( ) = 6,11ω θ , i  and 2 1

6 10Δ ( ) Δ ( )ω θ , ω θ  
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(a)                                      (b)                                       (c) 

Figure 11. l = 0.75, a = 2.8; the Bragg bandwidths 1
iΔ ( ) = 4, 9ω θ , i  

 
period value, in particular, in setting the number of eigen- 
modes, with all the consequences of the i.p.d. network 
thus produced [2], and further variations of d and a pa-
rameters, the PICW H0i-eigenwave characteristics can be 
seen are quite complex; even without any of their 
power-flow treatment, illustrated in [2]. 

These waves are not to be satisfactorily interpreted by 
some regular-waveguide modeling schemes, though the 
latter may be in some validity to this case. 

A monotonous response of the H0i-eigenfrequencies to 
both d and a variations, 0/,0/  ad  , is a 
major characteristic feature of those waves. Wherein, 

0)(lim i , as 0  (the i.p.d. of the regular r = 
a waveguide via the narrow cell), 0)()(lim  awi  , 
as 1 , )(aw  monotonously grows as a decreases 
from b downwards (the regular r = b waveguide model-
ing, with the narrow-iris l-d effect in the waveguide). As 
a result, each H0i, is stable (approximately constant) vs a 
at its upper iegenfrequency u

i0 , i.e. either at 5.0  
or 0 . In fact u

i0  monotonously and rather sligh- 
tly grows as a decreases. 

Since the PICW eigenwaves originate principally due 
to interactions in the Bragg wave-points (e.g., after the 
partial-wave model [2]), the Bragg bandwidths )(i  

extremum law of i/i-1 maxima/minima at  {0.5, 0}, 
presented here in brief, can be treated as the general pe- 

riodicity law of the Bragg bandwidths variation vs . The 
limits and specificity of its holding true as radius a varies, 
are different for different wave types [4]. 

It needs a special power flows investigation in order to 
further physically interpret this law in proper detail and 
understanding. 

And finally, the upper-and-lower-boundary represen-
tations of the pass and stop bandwidths, ),(),(  ii   

like those in Figure 7(b), are instrumental and informa-
tive enough, as regards 10    variations, to be in 
their way some 3rd full-right member of the relationship 
of equivalence in the matter, see, e.g., [2]. 
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List of Notations Pertaining to the Problem 

1. ),( BB   ≡ B),(   — Bragg wave-number and 

its ordinate on the Brillouin plane ),(  , i.e., the 

Bragg wave-point (B. w.-p.); 

2. B  — Bragg band, i.e., a (locally) forbidden band; 

kjj
ii ,...,2,1,,   — the i-mode propagation band 

and all of its possible Bragg bands (the mode being be-
neath those); 

3. periodicity  dispersion — the first one of the two 

factors — periodicity and diffraction — responsible for 
the waveguide dispersion forming; 

4. initial periodicity dispersion (i.p.d.) — the wave- 
guide dispersion at infinitesimal irises; 

5. regular mode — the PICW eigenmode in one-to-one 
correspondence to that of the smooth waveguide; 

6. periodicity mode — the PICW eigenmode originat-
ing due to the periodicity effect; 

7. partial waves — the independent ingredients of a 
PICW eigenwave. 

 


