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ABSTRACT

Our aim in the present article is to introduce and study types of retraction of one dimensional manifold. New types of
geodesics in one dimensional manifold are presented. The deformation retracts of one dimensional manifold into itself
and onto geodesics is deduced. Also, the isometric and topological folding in each case and the relation between the
deformations retracts after and before folding has been obtained. New types of conditional folding are described.
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1. Introduction

As is well known, the theory of retractions is always one
of interesting topics in Euclidian and Non-Euclidian
space and it has been investigated from the various view-
points by many branches of topology and differential
geometry El-Ahmady [1-3].

Most folding problems are attractive from a pure
mathematical standpoint, for the beauty of the problems
themselves. The folding problems have close connections
to important industrial applications Linkage folding has
applications in robotics and hydraulic tube bending. Pa-
per folding has application in sheet-metal bending, pack-
aging, and air-bag folding El-Ahmady [2,3]. Following
the great Soviet geometer El-Ahmady [4], also used fold-
ing to solve difficult problems related to shell structures
in civil engineering and aero space design, namely buck-
ling instability El-Ahmady [4].

Isometric folding between two Riemannian manifold
may be characterized as maps that send piecewise geo-
desic segments to a piecewise geodesic segments of the
same length El-Ahmady [2-4]. For a topological folding
the maps do not preserves lengths El-Ahmady [5,6], i.e.
A map J:M — N, where M and N are C” -Rieman-
nian manifolds of dimension m, n respectively is said to
be an isometric folding of M into N, iff for any piece-
wise geodesic path y:J —>M , the induced path
Joy:J > N is a piecewise geodesic and of the same
length as », If J does not preserve length, then J is
a topological folding El-Ahmady [7,8].

A subset A of atopological space X is called a re-
tract of X if there exists a continuous map r: X — A
such that r(a)=a,VaeA where A is closed and X is
open El-Ahmady [9-11]. Also, let X be a space and A
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a subspace. A map r:X — A such that r(a)=a, for
all ae A, iscalled a retraction of X onto A and A
is called a retract of X . This can be restated as follows.
If i: A— X isthe inclusion map, then r: X — A isa
map such that ri=id, If, in addition, ri=id,, we
call r a deformation retract and A a deformation re-
tract of X Another simple-but extremely useful-idea is
that of a retract. f A, X M then A is a retract of
X if there is a commutative diagram.

ida

If f:A—>B and g:X —Y, thenfisaretractof g
if there is a commutative diagram El-Ahmady [3,7],
Arkowitz [12], Naber [13,14], Reid [15], Shick [16] and
Strom [17].

— >
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2. Main Result
2.1. On a Closed Interval

In what follows, we discuss the retractions, let the closed
interval be | = [a,b], since the closed interval | is
closed then firstly take a point {p} of it to make a re-

traction, ([a,b]—{ p}) is open. Consider some types of
retractions of ([a,b] —{ p}) .
If r:([a,b]-{p})>C".C" |
then we can get
r([a.b]-{p}) =]ab].r, ([a.b] - {p}) =[ab]
r,([2.]-{p}) =Ja.b[r, ([a.b]-{p})=0.0 -

Now, we are in a position to formulate the following
two theorems.

Theorem 1. All types of retraction of a closed interval
are semi-open set or open set or zero-space.

Theorem 2. The limit of retraction of closed interval
is a zero-manifold.

Now, we are going to discuss the deformation retract
of the closed interval. Let ([a,b]—{p}) be the open
interval, and then the homotopy map is defined as

m < ([a.b]={p})x| —>([a,b]—{p}), where 1 =[0,1],

then we present the following cases of deformation re-
tracts

m (xt)=(1-t)([a.b]-{p})+t(Ja.b]).

where 7,(x,0) = ([a,b] -1 p})

and

Ul(x’l):]a’b]
12 (08) =€ (1) (2.6]{ o} + T2+ 1) (.00,

7 (x.t) = cos t([a.b]{ p}) +sin Jt(Ja.b).

1-t 2t (.
774(x,t)_1+t([a,b] {p})+]+t{v,|_1,2}

From the above discussion, we obtain the following
theorem.

Theorem 3. The deformation retracts of a closed inter-
val gives semi-open set, open set and zero-dimensional
space.

Now, we are going to discuss the folding g of
closed interval I.

Let g:1 > 1, where g(x)=|x.

An isometric folding of closed interval | into itself
may by

¢ ([a.b]-{p}) >([a.b]-{p})
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The deformation retracts of the folded closed interval
¢ (1) into the folded retraction g-(r,) is

ng :|([a.b]-{p})|x1 > |([a.b]-{p})

with ng/(m,c):cos%ck[a,b]—{p})|+sin%c(|]a,b]|),

where ng(m,0)=|([aab]_{p})|

and ng(m,1)= (|]a,b]|)
The deformation retract of the folded closed interval
(1) into the folded retraction g-(r,) is

ng (m.c) = COS%CK[% b]~{p})|+ Sin%c(ﬂa’ b[})

The deformation retract of the folded closed interval
(1) into the folded retraction g (r,) is

B

g (m.) = (1-c)|([a.b] - p})] + 3 ¢(2+¢)(0.0)

Then, the following theorem has been proved.

Theorem 4. The deformation retract of the folded
closed interval into the folded retractions is the same as
or different from the deformation retract of the closed
interval into the retractions

Proposition 1. If the retraction of the closed interval
[a,b] is r:([a,b]—{ p}) —¢  and the folding of
([a,b]—{p}) into itself is
f :([a,b]—{p})—>|([a,b]—{p})|, then there are com-

mutative diagram between retraction and folding such
that

(la, b] — {p}) ——— ]a,b]
fi f
I(la, b] = {(p})|—— > |1, b]|

Proof. Let a retraction I, :([a,b]—{p}) — ]a,b] ,bea
retraction of ([a,b]—{p}) into ]a,b] . Also, let the

folding f, is f :([a,b]—{p}) - ([a,b]—{p})| and
the folding f, be f,:(]a,b]) —>|]a,b]|. Then we have

the retraction T, :|([a,b] -{ p})| - |]a,b]| such that
f,on =n°f,

Proposition 2. The relation between the retraction of
the closed interval and the limit of folding discussed
from the following commutative diagram.
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(la,b] - (p}) ——» la,b]
lim f; lim £
)

0 — > 0

Proof. Let a retraction T, :([a,b]—{ p}) — ]a,b], be a
retraction of ([a,b]—{ p}) into ]a,b] . Also, let the
limits of folding are given by

lim f, :([a,b]~{p}) >0 and lim f,:]a,b]>0.

Then we have the retraction of the zero dimensional
manifold is the identity map, i.e. r,:0— 0 such that

lim f,°r, =r,°lim f,
n—oo n—o

2.2. On a Cartesian Product of Closed Interval

In this position, we introduce the retraction of Cartesian
product of closed interval. Consider two closed intervals
I, =1, =[0,1]. The Cartesian product is defined as

17 =[0,1]x[0,1] ={(0,0),(0,1)(1,0)(1,1)}.

The retraction is defined as. Consider the square |2
with vertices v';i=0,1,2,3, removing only one vertex
v';i=0,1,2,3, then the retraction is given by,

r: (I x | —{vi;i = 0,1,2,3}) — Adjacent edges .
Also, removing two adjacent vertices is equivalent to

removing an edge of the square, and then the retraction is
defined as follows,

r, :(I x| —{vi,i =0 and 1}) — closed interva.
Moreover, removing two non-adjacent vertices gives a

retraction, which is directly the zero-dimensional mani-
fold,

r, :(I x| —{Vi,i =1 and 3}) — zero-points
In what follows, we discuss the deformation retract of

the square 1° as follows. The deformation retract of the
square 1° c R* is defined by

7; :(I2 —{v‘;i =0,1,2,3})><|
> (17 -{vii=01,2,3}),

where | is the closed interval [0,1]. Then we have the
following cases of deformation retract. The deformation
retract of the square 1> < R*> onto a

adjacent edges  1° is given by
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T 2 s
nl(x,t)coszt(| ~{v5i=0,1,2,3})
+ singt (adjacent edges),

where 77,(x,0) = (17 ={v;i =0,1,2,3}),
and 7, (X,1) = adjacent edges.

The deformation retract of the square 1> — R*> onto
closed interval | will be

7 () = (1-1) (17 = {v5i = 0,1,2,3}) +tl

The deformation retract of the square 1> — R* onto
zero-points is

n (xt)=e (1-t)(17 = {v5i=0,1,2,3})

1 1
+—t| 2t +— | (zero points).
2 ( 2} (zero points)

From all the above discussion, we arrive to the fol-
lowing theorem.

Theorem 5. The limit of retractions sequence of the
square is the 0-dimensional manifold. Also, the deforma-
tion retract of the square is either subsquare or zero-di-
mensional manifold.

Proposition 3. If the retraction of the square 1> ¢ R?
is
r: (I 2 {Vi = 0,1,2,3}) — Adjacent edges, |, zero-point.

and the folding of (|2 (Vi =o,1,2,3}) into itself is
f :(Iz—{v‘;i =O,1,2,3})—>(I2—{vi;i =0,1,2,3}).

Then there are commutative diagrams between retrac-
tions and foldings such that

(12 = {v%i=0,1,2,3}) —— > Adjacent edge

fi f2
|(I2- v%;i =023} —
Also
(12— {vi=0123)—"1 5
fi f2
I(12= (o0 = 0,1,23)| —— 25}
And also
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(I* = {v';i = 0,1,2,3}) ——— zero_point
fi f2
) T
| (12— {v};i=0,1,2,3}| — 2 5 zero_point

Proposition 4. The relation between the retraction of
the square 1> R’ and the limit of folding discussed
from the following commutative diagrams.

(12 = {vi;i = 0,1,2,3}) ————» Adjacent edges
Ill_l)g fi 31_{?0 f2
(2= 51 = 0,1,2,3) | ——— 0
Also

(1P ={v5i=0123)——"1

lim fi r}l_{g f2
n-—-oo
) T
|(12~ ;i = 0,1,2,3})| ———— 0
Again
(12 = {vi;i = 0,1,2,3) ——1___p zero_point
lim fi lim f,
n—o n-co
. n
zero_point ———= . 0

where the limit of the folding of the Cartesian product of
I> cR* is not equal to the Cartesian product of their
limits.

Proposition 5. If the deformation retract of 1° < R?
D :(l2 ~{Vii :0,1,2,3})><| —>(|2 (Vi =o,1,2,3}),
where | € [0,1] and the retraction of 1> c R* is
r:(l? —{vi ;i=0,1, 2,3}) — Adjacent edges ,
zero— point and the folding of 1> — R* into itself is
f:1> cR* > 1> cR’. Then there are induces defor-
mation retractions, and folding such that the following
diagram is commutative.

Proof. Let the deformation retract of 1* < R* is

D, ;(l2 —{vii =O,1,2,3})><I —>(|2 —{Vhi =o,1,2,3}),
the folding of 1°x 1, and
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D, ((Iz—{vi;i =0,1,2,3})x 1 = (12 = {%i =0,1,2,3}))
are defined by f :1°x1 — 17 x1 also
f,: D, (I2 —{Vi;i :0,1,2,3})><I — Adjacent edges , the

deformation retract of f] ( 12x1 ) is
D, :f, ( 1% x I)—> Adjacent edges and the retractions of

(fz(Dl(Iz—{vi;i:0,1,2,3})xI)),and D, (f,(13x1))
are given by r : fz(Dl(Iz—{vi;i:0,1,2,3}))><I -1,

r,:D, ( f, (I2 x| )) — | . Hence, the following diagram is

commutative

D f
12 X1 —1> Adja(;ent edges —2> Adjacent edges

1> x | —— Adjacent edges —» |
2 Iz

Also, the end of limits of the folding and the end of
limits of retractions of 1> — R*> induces the 0-dimen-
sional space which is a point and in this case the retrac-
tion and folding of 0-dimensional space coincide.

Proposition 6. The limit of the folding of 0-dimen-
sional space M is 0-dimensional space.

Proof. Let M be an n-dimensional space, consider
the limit of the folding r}]im f.:M—>M,

lim £, (M)< M, then dim(lim f, (M)) <dim(M),

m—o

but if M has 0-dimension. Then dim( lim f,, (M)} <0.

m—o

Since dim@ =1 ,then dim( lim f, (M))=0 .
m—oo

Theorem 6. (IIZ,XO) is a strong deformation retract
of (|2,x0 )

Proof. "Let D:(17~(0,0))x[0,m]— (17 =(0,0)) ,
where 1’ cR*, meZ is a strong deformation re-
tracting of (IZ,XO), X, =(0,0) into 1. To be specific,
the k-homotopy D is assumed:

D(x,0)=xforallxel®, D(x,m)el; forallxel?,
and D(at)=aforallael’,and forallte[0,m].

Let r:(l2 —(0,0))—) I}, be defined as
{(x,y):-10<x<10,:-10< y <10} >
{(xy)i-l<x<5:2<y<=2}i: 1] > 17

(ier)(x)=D(x,m)=xforallxel’,
Also (1roi):1|]2

>Xo :
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Then, (Il2 ,XO) is a strong deformation retract of

17,%, ).

( Proposition 7. The retraction of (Iz—(0,0)) is a
two-dimensional manifold and the limit of foldings is a
one-manifold.

Proof. If A is a retraction of (17 —(0,0)) , then either
dimension A = dimension (I2 —(0,0)) or dimension A
# dimension (12 —(0,0)) , but in this case dimension
(I2 —(0,0)) not invariant. Then (I2 —(0,0)) is the
same dimension of I°. But, the limit of the foldings of
2-dimensional manifold into itself is a manifold of di-
mension N — 1. Then, the limit of foldings is a one-mani-
fold.

2.3.0On a Circle

Theorem 7.If 1> < R? has the fixed point property, then
S' is not a retract of 1°.

Proof. Let 1> — R* has the fixed point property. Ob-
serve that S' certainly does not have the fixed point
property since, for example, the antipodal map- idSl is
continuous, but has no fixed points. Then S' can there-
fore not be a retract of 1.

Proposition 8.1f 1° —c R* has the fixed point property,
then r (S' - m) is not a retract of 1%, where

dim(r(s1 —m)) ~1,meS'.
Proof. Since r(S1 —m)c S', and S' does not have
the fixed point property. Then I’(S1 - m) does not have

the fixed point property, dim(r (S1 - m)) =1 . Then

r(S'—m) is not a retract of 1.

Theorem 8. If S° is a 0-manifold, then S° is a retract
of (8" —n), such that $° = (S" -n),
(s"-n)=r(s'-m),and dim(S" -n)=dim(S'-m),
where meS' and neS".

Proof. Now, let ri:(Sl—m)—>S”, s c(Sl—m),
meS' be the retraction map of S' defined as

r](S1 —m)=q(cost*,sint*),n<t* <37n. Let the inclu-
sion map of S°, where S° = q(O,l) , 18

i, : S° —)(S1 —m) , the retractions of S” and i (S’

are defined by r,:S’ —>S” and r, :il(So)—>(S'* —n),
where S =q(cost*,sint*),0<t* Sg,

r, :il(SO)—>(S'*—n) is the inclusion map of rl(SO),
the retraction of il(SO) is il(SO)—>S°, also the
retractions of r3(i1(80)) and i2(rl(S°)) are given by

r,: r3(i1 (SO)) —S" and r,:i, (rl(SO))—> S”. Hence,

Copyright © 2012 SciRes.

the following diagram is commutative:

N

0 — L p(St-m) —2 4 §0

§ —— (V) . g0

iz s
\ idgo /

Proposition 9. The relation between the retraction, the
limit of the folding and the inclusion map of circle S'
discussed from the following commutative diagram

§O —» stl-n —mm 1"
limy, o0 fn T limy, oo fmat
= em > s
where

s” =q(cost*,sint*),0£t* <37n,
g :q(cost**,sint**),ost** < T

and

skkok sokok 13 sk skeokok T[ * Kk
s! :q(cost ,sint ),Oﬁt <E,neSI,meS1

The purpose of this position is to introduce the relation
between the deformation retract and folding of the circle,
the parametric equation of the open circle in the plane is
given by

S' =((acost,asint)—{p}).
Now consider some types of retractions of the circle

$' =((acost,asint)—{p}), if

r

:S! :((acost,asint)—{ p}) -5, S,

then we can get
rl((acost,asint)—{ p}) =(a,0),t=0,
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. av3 a T
r,((acost,asint)—{p})= T,EJ,tzg,

. av2 a2
Q((&cost,&lsmt)—{p})z T’Tj’t:§’
r,((acost,asint)—{p})= %,%],tzg,

n
((acost asmt)—{p})z(O,a),t =7

. -a av3 2
r, ((acost,asint)—{p}) = T’TJ’tz?n’

. —av2 aV2 3
r, ((acost,asmt)—{p}): 5 ,TJ,t:Tn,
r, ((acost,asint)—{p})= _af,%}tj_”,
r9((acost,asint)—{p}):(—a,O),t=7t,

, —a\3 -a), 7
rlo((acost,asmt)—{p}): R ,t:?n’

, —aV2 a2, 5
r, ((acost,asint)—{p}) = PR }t:f,

. -a —av3 4n

t t)— = — t=—
rlz((acos ,asint) {p}) R j, T

rM((acost,asint)—{p}): %, ,tz%,

rls((acost,asint)—{p}): " J,t:T,

r16 ((aCOSt,aSil’lt)—{ p}) = T’?J’t Z?,

r, ((acost,asint)—{ p}) =(a,0),t=2m.

Now, we are going to discuss the deformation retract
of the circle. Let S'=((acost,asint)—{p}) be the
open circle, then the homotopy map is defined as

n: ((acost,asint)—{ p})x | —)((acost,asint)—{ p}) ,

where | =[0,1], Then we have the following cases of
deformation retracts.

m(x,t) :(l—t)((acost,asint)—{ p})+t(a,0),

Copyright © 2012 SciRes.
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where 7,(x,0) =((acost,asint)—{p})
and 771(X,l)=(a,0),

ot (1 _t)((acost,aSint)_{ p})

S (2t+t)( 23,3}

7 (xt)= cos%t((acost,asint)—{ p})

. nt(a\/_ a\/_J

+sin— ,
2 2

1-t o L2t Ea\/_
1+t 1+t{ 27 2 )

m, (X’t) =

7, (x.t) = —((acost,asmt) { p})

2t

1-t .
75 (x.1) —m((acost,asmt)—{ p})+m(0,a) ,

e'(1- t)((acost asint)—{ p})

;t(Zt t)[ 2a a{]

’76()( t)

17, (x,t) = cos%t((acost,asint)—{ p})

. nt(—a\/z a\/EJ
+s1n? —,

>

2 2

1-t .
778(X,t):m((acost,asmt)—{p})
L2 [za3 a
1+t 2 2

7, (x,t) = cos%t((acost,asint)—{ p})

nt
— 0
+sm2(a ).

Now, we are going to discuss the folding g of the
circle S'.let g:S'—>S' where g(x.%)=(x.[x]).
An isometric folding of the circle S' into itself may by
defined by

g,:((acost,asint)—{p})

The deformation retracts of the folded circle gx(S')
into the folded retraction 9’(771 (X 1)) is

ng: ((acost,|asint|)—{ p} x1 )
N ((acost,|asint|)—{ p})

((acost |asmt| )

with
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asint|)—{ p})

ﬂlg’(m,t)=cosn?t((acost,
. wt
—(a,0
+sin 5 (a,0)

where

mg (m,0)= ((acost, asint|)-{ p})
and 7,9 (m,1)=(a,0)

Then, the following theorem has been proved.

Theorem 9. Under the defined folding and any folding
homeomorphic to this type of folding, the deformation
retracts of the folded circle into the folded retractions
is the same as the deformation retracts of the circle into
the retractions.

If the folding be defined by J(x,,%,)=(|x].,).

The isometric folded of the circle S' is defined as
S((acost,asint)—{ p}= ((|acost|,asint)—{ p})

The deformation retract of the folded circle 3(8')
into the folded retraction 3 (7, (X,t)) is

n3: (|acost|,asint)—{ p}xI

,asint)—{ p})

—)((|acost

with
n,3(m,t)=e' (1-t)(Jacost

,asint)

al a3
o 2

—{p}+%t(2t+t)( !

The deformation retract of the folded circle S(S])
into the folded retraction 3 (778 (X,t)) is

73(x.t) = E(ﬂac‘“q’“int)_{ P}

L2 B3] a
1+t 2

2

Then, the following theorem has been proved.

Theorem 10. Under the defined folding and any fold-
ing homeomorphic to this type of folding, the deforma-
tion retract of the folded circle into the folded retractions
is different from the deformation retract of the circle into
the retractions.

Proposition 10. If the retraction of the circle S' < R’

is: ((acost,asint)—{ p}) —S* < S', and the folding of

((acost,asint)—{p}) into itself is
f :((acost,asint)—{ p}) - ((acost,asint)—{ p}))

Then there are commutative diagrams between retraction
and folding such that:

Copyright © 2012 SciRes.

S~ (Ph— > 5

fi 2

S -ph—" s
Proof. Let a retraction
I’I:((acost,asint)—{p})—>8* cS', be a retraction of
((acost,asint)—{ p}) into S* = S'. Also, let the fold-
ing f:S'cR>—>S'cR? is given by
f, :(S1 —{p})—)(S1 —{p}) and f,:S" —>S", also,
r, :(S1 —{p})—) S™ such that
f,on =n°f,
Let C=Ui, S'[(l,o),ljcﬂ%z where
w5 i i

S'(G,1)= 8" is the circle with center G and radius 1.
The intersection of all circles is denoted by 0. Let
r:r.:(C-n)—>C,CcC,neC, be the retraction map
of (C—n) such that

n(C-n)=U s (GOJ%JC ez UZ_,

r, (C —n) =Ui=cz+131 ((%,Oj,%}c eZ UZ_,

r(C-n)= U _Sl([%,oj,lj,d,i <z,

,—o<b<-1beZ_

u"‘
—
@)

I
5
SN—

I
@
N\
VR
@ | —
o
| —
N—
\:—‘
A
QD
A
8
QD
m

N
.

o|—

r,(C-n)= S‘((%,O ,
r, =(0,0,0),i > oo,
r,(C—n)=5'((10).1),

r9(C_n)’

r10 (C_n) = Ua<i<aSl ([laojv%jaa’i € Z+ UZ_ 5

rm(c—n)=Ui<msl(G,oj,%],m,i eZ, UZ.

Hence, we can introduce the following theorems:
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Theorem 11. Any circle S' with center (1,0) and
i

.1 . .
radius —, where i€Z_,is aretract of
i

(cr —m):[Ui% S‘(G,oj,%n—m cR>meC*.

Proof. Let C=U,_, ., S{G,Oj,l}cﬂ%z and C
PO i i

is a retract of (C—n),neC, where

r(C-n)=Cc =U,$s' (Goj’ﬂl €Z,.Also, If

i, :(C* —e)—>(C—n),eeC*, is the inclusion map, the
retractions of (C*—e) and (C-n) are defined by

r :(C* —e)—>S1 and T, :(C—n)—>(C*—q),q eC’,
the inclusion map of S' is i,:S' —>(C+ —q), and the
retractions of (C —n),(C+ —q) ,and (C* —e) are given
by r,:(C-n)—>(C"-e), r,:(C"-q)—>S' and

r, :(C* —e) — S'. Hence, the following diagram is com-

/ idicr—e) \
. -

5t
€*—e)—— (C—n) —— (C"—e)

mutative:

n 2 Ts

St ——» (€T —q) — st
i T

N

Proposition 11. Any circle S' with center (l,Oj
|

.1 . .
and radius -, where i€ Z_, is a retract of
|

c - p):[[UiEZS‘[G,oj,%D— pchz, peC .

Theorem 12. Any circle S' with center (l,OJ and
i

.1 . .
radius —, where ieZ, UZ_, is aretract of
i

(C-n) :((UEW s (GOJ%D_“J cR*,neC.
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Proof. Since (C+ —m),m eC" isaretract of (C—n)

and any circle S' in R*> with center G,o) and ra-
1

. 1 . .
dius —, where ie€Z_, is a retract of (C+ —m), then
i

+

. . 1 .1
any circle S' with center (7,0) and radius -, where
i i

ieZ,, is a retract of (C—n). Also, Since (C’— p),
peC” isaretract of (C—n) and any circle S' with

1 .1 . .
center (T,OJ and radius -, where 1€Z_, is a retract
| |

of (C’— p), then any circle S' with center G,Oj

. 1 . .
and radius ~, were ieZ_,isaretractof (C—n).
|

Theorem 13. Any retract of circle (S1 -~ m), meS'

. . 1 . 1
in R?* with center (7,0) and radius -, where
i i

ieZ, UZ_,isaretractof (C—n),neC.
Proof. Let S" is a retract of (S1 - m), then there is

a continuous map rI:(Sl—m)—>Sl*, s C(Sl—m),

where 1, (X)=x,¥xeS". Then the circle (S' —m) in

R* with center G,Oj and radius l,where
| |

ieZ,UZ_,is aretract of (C—n), then there is a con-
tinuous map I, :(C—n)— (Sl —m) ,
(s'-m)<=(C—n), where ,(y)=y,vye(s' -m).
Then, r,or, isa continuous map. Also,
rer(z)=2vzesS" c (Sl —m) . Then any retract of

circle (Sl—m) in with center (1,0) and radius _l,
| |

where ieZ, UZ_,isaretractof (C—n).

3. Conclusion

In this paper we achieved the approval of the important
of the curves in the Euclidean space by using some geo-
metrical transformations. The relations between folding,
retractions, deformation retracts, limits of folding and
limits of retractions of the curves in the Euclidean space
are discussed. New types of minimial retractions on curves
in the Euclidean space are deduced.
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