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ABSTRACT 

Theoretical analysis corresponding to the diffusion and reaction kinetics in a chemical reaction between carbon dioxide 
and phenyl glycidyl ether solution is presented. Analytical expressions pertaining to the concentration of carbon dioxide 
(CO2), phenyl glycidyl ether solution (PGE) and flux are obtained in terms of reaction rate constants. In this paper, a 
powerful analytical method, called the Adomian decomposition method (ADM) is used to obtain approximate analytical 
solutions for nonlinear differential equations. Furthermore, in this work the numerical simulation of the problem is also 
reported using Scilab/Matlab program. An agreement between analytical and numerical results is noted. 
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1. Introduction 

Carbon dioxide is generally a useful gas that is made up 
of a carbon atom and two oxygen atoms. It is very impor- 
tant in plant photosynthesis, manufacturing carbonated 
soft drinks, powering pneumatic systems in robots, used 
in fire extinguisher, removing caffeine from coffee, etc., 
Carbon dioxide has the potential to provide a vast and 
cheap source of carbon. Turning it into useful products 
would also reduce its environmental impact as a green- 
house gas. Scientists have shown that ionic liquids are 
selective catalysts for converting carbon dioxide into 
synthetic intermediates called cyclic carbonates, but it is 
difficult to separate and recycle the liquid catalyst. 

Recently, the chemical fixation of carbon dioxide has 
become an important research topic [1], because of the 
danger posed by global warming, and conversion of car- 
bon dioxide into valuable substances is an extremely 
attractive solution. The reaction with oxiranes leading to 
five-membered cyclic carbonate (oxirane-reaction) is well- 
known among many examples [2,3]. These carbonates 
can be used as aprotic polar solvent and sources for 
polymer synthesis [4]. In the oxirane-reaction, high pre- 
ssure (5 - 50 atm) of CO2 has been thought to be nece- 
ssary [2]. The oxirane—reactions under atmospheric pre- 
ssure have been reported [4]. 

Many organic and inorganic compounds including 

ammines, phosphines, quaternary ammonium salts, and 
alkali metal salts are known to catalyze the oxirane- 
reaction [3]. The kinetics of the reaction between CO2 
and phenyl glycidyl ether (PGE) have been studied using 
catalyst THA-CP-MS41, The reaction rate constants were 
obtained using the measured absorption rate of and ana- 
lyzed with the mass transfer mechanism associated with 
the chemical reactions. 

Park et al. [5] investigated the chemical absorption of 
carbon dioxide and phenyl glycidyl ether solution con- 
taining the catalyst THA-CP-MS41 in a heterogeneous 
system. To our knowledge no analytical solutions of this 
model have been reported. The purpose of this communi- 
cation is to derive simple approximate analytical ex- 
pression for the steady-state concentrations of CO2, PGE 
and flux using the Adomian decomposition method. 

2. Mathematical Formulation of the Problem 
and Analysis 

Figure 1 shows the schematic representation of the 
stirred-cell absorber [5]. The overall reaction between 
CO2 and phenyl glycidyl ether (PGE) to form the 
5—membered cyclic carbonate is as follows: 

     (1)
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Figure 1. Shows the schematic representation of the stirred- 
cell absorber [5]. A, B, C: Valve; D: Absorber; E: Impeller; 
F: Liquid bottle; G: Funnel; H: Soap film meter; I: Gas 
chromatography. 
 

41 (QX) to form an intermediate com- 
n C1 and C

At steady state condition, th
reaction rate of CO2 to form C1 is

where R is a functional group of 2 6 5-CH -O-C H . The 
overall reaction of Equation (1) consists of two cones- 
cutive steps: 1) a reversible reaction between PGE (B) 
and THA-CP-MS
plex (C1); 2) an reversible reaction betwee O2 
(A) to form QX and five-membered cyclic carbonate 
(C): 
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tion rate constant in Equation (3). The m s of 
CO2 and PGE, using film theory accompanied  the 
consecutive chemical reactions are given as follows [5]: 
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where DA and DB are the diffusivity of CO2 and PGE 
respectively and z is the distance. The boundary con- 
ditions are: 
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Equations (5), (6) and the boundary conditions (7) can 
be normalized by employing the following parameters: 
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where, a, is the concentration of CO2, b is the concentra- 
tion of PGE, 1 2 1 2, , ,     

nsionless 
normalized parameters and 

x is the dime distance. Now the two nonlinear 
reaction/diffusion Equations (5), (6) in normalized form 
becomes as follows: 
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The above Equations (8), (9) are the system of nonlin- 
ear differential equations. While no general method of 
solving these nonlinear problems has
several vigorous procedure such as Adomian decomposi- 
tion method [6-10], Homotopy perturbation method [11- 
15] and Homotopy analysis method [1
been analyzed. Here, Adomian decomposition method is 
us

 been proposed, 

6-21] etc., have 

ed to solve these nonlinear differential equations. The 
boundary conditions becomes, 

d
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where, AL

Ai

C
k

C
 . The enhancement factor of CO2, de- 

fined as the ratio of the flux of CO2 with chemical reac- 
tion to that without chemical reaction is as follows, 

0

d

d x

a

x



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             (11) 

In this paper, the Adomian decomp
Appendix A) is used to solve nonlinear differential equa- 
tions. The ADM [6-10] yields, without linearization, per- 

3. Analytical Solutions of Concentrations of 
CO2 and PGE under Steady-State 
Condition Using the Adomian 
Decomposition Method 

osition method (see 
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of ith easily 
co this method is 
de tailed derivation of di- 

4. Numerical Simulation turbation or transformation, an analytical solution in terms
a rapidly convergent infinite power series w

mputable terms. The basic principle of 
scribed in Appendix A and de

mensionless concentration of CO2 and PGE, from the 
nonlinear Equations (8) and (9) are described in Appendix 
B. Using this method (refer Appendix B), we obtain the 
analytical expression corresponding to the concentrations 
of CO2 and PGE as follows: 
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The function pdex4 in Scilab/Matlab software which is a 
function of solving the initial-boundary value problems 
for the two reaction/diffusion equations is used to solve 
Equations (8) and (9). The normalized concentrations of 
CO2 and PGE are compared with simulation results in 
Figures 1 and 2. A satisfactory agreement is noted. The 
Scilab/Matlab program is also given in Appendix C. In 
Table 1, the simulation results compared with ADM re- 
sults, the maximum error is 0.64%. 

5. Results and Discussion 
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(13) 
From Equation (11), we obtain the flux as  

 

Equations (12) and (13) represent the new closed and 
simple approximate analytical expressions of the nor- 
malized concentrations of CO2 and PGE for all values of 
parameters 1 2 1 2, , ,     and k. The current response 
is given in Equation (14). The concentration profiles of 
CO2 and PGE are shown in Figures 2 and 3. The concen- 
tration of CO2 increases when the normalized parameter 
k increases (refer Figure 2(a)). The concentration of CO2 
decreases when the parameters 1 2and   increases 
(refer Figures 2(b) and (c)). In Figure 3, the concentra- 
tion of PGE decreases when the normalized parameter 

2  or surface area of catalyst increases and diffusivity 
of PGE decreases. Equation (14) represents the normal- 
ized flux. The value of flux increases as the parameters 

1 2and   or reaction equilibrium constant increases 
(refer Figures 4(a) and (b)). In Figure 4(c), the value of 
flux decreases as the parameters 1  or or surface area 
of catalyst increases and diffusivity of CO2 decreases. 
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6. Conclusions 

This paper presents a theoretical treatment of carbon di- 
oxide and phenyl glycidyl ether solution in chemical re- 
action. Also, we have discussed the mathematical models 
of CO2 absorption into the PGE solution. We have solved 
the nonlinear differential equations both analytically and 
numerically. The approximate analytical expressions for  

 
Table 1. Comparison of normalized substrate concentration of CO2 (A(x)) between Equation (12) and numerical simulation 
for various values of parameters β1 when α1 = 1, β2 = 0.001,  = 0.1. 

 β1 = 0.1 β1 = 1 β1 = 10 

k

x 
This work  

Equation (12) 
Numerical 
simulation 

Error % 
This work 

Equation (12)
Numerical 
simulation 

Error % 
This work 

Equation (12) 
Numerical 
simulation 

Error % 

0.0 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 

0.2 0.7722 0.7754 0.4144 0.7896 0.7906 0.1267 0.8132 0.8132 0.0000 

4220 0.4284 0.4501 0.4502 0.0222 

0. 2451  1.2648 0.2558  0.4300 0.2736 0.0366 

1

 Average  0.6356 Average  0.2116 Average  0.0125 

0.4 0.5746 0.5797 0.8876 0.5971 0.5988 0.2847 0.6299 0.6300 0.0159 

0.6 0.4011 0.4061 1.2466 0.4202 0.

8 0. 0.2482 0.2569 0.2737 

.0 0.1000 0.1000 0.0000 0.1000 0.1000 0.0000 0.1000 0.1000 0.0000 
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Figure 2. Normalized concentration of CO2 for various values of parameters is plotted using Equation (12). (a) α1 = 0.1, β1 = 
0.5, β2 = 0.7; (b) k = 0.1, α1 = 1, β2 = 0.001; (c) k = 0.1, α1 = 3, β1 = 1. The key to the graph (stacked line) represents the Equa- 
tion (12) and (dotted line) represents the numerical simulation. 
 

 

Figure 3. Normalized concentration of PGE for various values of parameters is plotted using Equation (13). The key to the 
graph (stacked line) represents the Equation (13) and (dotted line) represents the numerical simulation. 
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Figure 4. Diagrammatic representation of the normalized flux β for various values of α1, β1, β2 and k. 
 
the steady state concentrations of CO2 and PGE for all 
values of parameters using the Adomian decomposition 
method. These theoretical results are useful to evaluate 
the overall reaction rate constant and enhancement factor 
of CO2. A satisfactory agreement with the numerical re- 
sult is noted. 

7. Acknowledgements 

This work was supported by the University Grants Com- 
mission (F. No. 39-58/2010(SR)), New Delhi, India. The 
authors are thankful to Dr. R. Murali, The Principal, The 
Madura College, Madurai and Mr. M. S. Meenakshi- 
sundaram, The Secretary, Madura College Board, Madu- 
rai for their encouragement. The author S. Muthukarup-
pan is very

niversity, Ti

Tokyo, 1982. 

[2] W. J. Peppel, “Preparation and Properties of the Alkylene 
Carbonates,” Industrial and Engineering Chemical Re- 
search, Vol. 50, No. 5, 1958, pp. 767-770.  
doi:10.1021/ie50581a030 

[3] N. Kihara, N. Hara and T. Endo, “Catalytic Activity of 
Various Salts in the Reaction of 2,3-Epoxypropyl Phenyl 
Ether and Carbon Dioxide under Atmospheric Pressure,” 
The Journal of Organic Chemistry, Vol. 58, No. 23, 1993, 
pp. 6198-6202. doi:10.1021/jo00075a011 

[4] G. Rokicki, “Cyclic Dicarbonates as New Monomers for 
the Synthesis of Poly(hydroxy ether)s,” Die Makromole- 
kulare Chemie, Vol. 186, No. 2, 1985, pp. 331-337.  
doi:10.1002/macp.1985.021860212 

[5] Y. S. Choe, K. J. Oh, M. C. Kim and S. W. Park, “Che- 
mical Absorption of Carbon Dioxide into Phenyl Gly idyl 
Ether Solution Containing THA-CP-MS41 Catalyst,” 

l. 27, No. 6, 
2010, pp. 1868-1875. doi:10.1007/s11814-010-0309-1

c

 thankful to the Manonmaniam Sundaranar 
runelveli for allowing to do the research 

Korean Journal of Chemical Engineering, Vo
U  

[6] G. Adomian, “Convergent Series Solution of Nonlinear 
mputational and Applied Ma- 

pp. 225-230. 

work. 

REFERENCES 
[1] S. Inoue, “In Organic and Bioorganic Chemistry of Car-

bon Dioxide,” In: S. Inoue and N. Amazaki, Eds., Ko-
dansha Ltd., 

 
Equations,” Journal of Co
thematics, Vol. 11, No. 2, 1984, 
doi:10.1016/0377-0427(84)90022-0 

[7] A. Patela and S. E. Serrano, “Decomposition Solution of 
Multidimensional Groundwater Equations,” Journal of 
Hydrology, Vol. 397, No. 3-4, 2011, pp. 202-209.  



S. MUTHUKARUPPAN  ET  AL. 1184 

doi:10.1016/j.jhydrol.2010.11.032 

[8] M. A. Mohamed, “Comparison Differential Transformation 
Technique with Adomian Decomposition Method for 
Dispersive Long-Wave Equations in (2+1)-Dimensions,” 
Applications and Applied Mathematics, Vol. 5, No. 1, 
2010, pp. 148-166. 

[9] O. K. Jaradat, “Adomia
Solving Abeli s,” Journal of Ap-

n Decomposition Method for
an Differential Equation

 
 

plied Sciences, Vol. 8, No. 10, 2008, pp. 1962-1966.  
doi:10.3923/jas.2008.1962.1966 

[10] A. M. Siddiquia, M. Hameed, B. M. Siddiquic and Q. K. 
Ghoric, “Use of Adomian Decomposition Method in the 
Study of Parallel Plate Flow of a Third Grade Fluid,” 
Communications in Nonlinear Science and Numerical 
Simulation, Vol. 15, No. 9, 2010, pp. 2388-2399. 

5.073doi:10.1016/j.cnsns.2009.0  

[11] K. Indira and L. Rajendran, “Analytical Expression of 
Non Steady-State Concentration for the CE Mechanism at 
a Planar Electrode,” Journal of Mathematical Chemistry, 
Vol. 50, No. 5, 2012 pp. 1277-1288.  
doi:10.1007/s10910-011-9968-3 

[12] M. U. Maheswari and L. Rajendran, “Analytical Solution 
of Nonlinear Enzyme Reaction Equations Arising in 
Mathematical Chemistry,” Journal of Mathematical C
mistry, Vol. 49, No. 8, 2011, pp. 171

he-
3-1726. 

 

doi:10.1007/s10910-011-9853-0 

[13] A. Meena and L. Rajendran, “Mathematical Modeling of 
Amperometric and Potentiometric Biosensors and System 
of Nonlinear Equations—Homotopy Perturbation Ap- 
proach,” Journal of Electroanalytical Chemistry, Vol. 
644, No. 1, 2010, pp. 50-59.  
doi:10.1016/j.jelechem.2010.03.027 

[14] V. M. PonRani and L. Rajendran, “Mathemat
ling of Steady-State Concentration i

ical M
n Immobilized Glu-

odel- 
 

cose Isomerase of Packed—Bed Reactors,” Journal of 
Mathematical Chemistry, Vol. 50, No. 5, 2012, pp. 1333- 
1346. doi:10.1007/s10910-011-9973-6 

[15] S. Anitha, A. Subbiah, S. Subramaniam and L. Rajendran, 
“Analytical Solution of Amperometric Enzymatic Reac- 
tions Based on Homotopy Perturbation Method,” Elec- 
trochimica Acta, Vol. 56, No. 9, 2011, pp. 3345-3352.  
doi:10.1016/j.electacta.2011.01.014 

[16] S. J. Liao, “The Proposed Homotopy Analysis Technique 

for

for the Solution of Nonlinear Problems,” Ph.D. Thesis, 
Shanghai Jiao Tong University, Shanghai, 1992. 

[17] S. J. Liao, “On the Homotopy Anaylsis Method  

Nonlinear Problems,” Applied Mathematics and Compu- 
tation, Vol. 147, No. 2, 2004, pp. 499-513. 
doi:10.1016/S0096-3003(02)00790-7 

[18] S. J. Liao, “Comparison between the Homotopy
Method and Homotopy Perturba

 Analysis 
tion Method,” Applied 

Mathematics and Computation, Vol. 169, No. 2, 2005, pp. 
1186-1194. doi:10.1016/j.amc.2004.10.058 

[19] S. J. Liao, “A New Branch of Solutions of Boundary- 
Layer Flows over an Impermeable Stretched Plate,” In- 
ternational Journal of Heat and Mass Transfer
No. 12, 2005, pp. 2529-2539. 

, Vol. 48, 

doi:10.1016/j.ijheatmasstransfer.2005.01.005 

[20] S. J. Liao, “Beyond Perturbation: Introduction to the 
Homotopy Analysis Method,” CRC Press, Chapman & 
Hall, Boca Raton, 2003. doi:10.1201/9780203491164 

[21] S. J. Liao, “An Explicit, Totally Analytic Approximation 
of Blasius Viscous Flow Problems,” International Jour- 
nal of Non-Linear Mechanics, Vol. 34, No. 4, 1999, pp. 
759-778. doi:10.1016/S0020-7462(98)00056-0 

[22] A. M. Wazwaza and A. Gorguisb, “An Analytic Study of 
Fisher’s Equation by Using Adomian Decomposition 
Method,” Applied Mathematics and Computation, Vol. 
154, No. 3, 2004, pp. 609-620. 
doi:10.1016/S0096-3003(03)00738-0 

[23] J. Biazar and R. Islam, “Solution of Wave Equation by 
Adomian Decomposition Method and the Restrictions of 
the Method,” Applied Mathematics and Com
149, No. 3, 2004, pp. 807-814. 

putation, Vol. 

doi:10.1016/S0096-3003(03)00186-3 

[24] N. H. Sweilama and M. M. Khaderb, “Approximate Solu- 
tions to the Nonlinear Vibrations of Multiwalled Carbon 
Nanotubes Using Adomian Decomposition Method,” Ap- 
plied Mathematics and Computation, Vol. 217, No. 2, 
2010, pp. 495-505. doi:10.1016/j.amc.2010.05.082 

[25] G. Adomian, “Solving the Mathematical Models of Neu- 
rosciences and Medicine,” Mathematics and
in Simulation, Vol. 40, No. 1-2, 1995, pp. 107-

 Computers 
114.  

doi:10.1016/0378-4754(95)00021-8 

[26] G. Adomian, “Computation of Solutions to the General- 
ized Michaelis-Menton Equation,” Applied Mathematics 
Letters, Vol. 7, No. 4, 1994, pp. 45-48. 
doi:10.1016/0893-9659(94)90009-4 

[27] O. D. Makinde, “Adomian Decomposition Approach to a 
SIR Epidemic Model with Constant Vaccination Strat- 
egy,” Applied Mathematics and Computation, Vol. 184, 
No. 2, 2007, pp. 842-848. doi:10.1016/j.amc.2006.06.074 

Copyright © 2012 SciRes.                                                                                  AM 

http://dx.doi.org/10.1021%2Fie50581a030
http://dx.doi.org/10.1021%2Fjo00075a011
http://dx.doi.org/10.1007%2Fs11814-010-0309-1
http://dx.doi.org/10.1016%2F0377-0427%2884%2990022-0
http://dx.doi.org/10.1016%2F0377-0427%2884%2990022-0
http://dx.doi.org/10.1016%2F0377-0427%2884%2990022-0
http://dx.doi.org/10.1016%2Fj.jhydrol.2010.11.032
http://dx.doi.org/10.1016%2Fj.jhydrol.2010.11.032
http://dx.doi.org/10.1007%2Fs10910-011-9853-0
http://dx.doi.org/10.1007%2Fs10910-011-9853-0
http://dx.doi.org/10.1007%2Fs10910-011-9853-0
http://dx.doi.org/10.1016%2Fj.jelechem.2010.03.027
http://dx.doi.org/10.1016%2Fj.jelechem.2010.03.027
http://dx.doi.org/10.1016%2Fj.jelechem.2010.03.027
http://dx.doi.org/10.1016%2Fj.jelechem.2010.03.027
http://dx.doi.org/10.1016%2Fj.jelechem.2010.03.027
http://dx.doi.org/10.1007%2Fs10910-011-9973-6
http://dx.doi.org/10.1007%2Fs10910-011-9973-6
http://dx.doi.org/10.1016%2Fj.electacta.2011.01.014
http://dx.doi.org/10.1016%2Fj.electacta.2011.01.014
http://dx.doi.org/10.1016%2Fj.amc.2004.10.058
http://dx.doi.org/10.1016%2Fj.ijheatmasstransfer.2005.01.005
http://dx.doi.org/10.1016%2Fj.ijheatmasstransfer.2005.01.005
http://dx.doi.org/10.1016%2Fj.ijheatmasstransfer.2005.01.005
http://dx.doi.org/10.1016%2Fj.ijheatmasstransfer.2005.01.005
http://dx.doi.org/10.1016%2FS0020-7462%2898%2900056-0
http://dx.doi.org/10.1016%2FS0020-7462%2898%2900056-0
http://dx.doi.org/10.1016%2FS0020-7462%2898%2900056-0
http://dx.doi.org/10.1016%2FS0096-3003%2803%2900738-0


S. MUTHUKARUPPAN  ET  AL. 1185

Appendix A 

Basic Concept of the Adomian Decomposition 
Method (ADM)  

Adomian decomposition method [22-27] depends on de-

            (A.1) 

into the two components 

 
composing the nonlinear differential equation  

  , 0F y    

      0L y N y           (A.2) 

where L and N are the linear and the nonlinear parts of F 
respectively. The operator L is assumed to be an invert-
ible operator. Solving for L(y(χ)) leads to 

     L y N y             (A.3) 

Applying the inverse operator L on both sides of 
Equation (A.3) yields 

  (A.4) 

where 

      1  y L N y          

    
   0

nted as

is a function that satisfies the condition 
Now assuming that the solution y can be 
infinite series of the form,  

L   . 
represe  

     1
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y L A   
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 
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    (A.5) 

where 
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 (A.6) 

Then equating the terms in the linear system of Equa- 
tion (A.5) gives the recurrent relation  

 0 ,y     1
1n ny L A
    0n      (A.7) 

However, in practice all the terms of series in Equation 
(A.5) cannot be determined, and the solution is approxi- 

mated by the truncated series  
0

N

n
n

y 

 .

   L a x N a x                  (B.1) 

   L b x N b x                  (B.2) 

where  

 

 

2
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2
1 2

2

1 2

d
 , 

1d

1

ab
L N a x

aβ bβx

ab
N b x

aβ bβ





        
 

       

  (B.3) 

Applying the inverse operator on both sides of 
Equation (B.1) and (B.2) yields 

 

 1L  

  1a x Ax B L N a x              (B.4) 

  1b x Ax B L N b x              (B.5) 

According to the ADM, the solution a(x) and b(x) can 
be elegantly computed by using the recurrence relation 

 
     
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1 1
n 1

,

,
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n

a x Ax B

a x L N a x L A x
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   (B.6) 
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   (B.7) 

where nA  and B  are the Adomian polynomials of 
respectively. We can find 

ial coefficients 

n

1 2 ,  and  ,  n na a a b b b   
the first few Adomian polynom

1 2

nA  and 
n lows: B  usi uation (A.6) as folng Eq

    1 0 0
0 0

1 0 2 01

a b
A x N a

β a β b

 
     

    (B.8) 

    2 0 0
0 0

1 0 2 01

α a b
B x N b

β a β b

 
     

    (B.9) 

The remaining polynomials    i iandA x B
on (A.6). Applyi

x  can be 
generated easily, using Equati ng the fo- 
llowing boundary conditions  
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0 00 1,  1

and 0 0,  1 0

for 1
i i

a a k

a a

i

 

 



     (B.10)  
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for 1
i i
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Appendix B 
    (B.11) 

From Equations (B.6) and (B.7) using the above con- 
ditions we obtain the following results: 

Analytical Expression of Concentrations of CO2 
and PGE Using the Adomian Decomposition 
Method 

To solve Equations (8) and (9) using the Adomian de- 
composition method, we write the Equations (8) and (9) 
in the operator form,    0 1 1a x k x                  (B.12) 
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(B.13) 

 0 1b x                (B.14) 
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Adding Equations (B.12) and (B.13), (B.14) and 
we get the concentration of CO2 and PGE (Equa- 

 and (13)) in the text.  
 
Appendix C 

Scilab/Matlap program for the numerical solution
system of nonlinear Equations (8) and (9) 
function pdex4 
m = 0; 
x = linspace(0,1); 
t=

pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
fig

ylabel('u1(x,2)') 

 

x,2)') 

function [c,f,s] = pdex4pde(x,t,u,DuD
c = [1; 1];  
f = [1; 1] .* DuDx;  

M=10; 
N=0.01; 
F=-(a*u(1)*u(2))/(1+(M*u(1))+(N*u(2))); 
F1=-(b*u(1)*u(2))/(1+(M*u(1))+(N*u(2))); 
s=[F; F1]; 
fu

l,xr,ur,t) 
pl = [ul(1)-1;0];  
ql = [0; 1];  
pr = [ur(1)-0.1; ur(2)-1];  
qr = [0; 0]; 
 

Nomenclature 

Symbols 

CA: Concentration of CO2 (M) 
CB: Concentration of PGE (M) 
DA: Diffusivity of CO2 (m

2/s) 
DB: Diffusivity of PGE (m2/s) 
K1: Reaction equilibrium constant (1/M) 

(1/m2s) 
qu

k3: Forward reaction rate constant in reaction Equation (3) 
(1/m2s) 
rA,cons: Reaction rate of CO2 in consecutive reaction
model (M/s) 
St: Surface area of catalyst (m2) 
z: Distance (m) 
zL: Fil

  

x) 

a=0.001; 
b=10; 

nction u0 = pdex4ic(x); 
u0 = [1; 1];  
function [pl,ql,pr,qr]=pdex4bc(xl,u

Appendix D 
 

(B.15) 

(B.15), 
tions (12)

k1: Forward reaction rate constant in reaction Equation (2) 

k2: Backward reaction rate constant in reaction E ation 
(2) (M/m2s) 

 of the 

 

linspace(0,100000); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@ m thickness (m) 

a: Normalized concentration of CO2 (Dimensionless) 
b: Normalized concentration of PGE ( Dimensionless ) 

1 2 1 2, , , and k    : Normalized paramure 
plot(x,u1(end,:)) 
title('u1(x,t)') 

eters (Dimen- 
sionless) 
 : Flux of CO2 (Dimensionless) 

Subscripts 
A: CO2 

B: PGE 
L: Bulk solution 
o: Feed or solvent 

xlabel('Distance x') 

figure 
plot(x,u2(end,:))
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('u2(
 


