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ABSTRACT 

In this paper, variational iteration method and He-Laplace method are used to solve the nonlinear ordinary and partial 
differential equations. Laplace transformation with the homotopy perturbation method is called He-Laplace method. A 
comparison is made among variational iteration method and He-Laplace. It is shown that, in He-Laplace method, the 
nonlinear terms of differential equation can be easily handled by the use of He’s polynomials and provides better 
results. 
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1. Introduction 

Nonlinearity exists everywhere and nature is nonlinear in 
general. The search for a better and easy to use tool for 
the solution of nonlinear equations that illuminate the 
nonlinear phenomena of real life problems of science and 
engineering has recently received a continuing interest. 
Various methods, therefore, were proposed to find ap-
proximate solutions of nonlinear equations. Some of the 
classical analytic methods are Lyapunov’s artificial small 
parameter method [1], perturbation techniques [2,3], 
 -expansion method [4] and Hirota bilinear method 
[5-6]. In recent years, many authors have paid attention 
to study the solutions of nonlinear partial diffenential 
equations by using various methods. Among these are the 
Adomian decomposition method (ADM) [7], He’s Semi- 
inverse method [8], the tanh method, homotopy perturba- 
tion method(HPM), Sinh-Cosh method, the differential 
transform method and the variational iteration method 
(VIM) [9-17]. Several techniques including the Adomian 
decomposition method, the variational iteration method, 
the weighted finite difference techniques and the Laplace 
decomposition method have been used to solve nonlinear 
differential equations [18-26]. J. H. He developed the 
homotopy perturbation method (HPM) [27-42] by merg- 
ing the standard homotopy and perturbation for solving 
various physical problems. The Laplace transform is to- 
tally incapable of handling nonlinear equations because 
of the difficulties that are caused by the nonlinear terms. 
Various ways have been proposed recently to deal with 
these nonlinearities such as the Adomian decomposition  

method [43] and the Laplace decomposition algorithm 
[44-48]. Furthermore, the homotopy perturbation method 
is also combined with the well-known Laplace transfor- 
mation method [49] which is known as He-Laplace me- 
thod. 

In this paper, the main objective is to introduce a com- 
parative study to nonlinear ordinary differential equation 
and partial differential equations by using variational ite- 
ration method and He-Laplace method. 

It is worth mentioning that He-Laplace method is an 
elegant combination of the Laplace transformation, the 
homotopy perturbation method and He’s polynomials. 
The use of He’s polynomials in the nonlinear term was 
first introduced by Ghorbani [50]. The proposed algo- 
rithm provides the solution in a rapid convergent series 
which may lead to the solution in a closed form. This 
paper contains basic idea of homotopy perturbation me- 
thod in Section 2, variational iteration method in Section 
3, Laplace homotopy perturbation method in Section 4 
and conclusions in Section 5 respectively. 

2. Basic Idea of Homotopy Perturbation 
Method and He-Laplace Method 

2.1. Homotopy Perturbation Method 

Consider the following nonlinear differential equation 

    0 ,A y f r r            (1) 

with the boundary conditions of 

, 0,
y

B y r
n

   
         (2) 
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where A, B,  f r  and  are a general differential 
operator, a boundary operator, a known analytic function 
and the boundary of the domain , respectively. 




The operator A can generally be divided into a linear 

part L and a nonlinear part N. Equation (1) may therefore 
be written as: 

      0L y N y f r          (3) 

By the homotopy technique, we construct a homotopy 
   , : 0,1v r p R   which satisfies: 

       
   

0, 1

0

H v p p L v L y

p A v f r

    
    

     (4) 

or 

     
     

0

0

,

0

H v p L v L y

p L y p N v f r

 

     
     (5) 

where  0,1p  is an embedding parameter, while 0  
is an initial approximation of Equation (1), which satis- 
fies the boundary conditions. Obviously, from Equatons 
(4) and (5), we will have: 

y

     0,0 0H v L v L y           (6) 

     ,1 0H v A v f r           (7) 

The changing process of p from zero to unity is just 
that of v(r, p) from y0 to y(r). In topology, this is called 
deformation, while    0L v L y  and    A v f r  are 
called homotopy. If the embedding parameter p is con-
sidered as a small parameter, applying the classical per-
turbation technique, we can assume that the solution of 
Equations (4) and (5) can be written as a power series in 

: p

2 3
0 1 2 3v v pv p v p v          (8) 

Setting  in Equation (8), we have 1p 

0 1 2
1

lim
p

y v v vv


             (9) 

The combination of the perturbation method and the 
homotopy method is called the HPM, which eliminates 
the drawbacks of the traditional perturbation methods 
while keeping all its advantages. The series (9) is con-
vergent for most cases. However, the convergent rate 
depends on the nonlinear operator  A v . Moreover, He 
[51] made the following suggestions: 

1) The second derivative of  N v  with respect to  
must be small because the parameter may be relatively 
large, i.e. . 

v

1p 

2) The norm of 1 N
L

v
 
  

2.2. He-Laplace Method 

Consider the following nonlinear differential equation 
(IVP): 

   1 2 3y p y p y p f y f x        (10) 

   0 , 0y y             (11) 

where 1 2 3, , , ,p p p    are constants. f(y) is a nonlinear 
function and f(x) is the source term. Taking Laplace 
transformation (denoted throughout this paper by L) on 
both side of Equation (10), we have 

       
 

1 2 3L y L p y L p y L p f y

L f x

     
   


  (12) 

By using linearity of Laplace transformation, the result 
is 

       
 

1 2 3L y p L y p L y p L f y

L f x

     
   


  (13) 

Applying the formula on Laplace transform, we obtain 

      
     

2
1

2 3

(0) (0) 0s L y sy y p sL y y

p L y p L f y L f x

   

        
  (14) 

Using initial conditions in Equation (14), we have 

     
   

2
1 1

3

2s p s L y s p p L y

p L f y L f x

      

       
   (15) 

or 

   
     

     

1 2

2 2
1 1

3

2
1

s p p
L y L y

s p s s p s

p
L f y L f x

s p s

   
 

 

     


  (16) 

Taking inverse Laplace transform, we have 

     

 

1 2
2

1

1 3
2

1

p
y x F x L L y

s p s

p
L L f y

s p s





 
   


 

    





      (17) 

where  F x  represents the term arising from the source 
term and the prescribed initial conditions. 
Now, we apply homotopy perturbation method [51], 

   
0

n
n

n

y x p y




  x                  (18) 

where the term  are to recursively calculated and the 
nonlinear term 

ny
 f y  can be decomposed as 

  must be smaller than one 

so that the series converges. 
   

0

n
n

n

f y p H y




                 (19) 
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for some He’s polynomial nH  (see [50,52]) that are 
given by 

 0 1 2

0 0

, , , ,

1
0,1,2,3

!

n n

n
i

in
i p

H y y y y

f p y n
n p



 

         





 

Substituting Equations (18) and (19) in (17), we get 

   
0

1 2
2

01

1 3
2

01

( )
( )

( )
( )

n
n

n

n
n

n

n
n

n

p y x F x

p
p L L p y x

s p s

p
L L p H y

s p s

















        





         







   (20) 

which is the coupling of the Laplace transformation and 
the homotopy perturbation method using He’s polynomi-
als. Comparing the coefficient of like powers of p, the 
following approximations are obtained: 

   

   

 

     

   

0
0

1 1 2
1 02

1

1 3
02

1

2 1 2
2 12

1

1 3
12

1

: ,

: (
( )

( )
( )

:

p y x F x

p
p y x L L y x

s p s

p
L L H

s p s

p
p y x L L y x

s p s

p
L L H y

s p s











  
     

)

y
 

   
          



         

 

(21)

 

   

 

3 1 2
3 22

1

1 3
22

1

:
( )

( )
( )

p
p y x L L y x

s p s

p
L L H

s p s





  
        

y
 

   

 

Example 2.1. Consider the following nonlinear PDE 
[53]: 

2

2 42
u

u
y

 
     

y x





          (22) 

with the following conditions: 

     
   

,0 , ,1 ,

0, 0, 1, .

u x ax u x x x a

u y u y y a

 

 
   (23) 

Equation (22) can be written as 
22 2

4
2 2

2
u u u

y x
yx y

   
       

      (24) 

By applying the Laplace transform to both sides of 
Equation (24) subject to the initial condition, we have 

     4 2
2 2

1 1
2 yy yL u L y L x L u u

s s
        (25) 

The inverse of the Laplace transform implies that 

 
6

2

1 2
2 2

,
30

1 1
yy y

x
u x y x y

L L u L u
s s



 

         

     (26) 

Now, we apply the homotopy perturbation method, we 
have 

     

 

 

6
2

0

1
2

0

,
30

1

n
n

n

n n
n n

n

x
p u x y x y

pL L p u L p H u
s










 

              



 
 (27) 

where  nH u  are He’s polynomials. The first few com-
ponents of He’s polynomials are given by 

 
 
 

2 2
0 0

1 0 1

2
2 1 0 2

2 0

2 0

y

y y

y y y

H u y x

H u y y

H u y y y

 

 

  

        (28) 

Comparing the coefficient of like powers of p, we 
have 

 
6

0 2
0: ,

30

x
p u x y x y  , but we consider  

 
6

2
0 ,

30

x
u x y x y ax    

 

  
 

  
 

  

1
1

6
1

0 02

2
2

1
1 12

3
3

1
2 22

: ,

1

30

: ,

1
0

: ,

1
0

yy

yy

yy

p u x y

x
L L y L H y

s

p u x y

L L y L H y
s

p u x y

L L y L H y
s







           

           

           

 

   (29) 

So that the solution  ,u x y  is given by 

  0 1 2 3

6 6
2

2

,

0 0
30 30

u x y u u u u

x x
x y ax

x y ax

    

      

 



      (30) 

which is the exact solution of the problem. 
Example 2.2. Consider the following non-homogeneous 
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nonlinear PDE [53]: 
2

2 1

4

u
x

t x

       

u
          (31) 

with the following condition: 

 ,0 0u x                 (32) 

By applying the Laplace transform method subject to 
the initial condition, we have 

 
2

21
,

4 x

L x
y x s L u

s s

                (33) 

The inverse of the Laplace transform implies that 

  2 1 21
,

4 xu x t x t L L u
s

        
        (34) 

Now, we apply the homotopy perturbation method, we 
have 

 
0

2 1

0

,

1
( )

4

n
n

n

n
n

n

p u x t

x t p L L p H u
s










               





 

    (35) 

where  nH u  are He’s polynomials. The first few com- 
ponents of He’s polynomials are given by 

 

 

 

2 2 2
0 0

2 4

1 0 1

2 6 2 6
2

2 1 0 2

4

8
2

3

4 16
2

9 15

x

x x

x x x

H u u x t

x t
H u u u

x t x
H u u u u

 

  

   
t

  (36) 

Comparing the coefficient of like powers of p, we 
have 

 

    

    

0 2
0

2 3
1 1

1 0

2 5
2 1

2 1

: ,

1
: ,

4

1
: ,

4

p u x t x t

3

2

15

x t
p u x t L L H u

s

x t
p u x t L L H u

s







        

       

 (37) 

Proceeding in a similar manner, we have 

 
2 7

3
3

17
: ,

315

x t
p u x t    

  

So that the solution  is given by  ,u x t

  0 1 2 3

2 3 2 5 2 7
2

,

2 17

3 15 315

u x t u u u u

x t x t x t
x t

    

    




   (38) 

3. Variational Iteration Method (VIM) 

To illustrate the basic concept of the technique, we con- 
sider the following general differential equation 

 Lu N u g x   

where L is a linear operator, N is a nonlinear operator and 
g(x) is the forcing term. According to VIM, we can con-
struct a correct functional as follows 

          1
0

d
x

n n n nu x u x Lu s N u s g s s       

where   is a Lagrange multiplier. The subscripts n 
denote the nth approximation, nu  is considered as a 
restricted variation i.e. 


0nu  . In this method, it is 

required first to determine the Lagrange multiplier   
optimally. The successive approximation 1n  of 
the solution u will be readily obtained upon using the 
determined Lagrange multiplier and any selective func- 
tion , consequently, the solution is given by  

,u n  0

0



u
limn nu u . 

Now, we consider the following examples: 
Example 3.1. Consider the following first order 

nonlinear differential equation [53]: 

2 0, 0y y y               (39) 

 0 1y                      (40) 

If 0  is an initial approximation or trial-function then 
we can write down following expression for correction: 

y

        2
1

0

d
t

n n n n ny t y t y y         (41) 

where the last term of right is called “correction”, n  is 
a general Lagrange multiplier. The above functional is 
called correction functional, the Lagrange multiplier in 
the functional should be such chosen that its correction 
solution is superior to its initial approximation (trial- 
function) and is the best within the flexibility of the trial- 
function, accordingly we can identified the multiplier by 
variational theory [54,55]. Making the above correction 
functional stationary with y(0) = 1 so that, we can obtain 
following stationary conditions: 

     2n ny     0          (42) 

 1 n t   0                 (43) 

The Lagrange multiplier, therefore, can be identified 
as follows: 

   exp 2 dn n
t

y


 
 

   
 
        (44)

 
To simplify the multiplier, we approximate Equation 

(44) as follows: 
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   0exp 2 dn
t

y


 
 

  
 
           (45) 

Substituting Equation (45) in Equation (41) yields fol-
lowing variational iteration formula 

   

      
1

2
0

0

exp 2 d d

n n

t

n n
t

y t y t

y y y


   

 


 


  





  (46) 

We start with by above iteration formula, we can ob-
tain following results, 

 

   

2( )
1

0

2 2

1 d

1 1
1 1 1

2 2

t
t

t t

y t e

e e

 

 

 

    


             (47) 

 

   

 

   

 

   

2

22 2( ) 2 2

0

2 2( ) 2 4

0

2 2

2 2

2 2 4

1 1
1 1

2 4

1 1 1 1
1

2 4 2 4

1 1
1 1

2 8
1 1

4
2 8
1 1 1

1 1
2 2 8

t
t t

t
t t

t t

t t

t t t

y t

e e e e

e e e e

e e

te e e t

e te e

  

  

d

d





   

   

 

 

  

       
 

     
 

   

   

    






  (48) 

if, suppose,  2y t
 0.4 0

 is sufficient, the approximation at x 
= 0.4 is 2 , while its exact one is y(0.4) = 
0.6667, the 0.17% accuracy is remarkably good in view 
of the crudeness of its initial approximation. The process 
can, in principle, be continued as far as desired, however, 
the resulting integrals quickly become very cumbersome, 
so some simplification in the process of identification of 
Lagrange multiplier will be discussed at below: 

.6678y

We re-consider the correction functional Equation (41) 
as follows: 

        2
1

0

d
t

n n n ny t y t y y          (49) 

Where the nonlinear term 2
ny  is considered as non-

variational variation or constrained variation [54], i.e. 
 The Lagrange multiplier, therefore, can be 

readily identified and the following variation iteration 
formula can be obtained: 

2 0.ny 

        2
1

0

d
t

n n n ny t y t y y     

lowing results. 

  (50) 

Putting n = 0, 1, in Equation (50), we can obtain fol- 

   

    

1
0

2 2 3
2

0

1 0 1 d 1

1
1 1 1 d 1

3

t

t

y t t

y t t t t t



 

    

         




 

…Similarly putting n = 2, 3, , n − 1, the nth approxi-
m

tional iteration technique mentioned above 
ca

: 

ation can be obtained, which converges to its exact 
solution, a little more slowly due to the approximate 
identification of the Lagrange multiplier. 

Remark 
The varia
n be readily extended to partial differential equations 

(PDEs). Here the author will illustrate its process. 
Example 3.2. Consider the following equation [53]

   
   

2
u 2 4

2

2

0, 0, 1,

,0 , ,1

u y x
y

u y u y y a

u x ax u x x ax

     
  

  

    (51) 

which has the exact solution 
ate solution 

ca

 u x xy a  . 
, an approxiAccording to Adomian [56] m

n be obtained [57]. 

 

   
4

51 1
1 1

2 2 3 30

u x xy a 

 x y x
y y x

        
   

  (52) 

It is obvious that the approximation does not satisfy its 
boundary conditions. In 1995, Liu [57] proposes a modi-
fied Adomian’s method called weighted residual de-
composition method, with such method, he obtained fol-
lowing approximation: 

     31
1 1

4
u x xy a xy y x        (53) 

which satisfies all its boundary conditions and has more 

of Equation (51) 
is 

higher accuracy than Adomian’s. In 1978, Inokuti et al. 
[55] proposed a general Lagrange multiplier method to 
solve nonlinear mathematical physics which was first 
applied to quantum mechanics. In this method, a more 
accurate solution, depending upon its trial-function can 
be obtained for some special points, but not an approxi- 
mate analytical one. J. H. He [53] tries to solve it by 
variational iteration method as follows: 

Supposing the initial approximation 

0u , its correction variational functional in x-direction 
and -direction can be expressed respectively as follows: 

 
 y

   

   

2 ,x u y
1 1 2

0

22
4

2

, ,

ˆ ˆ, ,
2 d

n
n n

n n

u x y u x y

u y u y
y

yy




 
 

   


  
    

   


   (54) 


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     

   

2

1 2 2
0

22
4

2

,
, ,

ˆ ˆ, ,
2 d

y
n

n n

n n

u x
u x y u x y

u x u x
x

x






 
 






  


  
    

   


   (55) 

where is a nonvariational variation. Their stationary 
conditio are written down respectively as follows 

ˆnu  
ns 

     2
1

12
0, 0, 1 1

x

x




   
 

 



 
   



and 

0  (56) 

     2
2 2

22
0, 0, 1 0y

   
  

 
     (57

y





) 

The Lagrange multipliers can be easily identified: 

1 2,x y                   (58) 

The iteration formulae in x-direction and y-directions 
can be, therefore, expressed respectively as follows 

       

   

2

1 2
0

, , n
n nu x y u x y x


22

,

, ,

x u y

u y u y



  4
2

2 dn n y
yy

     
   

    





   
  (59) 

       

   

2

1 2
0

22
4

2

,
, ,

, ,
2 d

y
n

n n

n n

u x
u x y u x y y

u x u x
x

x






 
 






   


  
    

   


  (60) 

To ensure the approximations satisfy the boundary 
conditions at x = 1 and y = 1, we modify the variational 
iteration formulae in x-direction and y-direction 
lows: 

as fol- 

       

   

2

1 2

,
, ,

x
n

n n

u y
u x y u x y x




1

22
4

2

, ,
2 dn nu y u y

y
yy

 
 




   




  
    

   

  (61) 

       

   

2

1 2
1

22
4

2

,
, ,

, ,
2 d

y
n

n n

n n

u x
u x y u x y y

u x u x
x

x






 
 






   


  
    

   


  (62) 

Now we start with an arbitrary initial approximation: 
x , where A and B are constants to be deter- 

e variational iteration formula in x-direction 

(59), we have 

0u A B 
mined, by th

    4
1

0

2

, 0 0 2

1

30

x

u x y A Bx x y

A Bx x y x

d  
 (63) 

        

   



1 yields A =
By imposing the boundary conditions at x = 0 and x = 

 0 and B = a − 1/30, thus we have 

     5
1

1
, 1u x

30
y x xy a x x           (64) 

By (61), we have 

     

 

 

4 4 4

1

2 0 2 dx y y

5
2

1
, 1

30
x

u x y x xy a x x

x xy a

    

   

           (65) 

 

which is an exact solution. The approxima
be ction. 

sider the following nonlinear PDE 
[53]: 

tion can also 
 obtained by y-dire
Example 3.3. Con

2
2 1

4

u u
x

t x

       
           (66) 

 ,0 0u x   

Its t-direction correction functional can be constructed 
as 

   

   
1 , ,n nu x t u x t

2

2

0

ˆ, ,1
d

4

t
n nu x u x

x
x

 
 



 

   
     

   


   (67) 

In which is nonvariational variation. The multi- 
plier can be tified and its v nal iteration for- 
m

ˆnu  
 iden ariatio

ula t-direction can be obtained 

   

   
1

2

2

0

, ,

, ,1
d

4

n n

t
n n

u x t u x t

u x u x
x

x

 




 

   
     

    


    (68) 

We start with initial approximation  by above 
ite u

0

ration form la, we can obtain successively its ap-
proximation: 

0,u 

   

   

2
t

2
1

0

22 2 2
2

0

, 0 d ,

1
, 2 d

4

1

t

u x t x x t

u x t x t x x x

   



2 2 3 ,
3

x t x t

       





 
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 3 ,u x t
2

2 2 3 2 2 2 2 3

0

2 2 3 2 4 2 6

0

2 2 3 2 3 2 7

1 1 2
2 d

3 4 3

1 2 1
d

3 3 9

1 2 1

3 15 63

t

t

x t x t x x t x x x

x t x t x x

x t x t x t x t

  

  

          
   

       

   




 

which is the same as Adomian’s [56,58]. 

4. Comparision of Variational Iterational 
Method and He-Laplace Method 

Example 4.1. Consider the following first order nonlin
ear differential equation [53]: 

          (69) 

with the following condition: 

         (70) 

itial 

-

2 0, 0y y y     

 0 1.y            

By applying the aforesaid method subject to the in
condition, we have 

  21 1
L y x L y               (71) 

s s

The inverse of the Laplace transform implies that 

  1 21
1y x L  L y              (72) 

Now, we apply the homotopy perturbation method, we 
ha

s 

ve 

   1

0 0

1
1n

n n
n n

p y x p L L p H y
s

n




 

            
 (73) 


 

where  nH y  are He’s polynomials. The first few
ponents of He’s polynomials are given by 

 com-

 
 
 

2
0 0

2 1 0 2

1

2 3

H y y

1 0 1

2 2

2 2H y y y x

H y y y y x

 

  

  

        (74) 

Comparing the coefficient of like powers of p
have 

, we 

 

    

    

    

0

2 1
2 1

3 1 3

: 1

1
:

1

p y x

x
s

p y x L L H y
s







  
     
     

  (75)

Table 1. Numerical results of Example 4.1. 

x 
yappx.3 (x)

He-Laplace 
method

 
yappx.3 (x)

VIM 
y(x) 

exact 

Relative 
error of 

He-Laplace 
Method 

Relative 
error of VIM

0.05 0.9523750 0.9524583 0.9523809 6.1950E−06 8.1270E

0

1 1
1 0

1
:p y x L L H y      

2x

3 2:p y x L L H y x
s    

 

  

−05

0.1 0.9090000 0.9096667 0.9090909 9.9990E−05 6.3338E−04

0.15 0.8691250 0.8713750 0.8695652 5.0623E−04 2.0812E−03

0.2 0.8320000 0.8373333 0.8333333 1.5999E−03 4.8000E−03

0.25 0.7968750 0.8072917 0.8000000 3.9062E−03 9.1146E−03

0.3 0. 99E−02

0.35 0 0. 0.7407 2.

0. 7 0. 7 

7630000 0.7810000 0.7692308 8.1000E−03 1.52

.7296250 7582083 407 1.5006E−02

2.5599E−02

3581E−02

3.4133E−020.4 0.6960000 738666 714285

 
 tSo hat the solution  y x  is given by 

 y x 0 1

2

2 3

3
.3appxy x1 x

y y y y

x

    

    




     (76) 

wh hic  is converging to 
 

1

1 x

 
   

 i.e. exact solution.  

T

. Conclusion 

In nal it d is employed 
for solving nonlinear ordinary and partial di
equations. The same problems are solved by H
method. It is worth mentioning that the He-Laplace me- 

e volu
o the var

f the 
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