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ABSTRACT 

With a view to getting further insight into the solutions of one-dimensional analogous Schrödinger equation for a 
non-hermitian (complex) Hamiltonian system, we investigate the quasi-exact symmetric solutions for an octic 
potential and its variant using extended complex phase space approach characterized by 

-

1 2 1= , = 2x x ip p p ix  , 

where  1 1, x p  and  2 2, x p  are real and considered as canonical pairs. Besides the complexity of the phase space, 

complexity of potential parameters is also considered. The analyticity property of the eigenfunction alone is found 
sufficient to throw light on the nature of eigenvalue and eigenfunction of a system. The imaginary part of energy 
eigenvalue of a non-hermitian Hamiltonian exist for complex potential parameters and reduces to zero for real 
parameters. However, in the present work, it is found that imaginary component of the energy eigenvalue vanishes even 
when potential parameters are complex, provided that -symmetric condition is satisfied. Thus symmetric 
version of a non-hermitian Hamiltonian possesses the real eigenvalue. 

 -

 
Keywords: Analogous Schrödinger Equation; Complex Hamiltonian; -Symmetry 

1. Introduction 

In the recent years, one-dimensional complex Hamil- 
tonians  , H x p  have generated lot of interest for the 
understanding of several newly discovered phenomena in 
various science-streams [1,2], but such studies in mathe- 
matical terms have not been reached to the desired extent. 
Several attempts have been made to obtain the solutions 
of Schrödinger equation (SE) for different anharmonic 
potentials in real domain. However, the study of complex 
octic potential has become of considerable interest due to 
the peculiar nature of the eigenvalue spectrum. Further, 
besides some general studies of complex Hamiltonians in 
nonlinear domain [1,3], efforts have been made to study 
both classical and quantum aspects [4-7] of a system. At 
the classical context,  , H x p

 , ,

 becomes the function of 
two complex variables and the analyticity property of 

2 1 2 2 1 2 1 2  1 1, =  , , , ,H x x p H x x p pp H x p i  leads to 
a class of integrable systems in the associated two- 
dimensional real systems 1H  and 2H , where, 1H  act 
as new Hamiltonian and 2H  is a second integral of mo- 
tion. The possible connection between 1H  and 2H  is 
sought in terms of anti-Bäcklund transformation [5]. In  

the quantum context, as =p i
x





  which implies 

1
2

1
=

2
p

p

 


 and 2
1

1
=

2
x

x

 


, the analyticity of  

 ,H x p  is translated into complex potential  V x . 
While a complex Hamiltonian is no longer hermitian and 
ordinarily does not guarantee for real eigenvalues, how- 
ever, in -symmetric version [8-10], the system is 
found to exhibit real and bounded eigenvalue spectrum, 
The reality of the spectrum is a consequence of combined 
action of the parity and time reversal invariance of Hami- 
ltonian [6]. Recently, following the work of C. M. Bender 
et al. [8,9], one-dimensional Hamiltonian systems have 
been studied rigorously through combined parity and 
time reversal operators. The parity operator  and time 
reversal operator  defined by the action of position  



̂
̂

and momentum operators are   ˆ : , , , , x p i x p i   ;  

  ˆ : , , , , .x p i x p i    The combined action of pa- 
rity-time operator is 

  ˆˆ : , , , , ,x p i x p i           (1) 

where, . Here, the operators 2 2ˆˆ = 1  x̂  and  are 
real, the commutator 

p̂
 , =x p i  is invariant under ope- 

rators  and . It is interesting to note that commu- 
tation relation still remain invariant even if 

P̂ T̂
x̂  and  

becomes complex, provided that above transformation 
hold. There are various ways of complexifying a given 
Hamiltonian [11], but here we use the scheme given by 
Xavier and de Aguir [12,13], used to develop an algo- 
rithm for the computation of semiclassical coherent state 
propagator to transform potentials in extended complex 

p̂
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phase space approach (ECPSA). The real and imaginary 
parts of x  and  are introduced as p

e= R   Im  ,   = Re Im ,x x i x p p i p   

if, we define 1 2 1 2= Re ,  = Im ,  = Re ,  =x x p x p p x  
, then Im p x  and  can be defined as p

1 2 1 2= ,  = .x x ip p p ix            (2) 

The presence of variables  1 2 2 1, , , x p x p

 , , , .

 in the 
above transformations may be regarded as some sort of 
co-ordinate momentum interactions of a dynamical sys- 
tem. Note that, in this complexifying scheme, the degrees 
of freedom of the underlying system just become double. 
The -symmetric condition for the above trans- 
ormation becomes  

1 2 2 1 1 2 2 1



 ˆˆ , , , : , ,x p x i x 



p p x p i   Though 
complex potentials are in practice for a long time, such as 
in optical model of nucleus, delocalization transition in 
condensed matter system—such as vortex flux line dip- 
pening in type-II superconductors, yet the quantum 
mechanics of complex potentials has not been studied to 
a desired level. It is since last few years that the study of 
complex potentials has become important enough for 
better theoretical understanding of the detailed properties 
of some newly discovered phenomena in physics and 
chemistry, like the phenomena pertaining to resonance 
scattering in atomic, molecular, and nuclear physics and 
to some chemical reactions [14-17]. The complex Hamil- 
tonian is used in several other theoretical context like- 
studies of complex trajectories with regard to the cal- 
culation of semiclassical coherent-state propagator in the 
path integral method have attracted particular interest in 
laser physics [12,13]. The -symmetric non-hermi- 
tian Hamiltonians have many applications in various 
fields of physics-like superconductivity, population bio- 
logy, quantum cosmology, condensed matter physics, 
quantum field theory etc.  

Transformations similar to Equation (2) have also been 
used in the study of nonlinear evolution equations in 
context of amplitude-modulated nonlinear Langmuir 
waves in plasma [4]. Recently, in some studies, solutions 
of the Schrödinger wave equation have been reported 
using the extended complex phase space approach 
(ECPSA) [11,18,19]. With this motivation and to expand 
the domain of applications, we investigate the quasi- 
exact solution of the analogous Schrödinger equation 
(ASE) for a coupled complex octic potential and its va- 
riant in one dimension. 

The paper is organized as follows: in Section 2, we are 
devoted with the mathematical formulation of the 
ECPSA for computing the ground state and excited state 
eigenvalue spectra of some one-dimensional complex 
systems. Under the same mathematical prescription, 
ground state solutions are presented in Section 3 and 
excited state solutions are described in Section 4. Finally, 

concluding remarks are presented in Section 5. 

2. General Results 

For a complex Hamiltonian system  , H x p  in one 
dimension, the ASE (for ) is given by = = 1m

    ˆ , =  ,H x p x E x            (3) 

where 

   
2

2

1 dˆ , = .H
2 d

x p V x
x

           (4) 

Here, Equation (3) departs from the conventional and 
mathematical setting of the standard Schrödinger equ- 
ation [20], so Equation (3) is termed as analogous Schrö- 
dinger equation (ASE) for a non-hermitian operator 

 ,H x p . The transformation condition (2) implies that 

1 2 1 2

d 1 d 1
= ,  = .

d 2 d 2
i i

x p p p x

      
          

  (5) 
x

Note that, the momentum operator 
d

=
d

p i
x

   of the  

conventional quantum mechanics under the transforma-  

tion (2) reduces to 1 2
1 1

= .
2

i
p ix i

x p

  
    


  This re- 

lation yields 1
1

1
=

2
p

p

 


, 2
1

1
=

2
x

x

 


. Also, the com- 

plex co-ordinate transformation (2) preserves the funda- 
mental commutation relations,  , =x p i , which can be 
easily verified with the help of Equations (2) and (5). To 
express the ASE (3) into a pair of coupled partial diffe- 
rential equation, the complex forms of    ,V x x  and 
E are written as 

    1 2 1 2= , ,r iV x V x p iV x p  ,       (6a) 

    1 2 1 2= , ,r i  ,x x p i x p        (6b) 

= r iE E iE ,                      (6c) 

where, subscripts “r” and “I” denote the real and im- 
aginary parts of the corresponding quantities and other 
subscripts to these quantities separated by comma will 
denote the partial derivatives of the quantity concerned. 
Thus, after inserting Equations (2), (4) and (6a)-(6c) in 
Equation (3) and separating the real and imaginary parts 
in the final expression, one gets the following pair of 
partial differential equations 

 1 1 2 2 1 2, , ,

1
2

8
= ,

r x x r p p i x p r r i i

r r i i

V V

E E

   

 

    




 (7a) 

 1 1 2 2 1 2, , ,

1
2

8
= .

i x x i p p r x p r i i r

r i i r

V V

E E

   

 

    




  (7b) 
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The analyticity property of the wavefunction  x , 
in terms of Cauchy-Riemann conditions, implies 

1 2 2, , , ,= ,   =r x i p r p i x1
.            (8) 

Under the analyticity condition (8), Equations (7a) and 
(7b), reduces to 

1 1,

1
= ,

2 r x x r r i i r r i iV V E E           (9a) 

1 1,

1
= .

2 i x x r i i r r i i rV V E E           (9b) 

The ansatz for the wavefunction  x  is taken as 
[19] 

     =  exp ,x x g x                  (10) 

where,  x  and  g x  are the polynomial functions 
of the complex variable x , which can be expressed as 

    1 2 1 2 1 2, = , ,r i  ,x p x p i x p        (11a) 

    1 2 1 2 1 2, = , ,r i .g x p g x p ig x p      (11b) 

After utilizing Equations (6b), (9b), (11a) and (11b) in 
Equation (10), the real and imaginary parts of the wave- 
function are expressed as 

  1 2, = Cos Sin gr
r r i i ix p e g g       (12a) 

   1 2, = Cos Sin rg
i i i r .ix p e g g       (12b) 

In view of the analyticity condition (8), rg  and ig  
satisfies the relations 

1 2 2, , , ,= ;   =r x i p r p i x1
.g g g g          (13) 

Therefore, with the help of Equations (12a) and (12b), 
the Equations (9a) and (9b) yield 

   

   

 
 

1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

2 2

, , ,

, , , ,2 2

, , , , ,

1
2 2

2 2

2 = 0,

r x x r x i x

r r x x r x r x i x i x

r i

i i x x r x i x i x r x

r r

g g g

g g

g g

E V

   
 

   

 

  

   
 

,
 (14a) 

   

 
 

1 1 1 1

1 1 1 1 1 1

1 1 1 1

, , ,

, , , ,2 2

, , , , ,1 1

2

1
2 2

2 2

2 = 0.

i x x r x i x

r i x x r x i x i x i x

r i

i r x x i x i x r x i x

i i

g g g

g g

g g

E V

   
 

   



  

    
 

,

 (14b) 

It is to be noted that for given functional forms of 
 x  and  g x , the rationalization of Equations (14a) 

and (14b) yield the real and imaginary components of the 
energy eigenvalue spectrum for the excited state of a 

system. On the other hand, if  x

, 

 i iE V

 

 is chosen as con- 
stant, then Equations (14a) and (14b) reduces to ground 
state solutions as 

    
1 1 1 1

2 2

, , 2r x x r x i x r rg g g E V   = 0,

= 0.

  (15a) 


1 1 1 1, , ,2 2i x x r x i xg g g          (15b) 

With a suitable ansatz for g x , satisfying the analy- 
ticity condition (19), the rationalization of Equations 
(15a) and (15b), provides ground state solutions of the 
ASE for a given complex potential. 

3. Ground State Solutions 

Here, we look for the ground state solutions of one- 
dimensional complex octic potential and its variant as:  

3.1. Generalized Octic Potential 

Consider a generalized octic potential of the form 

  4
1 2 4 5

6 7 8
6 7 8

, =

,

V x y a x a a x a x

a x a x

   

 

2 3
3x a x

a x

5

  (16) 

where, the coupling parameters  are 
complex i.e. i

 ,1 8ka k 
 =k kra a iak  and ,  are constants. kr ki

Under the -symmetric condition (1), the potential 
(24) reduces to 

a ia


  4
1 2 4

7
5 6 7 8

, =

.

i r i r

i r i r

V x y a x a x a x

a x a x a x



  

2 3
3

5 6

a x

x a

 

 8
    (17) 

By implying the transformation (2) on the potential 
(17), the real and imaginary parts of the potential turn out 
to be 

  

 

3

2 3
1 2

1

6
1 2

1

0

15

35

28

ia

x p

x

p

x





  


 

3 2
1 1

1

3
1

5 2
2

5 3
1 2

3

4 5

20

3

x p

x p

x p

p

x p









 ,


 

 
 
 

2 2 3 2
1 2 2 1 2 2 1 2

4 4 2 2
4 1 2 1 2

4 5
5 1 2 2

6 6 2 4 4 2
6 1 2 1 2 2

7 2 5 4 3
7 2 1 2 1 2

8 8 2 6 6 2 4 4
8 1 2 1 2 2 1 2

= 3

6

5 1

15

21 7

28 70 ,

r i r

r

i

r

i

r

V a p a x p p x p

a x p x p

a x p p

a x p x p p

a p x p x x p

a x p x p p x p

   

  

   

  

   

 

 (18) 

 
 

 
 

1 1 2 1 2 3 2

3 3 4 5 3 2
4 1 2 1 2 5 2 1 1 2

5 5 3
6 1 2 1 2 2

7 6 3 4
7 1 1 2 1 1 2

7 7 3 5
8 1 2 1 2 1 2

= 2

6 6

7 21 5

8 8 56 56 .

i i r i

r i

r

i

r

V a x a x p a x

a x p x p a x x p

a x p x p

a x x p x x p

a x p x p x p

 

   

   

  

  

10



(19) 

The polynomial forms of 1 2rg x p  and  1 2,ig x p , 
in conformity with (13) are written as 
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2 2 3 2
2 1 2 3 2 1 2

4 4 2 2
4 1 2 1 2

4 5 2 3
5 1 2 2 1 2

1 1
= 3

2 3
1

6
4
1

5 10
5

r

,

g x p p x p

x p x p

x p p x p

 





  

  

   

   (20a) 

 
 
 

3 2
2 1 2 3 1 1 2

3 3
4 1 2 1 2

4 5 3 2
5 1 2 1 1 2

1
= 3

3

1
5 10

5

ig x p x x p

x p x p

,x p x x p

 





 

 

  

        (20b) 

where, i  and i  are real. Now, inserting the above 
forms of r  1 2, g x p  and  1 2,ig x p  in Equations (15a) 
and (15b), the rationalization of the resultant expression 
yields the following set of non-repeating equations 

2

1
=

2rE ,                (21a) 

= 0,iE                    (21b) 

3 1= ia ,                   (21c) 

2
2 4 23 = 2 ,ra              (21d) 

5 2 3 32 = ia ,               (21e) 

2
3 2 4 42 = 2 ra    ,           (21f) 

5 2 3 4 5= ia                (21g) 

2
4 3 5 62 = 2 ra   ,            (21h) 

4 5 7= ia                    (21i) 

2
5 = 2 .ra  8                  (21j) 

Here, Equations (21c)-(21j) except (21e) give rise to 
the constraining relations among the potential parameters. 
However, the Equations (21e), (21h) and (21j) can be 
immediately solved for four arbitrary constants i.e. 2 , 

3 , 4  and 5 . Whereas Equations (21d)-(21j) can be 
solved for some negative values of 8r  say a 8 8=ra a r  
in the potential (17). The results obtained are 

8 3 8 8

2 2
8 6 7

2
7

3 6
88

4 2 4
= ,

4

1
=

42

r i r r

r r i

i
r

rr

a a a a

a a a

a
a

aa





  


 
  

 



,

     (22) 

7
4 5

8

= ,  = 2
2

i
r

r

a
a

a
   8 ,         (23) 

where, 8ra  is real positive. The constraining relations 
obtained from Equations (21c), (21d), (21f) and (21g) are 

   3/22
8 6 7 1 84 = 2 2r r i i ra a a a a   ,  

2
2

8 3 8 8 7
22

8 6 7 8

16 2 4 3
= 2 ,

4 2

r i r r i
r

r r i r

a a a a a
a

a a a a

   


  

22
7

6
8 8

8 3 8 8

7 42
8 6 78

1

2 4

4 2 42
= 2 ,

42

i
r

r r

r i r r

i r
r r ir

a
a

a a

a a a a
a a

a a aa

 
 

 
     
 
 





 

 
3

3 8 8
2

8 2
8 6 7

2
7 7

6 5
8 8

2 4
2 2

4

= .
2 4

i r r
r

r r i

i i
r i

r r

a a a
a

a a a

a a
a a

a a

 
    

 
  

 





 

The presence of these constraining relations, makes 
the problem quasi solvable. Such relations can be helpful 
in definition and approximate sub domain in complex 
parametric space in which a given complex potential 
provides real spectra. As from Equation (21b), imaginary 
part of the energy eigenvalue is zero, while the real part 
of the energy eigenvalue obtained from Equation (21a) 
turns out to be   

 

 
8 3 8 80

2
8 6 7

2 2 4
= .

4

r i r r

r

r r i

a a a a
E

a a a

  



             (24) 

The corresponding eigenfunction becomes   

     

 

8 3 8 80 2

2
8 6 7

2
8 6 7 83 47

3/2
88

2 2 4
= exp  

4

4 2
  

54 26 2

r i r r

r r i

r r i ri

rr

a a a a
x x

a a a

i a a a i aa 5x x x
aa


   
 


    




 (25) 

3.2. Variant of Octic Potential 

Here, we consider one-dimensional octic potential (16) 
with the inverse harmonic term as 

  2 3 4
1 2 3 4 5

6 7 8
6 7 8 2

, =

,

V x y a x a x a x a x a x

A
a x a x a x

x

   

   

5

     (26) 

where, the potential parameters  and ia A  are com- 
plex constants. By implying the -symmetric condi- 
tion (2) on the potential (26), one gets 



  2 3 4
1 2 3 4 5

6 7 8
6 7 8 2

=

.

i r i r i

r
r i r

V x a x a x a x a x a x

A
a x a x a x

x

   

   

5

     (27) 
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Implying the transformation (2), the real and im- 
aginary parts of the potential (26) are written as 

 
 

2 2
1 2

1 22 2
1 2

=r r r

x p
V V A

x p





,           (28a) 

 
 

1 2
1 22 2

1 2

2
=i i r

x p
V V A

x p



,



          (28b) 

where, 1r  and 1iV  are same as given by Equations (18) 
and (19). The functional form of 

V
 1 2,rg x p  and 

 1,i 2g x p  complying with the analyticity condition (13) 
are written as 

   

 

   

2 2 3 2
2 1 2 3 2 1 2

4 4 2 2
4 1 2 1 2

4 5 2 3 2 2
5 1 2 2 1 2 1 2

1 1
= 3

2 3
1

6
4
1

5 10 ln
5 2

rg x p p x p

x p x p

1
,x p p x p x p

 



 

  

  

     

 

(29a) 

   

 

3 2 3 3
2 1 2 3 1 1 2 4 1 2 1 2

4 5 3 2 11
5 1 2 1 1 2

2

1
= 3

3

1
5 10 .tan

5

ig x p x x p x p x p

x
x p x x p

p

  

  

   

 
     

 

(29b) 

As before, using these forms of rg  and ig  in Equ- 
ations (15a) and (15b), the rationalization of the resultant 
expression yield a set of equations in addition to Equ- 
ations (21f)-(21j) as 

2 2

1
=

2r rE a ,             (30a) 

= 0,iE                     (30b) 

 3 1 = ia   1 ,

,

,

             (30c) 

2
2 4 4 23 2 = 2 ra            (30d) 

2 3 5 5 32 = ia              (30e) 

2 = 2 .rA                  (30f) 

The pair of Equations (30e) and (30f) immediately 
lead us to 

 8
2 3 82

8 6 7

1 1 8
=  ,   

2
4

= 2 5 1 8
4

r

r
i r r r

r r i

A

a
a a A a

a a a





  

 
   8 .

tions (30c) and (30d) are  

 

(31a) 

The additional constraining relations given by Equa- 

   3/2

1 81 8 = 4 2 ,r i rA a a   2
8 6 74 3r r ia a a   

   
   

25/2

8 3 8 8

2
7 2 8 6 7 8

2 2 2 5 1 8

4 1 8 = 4 2

r i r r r

r i r r r i r

a a a A a

.A a a a a a a

   

  

 


 

Under the similar prescription as adopted in previous 
case, the imaginary component of the energy eigenvalue 
vanishes, whereas the real component of the energy is 

 

   
 

0 =rE

8 3 8 8

2
8 6 7

2 2 1 8 2 5 1 8
.

4

r r i r r r

r r i

A a a a A a

a a a

        


   

(32) 

The ground state eigenfunction for the potential 
tu

(44) 
rn out to be 

     
 

 

 

0 2 2 2
1 2

8 3 8 8
2

2
8 6 7

2
8 6 7 3 47

3/2
88

8 5 11

2

=

2 2 5 1 8
exp  

4

4
  

4 26 2

2
 .tan

5

r i r r r

r r i

r r i i

rr

r

x x p

a a a A a
x

a a a

i a a a a
x x

aa

i a x
x i

p















   
 
   

 
   

 






 (33) 

4. Excited State Solutions 

tion laid down Here, we elaborate viability of the prescrip
in Sections 2 and 3 to compute eigenvalue and corre- 
sponding eigenfunction for the first excited state. The 
functional form of  x  for the first excited state is 
taken as 

  = .x x                (34) 

Then, under the transformation (2
re

), the above equation 
duces to   

   1 2 1 1 2 2, = , , =i ,r x p x x p p        (35) 

where,  and   
 

are considered as real const ants. In 
order to ompute the corresponding energy eigenvalue 
and eigenfunction for the first excited state of potential 
(16), we use the same functional forms of r

 c

g  and ig  
as mentioned in Equations (20a) and (20b). After inse  
ing the Equations (20a), (20b) and (35) in Equations (14a) 
and (14b), then equating the coefficients of 1 2, 

rt-

x p  and 
their various products to zero, one gets the follo g set 
of non-repeating equations in addition to Equations (21f)- 

win

(21j) 
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 1 3
= ,E a 22r r           (36a) 

 1 = 0,iE       

,

         (36b) 

32 = a1i               (36c) 

.

2
4 25 = 2   2 ,ra         (36d) 

2 3 5 33 = ia            (36e) 

Inserting Equations (21h)-(21j) in Eq
have 

uation (36e), we 

8 3 8 84 2 6r i r ra a a a 
 

2 2
8 6 7

= .
4 r r ia a a




       (37) 

The other potential parameters are same 
in earlier section, whereas the constraining relations 
ob

as described 

tained from Equations (36c) and (36d) are  

 3/22
8 6 7 1 84 = 2 ,r r i i ra a a a a   

 

 

2
2

8 3 8 8 7
2

8 6 7 8

2
2 8 6 7

16 2 6 5

4 2

= 2 4 .

r i r r i

r r i r

r r r i

a a a a a

a a a a

a a a a










 

Using the various ansatz parameters in Equation (36a), 
the real component of energy eigenvalue is written as 

 

 
8 3 8 81

2

6 2 6 2
= ,

r i r r

r

a a a a
E

         (3
8 6 74 r r ia a a

8) 

whereas the eigenfunction is given by 

     

 

8 3 81
2 2

= exp
r i ra a a 8 2

2
8 6 7

2
8 6 7 83 4 57

3/2
88

6
 

4

4 2
   

54 26 2

r

r r i

r r i ri

rr

a
x x x

a a a

i a a a i aia
x x x

aa

   



  

  


  


 (39)  

Variant of Octic Potential 

Again to compute energy eigenvalue and corresponding 
ed state of potential (26), eigenfunction for the first excit

we use the same functional forms of rg  and ig  as 
mentioned in Equations (29a) and (29b). Then implying 
Equations (20a), (20b) and (35) in Equat ns (14a  and 
(14b), the rationalization of the final expression yields 
the following set of non-repeating equations in addition 
to Equations (21f)-(21j) 

io )

2 2

3
= ,rE a

2r              (40a) 

= 0,iE  

 3 2 = ia    1 ,   
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         (40c) 

2
2 45 2 = 2      4 2 ,ra       (40d) 

2 3 5 53 = a

                 (40b) 

3i              (40e) 

2 = 2 .rA                 (40f) 

The Equations (40e) and (40f) lead us to 

1 1 8
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The other ansatz parameters are sam
state solutions. However, the additional constraining 
relations given by Equations (40c) and (40d) are  
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Under the similar prescription as in previous case, the 
energy eigenvalue and eigenfunction are given  by
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5. Concluding Remarks 

In the present work, we have investigated quasi-exact 
-symmetric solutions of the ASE for one-dimen- 

 variants using ECPSA. 
hase space produced by 

transformation (2), complexity of the potential parame- 


sional octic potential and its
Besides complexity of the p
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,” Physical
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sical Review Letters, Vol. 80, No. 24, 1998, pp. 5243- 
5246. doi:10.1103/PhysRevLett.80.5243 

ters is also taken into account and ground state as well as 
ted states solutions are worked out. It is also 

emphasized that solutions of the ASE in the above said 
cases are obtained only in the presence of certain con- 
straining relations among potential parameters, such con- 
straining relations give rise to bound states of a system. It 
is found that imaginary part of the energy eigenvalue 
always vanishes for the solvable case of ASE, as long as 
all potential parameters are real. However, for  - 
symmetric potentials, energy eigenvalues are found real, 
even if concerned potentials possess complex parameters. 
The interesting aspect of this method is an account of 
complex coupling coefficients of potential in addition to 
complex phase space. Thus present method suggests 
another degree of freedom to obtain the real spectra for 
non-hermitian operator. 

6. Acknowledgements 

The author expresses his gratitude to Prof. S. C. Mishra 
and Dr. Fakir Chand, Department of Physics, Kuruk- 
shetra University, Kuruk luable 

 Review

[9] C. M. Bender, S. Boettcher and P. N. Meisinger, “ - 
Symmetric Quantum Mechanics,” Journal of Mathe- 
matical Physics, Vol. 40, No. 5, 1999, pp. 2201-2229.  
doi:10.1063/1.532860 

[10] F. M. Fernandez, R. Gujardiola, J. Ross and M. Zonjil, 
“Strong Coupling Expansion for the  -Symmetric 

Oscillator        2 3
=V x a ix b ix c ix  ,” Journal of 

Physics A: Mathematical and General, Vol. 31, No. 50, 
1998, pp. 10105-10112.  
doi:10.1088/0305-4470/31/50/008 

[11] R. S. Kaus m Mechanics of Complex 
Hamiltonian Systems in One Dimension,” Journal of 
Physics A: Mathematical and General, Vol. 34, No. 49, 
2001, pp. L709-L714. 

hal, “On the Quantu

305-4470/34/49/104doi:10.1088/0  

[12] A. L. Xavier Jr. and M. A. M. de Aguiar, “Complex Tra-
jectories in the Quartic Oscillator and Its Semiclassical 
Coherent-State,” Annals of Physics, Vol. 252, No. 2, 1996, 
pp. 458-476. doi:10.1006/aphy.1996.0141 

[13] A. L. Xavier Jr. and M. A. M. de Aguiar, “Phase Space 
Approach to the Tunnel Effect: A New Semiclassical 
Traversal Time,” Physical Review Letters, Vol. 79, No. 
18, 1997, pp. 3323-3326.  

suggestions regarding the ma

doi:10.1103/PhysRevLett.79.3323 

[14] T. J. Hollowood, “Solitons in Affine Toda Theories,” 
Nuclear Physics B, Vol. 384, No. 3, 1992, pp. 523-540.  
doi:10.1016/0550-3213(92)

REFERENCES 
[1] H. Feshbach, C. E. Porter and V. F. Weisskopf, “Model 

for Nuclear Reactions with Neutrons
Vol. 96, No. 2, 1954, pp. 448-464.  

90579-Z,  

Non-Hermitian Local-[15] D. R. Nelson and N. M. Shnerb, “
ization and Population Biology,” Physical Review E, Vol. 
58, No. 2, 1998, pp. 1383-1403.  
doi:10.1103/PhysRevE.58.1383 

 

[2] R. S. Kausha tum Mech

action in a 
rnal of Physics A:

l, “Classical and Quan anics of

Complex 
 Mathe-

 
Noncentral Potentials,” Narosa Publishing House, New 
Delhi, 1998.  

[3] F. Verheest, “Nonlinear Wave Inter
Hamiltonian Formalism,” Jou

[16] N. Hatano and D. R. Nelson, “Localization Transitions in 
Non-Hermitian Quantum Mechanics,” Physical Review 
Letters, Vol. 77, No. 3, 1996, pp. 570-573.  
doi:10.1103/PhysRevLett.77.570matical and General, Vol. 20, No. 1, 1987, pp. 103-110.  

doi:10.1088/0305-4470/20/1/019 

[4] N. N. Rao, B.

 

[17] N. Hatano and D. R. Nelson, “Vortex Pinning and Non- 
Hermitian Quantum Mechanics,” Physical Review B, Vol. 
56, No. 14, 1997, pp. 8651-8673.  
doi:10.1103/PhysRevB.56.8651 

 Buti and S. B. Khadkikar, 

ics Letters A, Vol

“Hamiltonian

. 276, 

 
Systems with Indefinite Kinetic Energy,” Pramana: Jour- 
nal of Physics, Vol. 27, No. 4, 1986, pp. 497-505.  

[5] R. S. Kaushal and H. J. Korsch, “Some Remarks on Com-
plex Hamiltonian Systems,” Phys

[18] R. S. Kaushal and Parthasarthi, “Quantum Mechanics of 
Complex Hamiltonian Systems in One Dimension,” Jour- 
nal of Physics A: Mathematical and General, Vol. 35, No. 
41, 2002, pp. 8743-8761.  

No. 1-4, 2000, pp. 47-51.  
doi:10.1016/S0375-9601(00)00647-2 

[6] R. S. Kaushal and S. Singh, “Construction of Co
doi:10.1088/0305-4470/35/41/308 

[19] Parthasarthi and R. S. Kaushal, “Quantum Mechanics of 
Complex Sextic Potential in One Dimension,” Physica 
Scripta, Vol. 68, No. 2, 200

mplex 
Invariants for Classical Dynamical Systems,” Annals of 
Physics, Vol. 288, No. 2, 2001, pp. 253-276.  
doi:10.1006/aphy.2000.6108 

[7] C. M. Bender and A. Turbiner, “Analy

3, pp. 115-127.  
0115doi:10.1238/Physica.Regular.068a0

tic Continuation of 
 

[20] L. I. Schiff, “Quantum Mechanics,” Tata McGraw-Hill 
Publishing Company Limited, New York, 1968. 

Eigenvalue Problems,” Physics Letters A, Vol. 173, No. 6, 
1993, pp. 442-446. doi:10.1016/0375-9601(93)90153-Q 

[8] C. M. Bender and S. Boettcher, “Real Spectra 
Hermitian Hamiltonians Hav

in Non-
ing -Symmetry,” 

 
Phy-  

 

http://dx.doi.org/10.1016%2FS0375-9601%2800%2900647-2
http://dx.doi.org/10.1016%2FS0375-9601%2800%2900647-2
http://dx.doi.org/10.1006%2Faphy.2000.6108
http://dx.doi.org/10.1006%2Faphy.2000.6108
http://dx.doi.org/10.1006%2Faphy.2000.6108
http://dx.doi.org/10.1016%2F0375-9601%2893%2990153-Q
http://dx.doi.org/10.1016%2F0375-9601%2893%2990153-Q
http://dx.doi.org/10.1103%2FPhysRevLett.80.5243
http://dx.doi.org/10.1088%2F0305-4470%2F31%2F50%2F008
http://dx.doi.org/10.1088%2F0305-4470%2F31%2F50%2F008
http://dx.doi.org/10.1088%2F0305-4470%2F31%2F50%2F008
http://dx.doi.org/10.1088%2F0305-4470%2F31%2F50%2F008
http://dx.doi.org/10.1088%2F0305-4470%2F31%2F50%2F008
http://dx.doi.org/10.1088%2F0305-4470%2F34%2F49%2F104
http://dx.doi.org/10.1103%2FPhysRevLett.79.3323
http://dx.doi.org/10.1103%2FPhysRevLett.79.3323
http://dx.doi.org/10.1016%2F0550-3213%2892%2990579-Z
http://dx.doi.org/10.1103%2FPhysRevE.58.1383
http://dx.doi.org/10.1103%2FPhysRevLett.77.570
http://dx.doi.org/10.1088%2F0305-4470%2F35%2F41%2F308
http://dx.doi.org/10.1088%2F0305-4470%2F35%2F41%2F308
http://dx.doi.org/10.1088%2F0305-4470%2F35%2F41%2F308
http://dx.doi.org/10.1088%2F0305-4470%2F35%2F41%2F308

