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ABSTRACT 

The G G  -expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of 

nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. 
In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the 
fourth order Boussinesq equation involving parameters via the  G G -expansion method. In this method, the general 

solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the 
solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are 
described in the figures with the aid of commercial software Maple. 
 
Keywords: The G G  -Expansion Method; The Fourth Order Boussinesq Equation; Traveling Wave Solutions; 

Nonlinear Partial Differntial Equations 

1. Introduction 

The complex physical phenomena are depicted of non- 
linear evolution equations (NLEEs) which are widely 
used as models. One of the fundamental problems is to 
establish their traveling wave solutions. As a result, the 
attention of searching traveling wave solutions of NLEEs 
is enhancing and has now become a hot topic to re- 
searchers. At present time, various methods have been 
established to obtain exact solutions. For example, the 
Hirota’s bilinear transformation method [1,2], the Back- 
lund transformation method [3,4], the truncated Painleve 
expansion method [5,6], the inverse scattering method 
[7], the weierstrass elliptic function method [8], the ho- 
mogeneous balance method [9], the Jacobi elliptic fun- 
ction expansion method [10-13], the generalized Riccati 
equation method [14], the tanh-coth method [15-19], the 
F-expansion method [20,21], the direct algebraic method 
[22], the Cole-Hopf transformation method [23], the 
Exp-function method [24-30] and others [31-36]. 

Recently, Wang et al. [37] presented a widely used 
method to construct traveling wave solutions of different 
nonlinear partial differential equations (PDEs), called the 
basic G G  -expansion method. In addition, in this me-  

thod   
0

m

i
i

u a G


  G  is executed as traveling wave  

solutions, where  Later on, many researchers 

established exact traveling wave solutions of various 
nonlinear PDEs via this method. For example, Feng et al. 
[38] studied the well-known Kolmogorov-Petrovskii - 
Piskunov equation to obtain analytical solutions by using 
the same method. Naher et al. [39] constructed abundant 
traveling wave solutions of the higher-order Caudrey- 
Dodd-Gibon equation via this powerful method. In [40], 
Abazari and Abazari concerned about the same method 
for obtaining hyperbolic, trigonometric and rational func- 
tion solutions of Hirota-Ramani equation. Zayed [41] 
investigated some nonlinear evolution equations in mathe- 
matical physics to establish exact solutions by applying 
this method. Jabbari et al. [42] obtained some solutions 
of the coupled Higgs equation and the Miccari system via 
the same method while Ozis and Aslan [43] implemented 
the 

0.ma 

 G G -expansion method to construct traveling 
wave solutions of the Kawahara type equations using 
symbolic computation. In [44], Gepreel studied some 
nonlinear PDEs with variable coefficients in mathema- 
tical physics by applying the same method for construct- 
ing exact solutions. Elagan et al. [45] executed this me- 
thod to obtain innovative solutions of the generalized 
FitzHugh-Nagumo equation. Borhanifar and Moghanlu 
[46] established some solutions for the Zhiber-Sabat equ- 
ation and other related equations via the same method 
whilst Borhanifar and Abazari [47] investigated two ge- 
neralized form of Burgers equation for constructing ge-  
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neral solutions by using the  G G -expansion method. 
In [48], Wang et al. constructed explicit solutions of the 
generalized (2+1)-dimensional Zakharov-Kuznetsov equ- 
ation via this method and so on. 

Many researchers studied the fourth order Boussinesq 
equation to construct analytical solutions by using diffe- 
rent methods. For instance, Zhang [49] implemented the 
F-expansion method to investigate this equation for 
obtaining traveling wave solutions. In [50], Wazwaz 
employed the extended tanh method to construct exact 
solutions of the same equation. 

The importance of this work is, the fourth order Bou- 
ssinesq equation is considered to construct new exact 
traveling wave solutions including solitons, periodic and 
rational solutions by applying the basic G G  -expan- 
sion method. 

2. The Basic  G G 




-Expansion Method 

Suppose the general nonlinear partial differential equ- 
ation: 

 , , , , , ,... 0,t x xt t t xxF u u u u u u        (1) 

where  is an unknown function,  ,u u x t F  is a 
polynomial in  and the subscripts stand for the 
partial derivatives. 

 , tu x

The main steps of the basic G G 

,

-expansion me- 
thod [37] are as follows: 

Step 1. Consider the traveling wave transformation: 

   , ,u x t A x H t         (2) 

where H  is the wave speed. Now using Equation (2), 
Equation (1) is converted into an ordinary differential 
equation for   :A   

 , ', , ,... 0,Q A A A A             (3) 

where the superscripts indicate the ordinary derivatives 
with respect to .  

Step 2. According to possibility, Equation (3) can be 
integrated term by term one or more times, yields con- 
stant(s) of integration. The integral constant may be zero, 
for simplicity. 

Step 3. Suppose that the traveling wave solution of 
Equation (3) can be expressed in the form [37]:  

  
0

n
i

i
i

A b G G


            (4) 

with  G G   satisfies the second order linear ODE: 

0,G G G                 (5) 

where  0,1,2, , ,ib i n    and   are constants. 
Step 4. To determine the integer n, substituting Equa- 

tion (4) along with Equation (5) into Equation (3) and 
then taking the homogeneous balance between the highest 

order nonlinear terms and the highest order derivatives 
appearing in Equation (3). 

Step 5. Substituting Equations (4) and (5) into Equa-
tion (3) with the value of  obtained in Step 4. 
Equating the coefficients of 

n
  , 0,1, 2,

r
G G r   ,  

then setting each coefficient to zero, we obtain a set of 
algebraic equations for  0,1,2, , , ,ib i n H    and 

.   
Step 6. Solve the system of algebraic equations which 

are obtained in Step 5 with the aid of algebraic software 
Maple and we obtain values for  0,1, 2, , , ,ib i n H    
and .  Then, substitute obtained values in Equation (4) 
along with Equation (5) with the value of n, we can 
obtain the traveling wave solutions of Equation (1). 

3. Applications of the Method 

In this section, the fourth order Boussinesq equation in- 
volving parameters is investigated to establish traveling 
wave solutions including three different families by 
applying the  G G -expansion method.  

3.1. The Fourth Order Boussinesq Equation 

In this work, we consider the fourth order Boussinesq 
equation followed by Wazwaz [50]:  

 2 2 0.tt xx xxxxxx
u u u u           (6) 

Boussinesq established Equation (6) to illustrate the 
propagation of long waves in shallow water. This equa- 
tion also arises in other physical applications, for exam- 
ple, iron sound waves in plasma, nonlinear lattice waves 
and in vibrations in nonlinear string. Further, the details 
of this equation can be found in references [49-54]. 

Equation (6) is integrable, therefore, integrating with 
respect   twice and setting the constants of integration 
equal to zero, yields: 

 2 2 2 0.H A A A              (7) 

Taking the homogeneous balance between 2A  and 
A  in Equation (7), we obtain  2.n 

Therefore, the solution of Equation (7) is of the form: 

     2

0 1 2 ,A b b G G b G G       (8) 

where  and  are constants to be determined. 0 1 2

Substituting Equation (8) together with Equation (5) 
into the Equation (7), the left-hand side of Equation (7) is 
converted into a polynomial of 

,b b b

  , 0,1,2,
r

G G r  .  
According to Step 5, collecting all terms with the same 
power of  G G . After that, setting each coefficient of 
the resulted polynomial to zero, yields a set of algebraic 
equations (for simplicity, which are not presented) for 

0 1 2, , , ,b b b H   and .  
Solving the system of obtained algebraic equations 
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with the help of algebraic software Maple, we obtain two 
different values. 

 

2

0 1 2

2 2

2 6
, ,

4 ,

b b b

H

   6
,

 

  


 

   




      (10) Case 1. 

 

0 1 2

2 2

6 6
, ,

4 ,

b b b

H

  6
,

  

  

  

   

         (9)

 

where , ,    and   are free parameters.  
Substituting the general solution Equation (5) into 

Equation (8), we obtain three different families of travel- 
ing wave solutions of Equation (7): 

where , ,    and   are free parameters.  Family 3.1.1. Hyperbolic function solutions: 
Case 2. when 2 4 0  ,   we obtain

 

 

2
2 2

2
2

2 2

2 2

2
1 0

2 2

1 1
sinh 4 cosh 41 2 24

1 12 2 cosh 4 sinh 4
2 2

1 1
sinh 4 cosh 41 2 24 .

1 12 2 cosh 4 sinh 4
2 2

U V
A b

U V

U V
b b

U V

     
   

     
   

    
   

    
 

    
    

    
 

         (11) 

 
Family 3.1.2. Trigonometric function solutions: If U and V are taken as specific values, various known 

solutions can be rediscovered. when 2 4 0  ,   we obtain 
 

 

2
2 2

2
2

2 2

2 2

2
1 0

2 2

1 1
sin 4 cos 41 2 24

1 12 2 cos 4 sin 4
2 2

1 1
sin 4 cos 41 2 24 .

1 12 2 cos 4 sin 4
2 2

U V
A b

U V

U V
b b

U V

       
     

       
     

     
   

    
 

     
    

    
 

         (12) 

 
Family 3.1.3. Rational function solution: If U and V are taken as specific values, various known 

solutions can be rediscovered. when 2 4 0  ,   we obtain 
 

 
2

0 1 2 .
2 2

V
A b b b

U V U V

 
 

   
          

V 
                            (13) 

 

 
 2 2

2
2

4 1
3 coth 4 1 ,

2 2
A

 
 



         

Family 3.1.1.1. Hyperbolic function solutions: 
    Substituting Equations (9) and (10) together with the 

general solution Equation (5) into the Equation (8), 
yields the hyperbolic function solution Equation (11), our 
traveling wave solutions become respectively (if 0U   
but ): 0V 

where  

 
 2 2

2
1

3 4 1
coth 4 1 ,

2 2
A

 
 



   

  2 2 4 .x t       

      
 Again, substituting Equations (9) and (10) together 

with the general solution Equation (5) into the Equation 
(8), yields the hyperbolic function solution Equation (11), 
we obtain following exact solutions respectively (if 

0V   but 0U  ): 

where 

  2 2 4 .x t       
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 
 2 2

2
3

3 4 1
tanh 4 1 .

2 2
A

 
 



    
 

     

 
 2 2

2
4

4 1
3 tanh 4 1 .

2 2
A

 
 



         
  

V

 

Moreover, substituting Equations (9) and (10) together 
with the general solution Equation (5) into the Equation 
(8), we obtain the hyperbolic function solution Equation 
(11), our obtained wave solutions become respectively (if 

): 0,U U 

 
 2 2

2
5

3 4 1
tanh 4 1

2 2
A

 
   



     0         
  

where  1
0 tanh .V U   

 
 2 2

2
6 0

4 1
3 tanh 4 1

2 2
A

 
   



        


   

where  1
0 tanh .V U    

Family 3.1.2.1. Trigonometric function solutions: 
Substituting Equations (9) and (10) together with the 

general solution Equation (5) into the Equation (8), 
yields the trigonometric function solution Equation (12), 
we obtain following solutions respectively (if 0U   
but ): 0V 

 
 2 2

2
7

3 4 1
cot 4 1 ,

2 2
A

 
 



        
    

where   2 24 .x t       

 
 2 2

2
8

4 1
3 cot 4 1 ,

2 2
A

 
 



     
 

    
 

where   2 24 .x t       

Also, substituting Equations (9) and (10) together with 
the general solution Equation (5) into the Equation (8), 
yields the trigonometric function solution Equation (12), 
our solutions become respectively (if  but  

): 
0V 

0U 

 
 2 2

2
9

3 4 1
tan 4 1 .

2 2
A

 
 



         
    

 
 2 2

2
10

4 1
3 tan 4 1 .

2 2
A

 
 



         
  

V

 

Furthermore, substituting Equations (9) and (10) to- 
gether with the general solution Equation (5) into the 
Equation (8), yields the trigonometric function solution 

Equation (12), our obtained traveling wave solutions be- 
come respectively (if 0,U U  ): 

 
 2 2

2
11 0

3 4 1
tan 4 1 ,

2 2
A

 
   



         
   

where  1
0 tan .V U   

 
 2 2

2
12 0

4 1
3 tan 4 1 ,

2 2
A

 
   



         
   

where  1
0 tan .V U   

Family 3.1.3.1. Rational function solutions: 
Substituting Equations (9) and (10) together with the 

general solution Equation (5) into the Equation (8), we 
obtain the rational function solution Equation (13), and 
our wave solutions become respectively (if 2 4   = 
0): 

   
2

2
13

3 2
4 ,

2

V
A

U V
 

 

        
  

where   2 2 4 .x t       

   
2

2
14

1 2
3 4

2

V
A

U V
 

 

        
,  

where   2 2 4 .x t       

4. Results and Discussion 

It is worth declaring that some of our obtained solutions 
are in good agreement with already published results 
which are presented in Table 1. Moreover, some of ob-
tained exact solutions are described in Figures 1-12. 

Beyond this table, we obtain new exact traveling wave 
solutions A1, A3, A5, A6, A7, A9, A11, A12, A13, and A14, 

 

 

Figure 1. Solutions solution for λ = 3, μ = 1, α = 3, β = 1. 
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Figure 2. Periodic solution for λ = 6, μ = 8, α = 12, β = 9. 
 

 

Figure 3. Solitons solution for λ = 3, μ = 3, α = 9, β = 5. 
 

 

Figure 4. Solitons solution for λ = 4, μ = 4, α = 0.5, β = 1, U = 
0.5, V = 1. 
 

 

Figure 5. Solitons solution for λ = 3, μ = 2, α = 7, β = 2. 

 

Figure 6. Solitons solution for λ = 4, μ = 5, α = 11, β = 9. 
 

 

Figure 7. Solitons solution for λ = 4, μ = 4, α = 1.5, β = 5 × 
10–11, U = 0.75, V = 24. 
 

 

Figure 8. Periodic solution for λ = 3, μ = 3, α = 16, β = 15. 
 

 

Figure 9. Periodic solution for λ = 8, μ = 16, α = 5 × 10–6, β = 
0.125, U = 5, V = 9. 
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Figure 12. Solitons solution for λ = 6, μ = 9, α = 1, β = 5 × 
10–11, U = 0.75, V = 24. Figure 10. Solitons solution for λ = 5, μ = 7, α = 15, β = 0.5. 
  
which are not being established in the previous literature. 

 

5. Conclusion 

In this article, the basic  G G -expansion method with 
second order linear ordinary differential equation is imple- 
mented to investigate the fourth order Boussinesq equa- 
tion involving parameters. The obtained solutions are 
presented through the hyperbolic functions, the trigono- 
metric functions and the rational functions. Further, it is 
important mentioning that some of our solutions are co- 
incided with published results and others have not been 
stated in earlier literature. The solutions show that this 
method is reliable and straightforward solution method to 
obtain exact solutions of nonlinear evolution equations. 
Therefore, this powerful method can be effectively used 
to construct new exact traveling wave solutions of diffe- Figure 11. Solitons solution for λ = 5, μ = 7, α = 7, β = 1. 

 
Table 1. Comparison between Wazwaz [50] solutions and newly obtained solutions. 

Wazwaz [50] solutions New solutions 

1) If  and   

solution Equation (23) (from section 3) becomes:  

2, 1c a  3b 

   2

2

1 3
, 3coth 2 1

2 2
u x t x t

 
   

 
.  

1) If 
1

, 2, 1,
4

      3,      2 2 , ,A u x t    

solution becomes: 

   2

2

1 3
, 3coth 2 1

2 2
u x t x t

 
   

 
.  

2) If  and  

solution Equation (22) (from section 3) becomes: 

3, 1c a  4b 

   2

1 , 3 tanh 2 3 1u x t x t  .  

2) If 2, 4, 1,      4,      4 1 , ,A u x t    

solution becomes: 

   3 1.t2

1 , 3 tanh 2u x t x    

3) If  and 4, 5c a 
9

2
b    

solution Equation (26) (from section 3) becomes: 

   2

5

3
, 3cot 4 1.  

2
u x t x t  

3) If 
10

, 1, 5,
4

      
9

,
2

      8 5 , ,A u x t   

solution becomes: 

   2

5

3
, 3cot 4 1.

2
u x t x t  

.

 

4) If  and  3, 5c a  8b 
solution Equation (25) (from section 3) becomes: 

   2

4 , 3 tan 2 3 1u x t x t   

4) If 5, 2, 5,      8,      10 4 , ,A u x t   

solution becomes: 

   2, 3 tan 2 3t x t4u x 1.    
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