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ABSTRACT 
The aperture phase taper due to quadratic phase errors in the principal planes of a rectangular horn imposes signifi-
cant constraints on the on-axis far-field gain of the horn. The precise calculation of gain reduction involves Fresnel 
integrals; therefore, exact results are obtained only from numerical methods. However, in horns’ analysis and design, 
simple closed-form expressions are often required for the description of horn-gain. This paper provides a set of simple 
polynomial approximations that adequately describe the gain reduction factors of pyramidal and sectoral horns. The 
proposed formulas are derived using least-squares polynomial regression analysis and they are valid for a broad range 
of quadratic phase error values. Numerical results verify the accuracy of the derived expressions. Application examples 
and comparisons with methods in the literature demonstrate the efficacy of the approach. 
 
Keywords: Microwave Antennas, Rectangular Horn, Gain, Quadratic Phase Error, Linear Regression 

1. Introduction 
Horns are among the simplest and most widely used mi- 
crowave antennas. They occur in a variety of shapes and 
sizes and find application in areas such as wireless com- 
munications, electromagnetic sensing, radio frequency 
heating, and biomedicine. They are commonly used as 
feed elements for reflector and lens antennas in micro- 
wave systems and as high gain elements in phased arrays. 
Moreover, they serve as a universal standard for calibra- 
tion and gain measurements of other antennas [1]. 

Among the microwave horns, the rectangular horn is 
the simplest and most reliable one. This is a hollow 
pipe of a rectangular cross section that is flared to a 
larger opening in the E- or H-plane direction (sectoral 
horn) or in both directions (pyramidal horn). Rectan-
gular horns are useful tools in science and engineering 
due to their simplicity in construction, ease of excita- 
tion, versatility, and high gain. 

A classical expression for the gain of a pyramidal 
horn is the Schelkunoff’s horn-gain formula. This for-
mula calculates the on-axis far-field gain of the horn as 
the product of the directivity of a uniform dominant 
mode rectangular waveguide without flares and the 
gain reduction due to the amplitude and phase taper 
across the horn aperture [2]. Its main assumptions are 

that the horn operates at the dominant TE10 waveguide 
mode and it is well-matched to the feeding waveguide; 
moreover, it neglects the contribution of the fringe 
currents caused by the discontinuity of the aperture and 
the mutual interaction between the aperture edges [2,3]. 
The formula includes the geometrical optics of the rad- 
iated field and the singly diffracted fields of the aper- 
ture edges and represents the monotonic gain compon- 
ent. However, it omits multiple diffraction and diffract- 
ted fields reflected from horn interior; therefore, it is 
adequate for pyramidal horns but calculates errone- 
ously the gain of sectoral ones [4]. In [5], Schelkun-
off’s formula was extended by involving an additional 
term that accounts for the influence of the edge effect 
on the on-axis gain and included sectoral horns and 
open-ended rectangular waveguides. In general, the ex-
pressions presented in [2,5] give adequate results and 
are commonly used in the literature [6-11]. Compari-
sons between calculated results and measured data 
showed an uncertainty ±0.5 dB for frequencies below 
2.6 GHz and ±0.3 dB for higher ones [12]. Several so-
lutions with increased accuracy can be found in the 
published literature, e.g. [13-16]. However, their com-
plexity and computational cost are worthwhile only if 
we require very accurate results. 
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In both horn-gain formulas [2,5], the calculation of 
the gain reduction factors involves Fresnel integrals 
and it is made numerically. However, approximate but 
simple closed-form expressions are often required [11, 
17,18]. In this paper, we extend the analysis in [17] to 
include a broader range of aperture phase error values. 
The approximate formulas in [17] are valid for aperture 
phase errors up to the optimum gain condition ones. 
Here, we provide improved approximate polynomial 
expressions for the gain reduction factors of a rectang- 
ular horn. These formulas were obtained from the app- 
lication of least squares polynomial fitting over the 
range of aperture phase error parameters from zero to 
one (typical values for practical applications [19,20]). 
We further investigate the impact of the polynomial 
order on the approximation error and give representa- 
tive examples that show the merits of our proposal. Co- 
mparisons with methods in the literature and results 
derived from professional antenna design software [21] 
validate the formulation.  

The rest of the paper is organized as follows: Section 
2 discusses some theoretical background. Section 3 pr- 
esents and evaluates the proposed formulation. In Sect- 
ion 4, representative examples show the merits of our 
proposal. Finally, Section 5 concludes the paper. 

2. The Schelkunoff ’s Classical and      
Improved Horn-Gain Formulas 

Figure 1 shows the geometry of a pyramidal horn with 
throat-to-aperture length P and aperture sizes A and B. 
The inner dimensions of the feeding rectangular wav- 
eguide are a and b. When A = a or B = b, we get the E- 
or the H-plane sectoral horn, respectively. Next, in 
Figure 2, we give the cross-sectional views of the horn 
in the two principal planes. 

We assume a lossless pyramidal horn that it is well- 
matched to the rectangular waveguide and operates in the 
dominant TE10 mode. In this case, the on-axis far-field 
gain of the horn is1 [2,18] 
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where λ  is the free-space wavelength and LE and LH are 
the gain reduction factors that represent the impact of the 
aperture phase taper due to the quadratic phase errors in 
the principal planes calculated [22] from: 
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Figure 1. Pyramidal horn geometry 
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Figure 2. Cross-sectional views of a pyramidal horn antenna 
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with 2k λ= π  and 1j = − . Notice that (2) and (3) do 
not include the path long error approximation increasing 
the accuracy of the results. The gain reduction factors 
can also be written as functions of the aperture phase 
error parameters in the E- and H-plane that are given by 
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respectively, as [6,17] 
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1Usually, it is assumed that the overall efficiency (i.e. the product of the 
reflection, conduction, and dielectric efficiencies) of a rectangular horn 
is one. In this case, the on-axis far-field gain and the directivity of the 
horn are identical [1]. 
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where ( )C ⋅  and ( )S ⋅  are the cosine and sine Fresnel 
integrals [23], respectively. 

Equation (1) can be extended by incorporating the edge 
effect and the impact of the fringe currents at the aper- 
ture edges. In this case, the gain-formula becomes [5,7] 

2
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where ( )21 2β k a= − λ  is the TE10 mode propaga-
tion constant [24]. The improved formula is valid for 
both pyramidal and sectoral horns. It reduces to (1) for 
large apertures ( 1β k ≈ ) and calculates the gain values 
of the E- and H-plane sectoral horns by setting 1HL ≈  
and 1EL ≈ , respectively. 

3. Polynomial Description of the Gain    
Reduction Factors 

In [17], Aurand provided the following first- and second- 
order approximations for the gain reduction factors: 
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that are valid for 0.25s ≤  and 0.375t ≤ . Despite their 
accuracy in the given range of values, these approxima- 
tions can not describe the gain reduction factors for phase 
errors far from the optimum gain condition ones (see 
next Section). 

In this paper, we extend Aurand’s proposal and prod- 
uce closed-form expressions for the gain reduction fact- 
ors LE and LH by polynomial regression curve fitting 
[25-28] of (6) and (7). The fitting curves are linear poly- 
nomials calculated with the least squares method [25-27]. 
In this method, curve-fitting involves the minimization of 
the sum of the squared residuals, i.e. the squared differ- 
ences between the exact LE (LH) value and the LE (LH) 
value that is computed from the curve-fit equation for the 
same aperture phase error. In order to get the best fit, we 
use the R2 goodness-of-fit statistics metric (this is the 
square of the sample correlation coefficient between the 
data values and the calculated ones from the fitting poly- 
nomial). The fit improves as R2 values approach unity. 

In practice, we approximate LE and LH with nth-order 
polynomials, i.e. it is 
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Let en and hn be vectors with elements the polynomial 
coefficients en,i and hn,i, i = 0,1...n, respectively. In this 
case, we formulate the least squares problem as: 
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The subscript j in (12) and (13) denotes that the spec- 
ific values are calculated at s or t equal to j N  (the 
maximum value of the two aperture phase error parame- 
ters is one, see (11)). Each curve is evaluated at 10001 
points in steps of 10-4 in the range [0,1], i.e. N = 104. 
Derivation of en and hn gives the nth-order polynomial 
approximation of LE and LH, respectively2. 

Recall that the choice of the best fit approximation 
uses the R2 goodness-of-fit statistics metric. Table 1 gi- 
ves the calculated R2 values for the best fit nth-order 
polynomial approximation of (6) and (7) for n = 1,2…10. 
The corresponding polynomial coefficients, en,i and hn,i, 
are given in Tables 2 and 3. In Table 1, we also give the 
F-statistic values [25-27] of each approximation (F-sta- 
tistic value goes toward infinity as the fit becomes more 
ideal). Notice that LH is adequately approximated from a 
polynomial with order lower than the one that is required 
for LE. All the results were checked and validated using 
Matlab R2008a curve fitting routines [29]. 

 
Table 1. Goodness-of-fit values 

E-plane H-plane 
n 

R2 F-statistic R2 F-statistic 

1 0.95754249 225507.05 0.99012258 1002310.4 

2 0.97988824 243562.02 0.99051231 521894.17 

3 0.99871152 2582915.7 0.99988122 28051368 

4 0.99993194 36715144 0.99998119 1.328863·108 

5 0.99999478 3.8304487·108 0.99999961 5.1801471·109 

6 0.99999993 2.2592440·1010 0.99999999 1.2452233·1011 

7 0.99999999 2.3209471·1011 1 4.1892924·1012 

8 1 3.7006211·1013 1 2.8864097·1014 

9 1 3.7613197·1014 1 8.9753437·1015 

10 1 1.2875745·1017 1 1.1346748·1018 

2A further discussion on this issue is beyond the scope of the paper; the 
interested reader can find additional information about the development 
and implementation of least squares algorithms in the proposed literature 
[25-27]. 
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Table 2. Polynomial coefficients en,i 

i n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

0 1.0336239 1.1457623 1.0240209 0.9888856 0.9976955 1.0004342 1.0000973 0.9999895 0.9999976 1.0000002 
1 –1.1374395 –1.8103371 –0.3490752 0.3539478 0.0894666 –0.0256761 –0.0067831 0.0009942 0.0002653 –2.414 x10-5 

2 — 0.6728975 –2.9804397 –6.1444123 –4.2926737 –3.1409013 –3.3960639 –3.5322412 –3.5161931 –3.5083720 
3 — — 2.4355582 7.3574573 2.4191175 –2.1885480 –0.7707180 0.2281648 0.0783339 –0.0120796 
4 — — — –2.4609496 3.0948216 11.734669 7.8352862 4.0889891 4.8195421 5.3734495 
5 — — — — –2.2223085 –9.8255266 –4.2101716 3.5826714 1.5369186 –0.4574140 
6 — — — — — 2.5344060 –1.5211957 –10.613170 –7.2033875 –2.7711778 
7 — — — — — — 1.1587434 6.7253379 3.3850412 –2.7660781 
8 — — — — — — — –1.3916486 0.3829062 5.5730509 
9 — — — — — — — — –0.3943455 –2.8292557 
10 — — — — — — — — — 0.48698211 

 
Table 3. Polynomial coefficients hn,i 

i n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 

0 1.0744003 1.0639483 1.0033308 0.9962335 0.9995997 1.0001198 1.0000154 0.9999976 0.9999997 1.0000000 
1 –0.8163131 –0.7535950 –0.0260029 0.1160082 0.0149499 –0.0069168 –0.0010603 0.0002270 3.6932 × 10-5 –4.7892 × 10-6 

2 — –0.0627181 –1.8817891 –2.5209139 –1.8133644 –1.5946318 –1.6737272 –1.6962670 –1.6920827 –1.6909553 
3 — — 1.2127140 2.2069413 0.3200012 –0.5550385 –0.1155393 0.0497937 0.0107279 –0.0023056 
4 — — — –0.4971136 1.6257471 3.2665367 2.0578052 1.4377260 1.6282047 1.7080531 
5 — — — — –0.8491443 –2.2930680 –0.5524193 0.7374358 0.2040421 –0.0834507 
6 — — — — — 0.4813079 –0.7758482 –2.2807329 –1.3916927 –0.7527678 
7 — — — — — — 0.3591875 1.2805586 0.4096356 –0.4770785 
8 — — — — — — — –0.2303428 0.2323408 0.9805257 
9 — — — — — — — — –0.1028186 –0.4538229 
10 — — — — — — — — — 0.0702009 

 
In order to describe simple but accurately the gain redu- 

ction factor, we have to estimate the minimum required 
polynomial order. In practical terms, the goodness-of-fit 
statistics may not provide an efficient way to estimate the 
degree of error. In this case, a graphical inspection of the 
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Figure 3. E-plane gain reduction factor: Exact and appro- 
ximate curves 

fitting curves ensures the suitability of the proposed app- 
roximations. Figures 3 and 4 show the exact and the 
(approximate) fitting curves of the gain reduction factors. 
Notice that the curves that describe ( )4

El  and ( )3
Hl  are 

almost similar to the exact solution. 
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In order to further investigate the relation between the 
approximation error and the polynomial order, we used 
two well-known error metrics, the average absolute error 
and the rms error. Figure 5 shows the variation of the 
two metrics as a function of the polynomial order of the 
approximate formulas. We see that LH is adequately app- 
roximated with fewer terms than LE; for example, ( )3

Hl  
and ( )5

El  yield errors less than 1%. We also notice that 
the average absolute error is always slightly smaller than 
the rms error. 

4. Application Examples 
In order to show the efficacy of our approach, we give 
three representative examples. 

Example 1: Let us consider some typical X-band pyra- 
midal horns, see Table 4. Horns operate at 10 GHz and 
they are fed from WR-90 waveguide. Their aperture pha- 
se errors are calculated from (4) and (5). Figure 6 illustr- 
ates the gain values of the horns. With G0,1 and G0,2 we 
present the values that are calculated from (1) using Aur- 
and’s first- and second-order approximations, respective- 
ely; G1, G2, G4, and G6 are the results obtained from (1) 
and the proposed first-, second-, fourth-, and sixth-order 
approximation. G0 denotes the gain values that are calcu- 
lated from (1) with adaptive quadrature integration of (2) 
and (3). Finally, Gacc are the exact gain values calculated 
with the professional antenna design software ORAMA 
[21]. 

As it was expected, (9) and (10) are adequate only for 
small values of s and t (moreover, G0,2 takes complex va- 
lues for great values of s; these are not shown in Figure 
6). In any case, the fourth-order approximations give re- 
sults almost identical to the numerically calculated ones. 
The results are also in good consistency with the exact 
values calculated with ORAMA. The small gain values 
in cases 3 and 5 are due to the fact that the far-field gain 
is not maximized at the horn’s axis. 
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Table 4. Horns specifications 

ID A(cm) B(cm) P(cm) s t 

1 14.6 11.48 20 0.250 0.375 
2 10 10 20 0.187 0.161 
3 10 20 20 0.792 0.161 
4 20 10 20 0.187 0.739 
5 20 20 20 0.792 0.739 
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Figure 6. Calculated gain values (in dBi) 

 
Example 2: We consider an E- and an H-plane sectoral 

horn that operate at 10 GHz and are fed from WR-90 wa- 
veguide. In the first case, B = 20 cm; in the second one, it 
is B = 20 cm. In both cases, the throat-to-aperture length 
is 20 cm. 

First, we calculate the gain values from (8) with adap-
tive quadrature integration of (2) and (3). The exact 
horns’ gains are 9.1 dB (E-plane sectoral horn) and 10.15 
dB (H-plane sectoral horn). The gain values that are ob-
tained from (1) and (9) are 14.83 and 11.52 dB, respec-
tively; Aurand’s second-order approximation gives worst 
results. On the other hand, our formulation gives (the 
subscript denotes the order of the fitting polynomial) that 
G1 = 10.19 dB, G2 = 10.22 dB, G4 = 9.03 dB and G6 = 
9.09 dB (E-plane sectoral horn). In the case of the 
H-plane sectoral horn, the approximation error is smaller. 
The calculated gains are G1 = 10.37 dB, G2 = 10.39 dB, 
G4 = 10.15 dB, and G6 = 10.15 dB. Again, the fourth- 
order approximations give adequate results. 

Example 3: In [11], Selvan proposed a design method 
for pyramidal horns of any desired gain and aperture 
phase error. However, the accuracy of his method is 
strictly related to the accuracy of the approximations of 
(6) and (7). 

Let us consider the design examples in Table 5. 
Table 6 gives the calculated horns dimensions with 

the method proposed in [11] using (10) (Aurand’s app- 
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roximation) and the proposed second-, fourth-, and sixth- 
order approximations. Next, we used this data and calcu- 
lated the exact gain values with ORAMA, see Table 7. 
Finally, Figure 7 shows the absolute relative error bet- 
ween the computed and the desired gain for each case. 
We notice that Aurand’s approximation is adequate at 
small values of s and t (IDs 1 and 3). However, as the 
aperture phase error parameters increase (IDs 2 and 4) 
these approximations lead to erroneous results. In any 
case, the proposal in [11] is an accurate design method 
when a polynomial approximation with polynomial order 
at least equal to four is used for the description of the 
gain reduction factors. 

 
Table 5. Horns design examples 

ID f (GHz) Waveguide type Gdes (dBi) s t 

1 1 WR-975 15.45 0.2 0.3 

2 1 WR-975 15.45 0.4 0.6 

3 34 WR-28 24.58 0.25 0.375 

4 34 WR-28 24.58 0.5 0.75 

 
Table 6. Calculated hors dimensions 

Aurand’s appr. 2nd order appr. 
ID 

A (cm) B (cm) P (cm) A (cm) B (cm) P (cm) 

1 74.046 55.901 50.681 77.829 59.027 57.359 

2 128.095 100.331 91.916 112.992 87.949 69.228 

3 6.601 5.273 14.690 6.951 5.558 16.384 

4 24.200 19.646 107.371 11.980 9.667 25.500 

4th order appr. 6th order appr. 
ID 

A (cm) B (cm) P (cm) A (cm) B (cm) P (cm) 

1 74.130 55.971 50.826 74.122 55.964 50.812 

2 112.13 87.242 68.029 111.989 87.126 67.834 

3 6.591 5.264 14.642 6.580 5.255 14.587 

4 12.510 10.099 27.880 12.525 10.112 27.951 

 
Table 7. Desired and calculated gain values (in dBi) 

ID Desired Aurand’s appr. 2nd order 
appr. 

4th order 
appr. 

6th order 
appr. 

1 15.45 15.62 16.09 15.63 15.63 

2 15.45 16.75 15.64 15.57 15.56 

3 24.58 24.67 25.12 24.66 24.64 

4 24.58 30.34 24.22 24.60 24.61 
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Figure 7. Relative gain errors 

 

5. Conclusions 
In this paper, we presented a set of nth-order polynomial 
approximate expressions for the gain reduction factors of 
pyramidal and sectoral microwave horns. The formulas 
were derived with polynomial regression curve fitting 
techniques. Comparisons with methods in the published 
literature and results calculated with commercial antenna 
design software verified the accuracy of the proposed 
formulation and demonstrated the benefits of the app- 
roach. We also explored the relation between the polyno- 
mial order of the derived formulas and the approximation 
error. It was found that that a third-order polynomial app- 
roximation of the gain reduction factor in the H-plane is 
adequate; in order to obtain accurate results in the E-plane, 
a fourth-order approximation is required. This paper ex-
tends previous work in the literature and applies to horns 
with large values of aperture phase errors. The proposed 
formulation is a useful tool in the analysis and design of 
rectangular horns, especially when simple closed-from 
expressions are required. 

REFERENCES 
[1] C. A. Balanis, “Antenna Theory: Analysis and Design,” 

3rd Edition, John Wiley & Sons, Inc., Hoboken, 2005. 
[2] S. A. Schelkunoff, “Electromagnetic Waves,” David Van 

Nostrand Company, Inc., New York, 1943. 
[3] J. L. Teo and K. T. Selvan, “On the Optimum Pyramidal- 

Horn Design Methods,” International Journal of RF and 
Computer-Aided Engineering, Vol. 16, No. 6, November 
2006, pp. 561-564. 

[4] E. Jull, “Errors in the Predicted Gain of Pyramidal Horns,” 
IEEE Transactions on Antennas and Propagation, Vol. 
21, No. 1, January 1973, pp. 25-31. 

[5] K. T. Selvan, “An Approximate Generalization of Schel- 
kunoff’s Horn-Gain Formulas,” IEEE Transactions on 



Polynomial-Based Evaluation of the Impact of Aperture Phase Taper on the Gain of Rectangular Horns 

Copyright © 2010 SciRes.                                                                               JEMAA 

430 

Antennas and Propagation, Vol. 47, No. 6, June 1999, pp. 
1001-1004. 

[6] G. Kordas, K. B. Baltzis, G. S. Miaris and J. N. Sahalos, 
“Pyramidal-Horn Design under Constraints on Half-Power 
Beamwidth,” IEEE Transactions on Antennas and Propa- 
gation, Vol. 44, No. 1, February 2002, pp. 102-108. 

[7] K. T. Selvan, R. Sivaramakrishnan, K. R. Kini and D. R. 
Poddar, “Experimental Verification of the Generalized 
Schelkunoff’s Horn-Gain Formulas for Sectoral Horns,” 
IEEE Transactions on Antennas and Propagation, Vol. 
50, No. 6, June 2002, pp. 875-877. 

[8] K. Guney and N. Sarikaya, “Neural Computation of Wide 
Aperture Dimension of Optimum Gain Pyramidal Horn,” 
International Journal of Infrared and Millimeter Waves, 
Vol. 26, No. 7, July 2005, pp. 1043-1057. 

[9] A. Akdagli and K. Guney, “New Wide-Aperture-Dimen-
sion Formula Obtained by Using a Particle Swarm Opti-
mization for Optimum Gain Pyramidal Horns,” Micro-
wave and Optical Technology Letters, Vol. 48, No. 6, 
June 2006, pp. 1201-1205. 

[10] Y. Najjar, M. Moneer and N. Dib, “Design of Optimum 
Gain Pyramidal Horn with Improved Formulas Using 
Particle Swarm Optimization,” International Journal of 
RF and Computer-Aided Engineering, Vol. 17, No. 5, Sep-
tember 2007, pp. 505-511. 

[11] K. T. Selvan, “Accurate Design Method for Pyramidal 
Horns of Any Desired Gain and Aperture Phase Error,” 
IEEE Antennas Wireless Propagation Letters, Vol. 7, 2008, 
pp. 31-32. 

[12] W. T. Slayton, “Design and Calibration of Microwave 
Antenna Gain Standards,” Report 0594740, US Naval 
Research Laboratory, Washington, 1954. 

[13] J. W. Odendaal, “Predicting Directivity of Standard-Gain 
Pyramidal-Horn Antennas,” IEEE Antennas and Propa- 
gation Magazine, Vol. 46, No. 4, August 2004, pp. 93-98. 

[14] K. Harima, M. Sakasai and K. Fujii, “Determination of 
Gain for Pyramidal-Horn Antenna on Basis of Phase 
Center Location,” Proceedings of the 2008 IEEE Interna-
tional Symposium on Electromagnetic Compatibility-EMC 
2008, Detroit, 18-22 August 2008, pp. 1-5. 

[15] G. Mayhew-Ridgers, J. W. Odendaal and J. Joubert, “Im- 
proved Diffraction Model and Numerical Validation for 
Horn Antenna Gain Calculations,” International Journal 
of RF and Computer-Aided Engineering, Vol. 19, No. 6, 
November 2009, pp. 701-711. 

[16] M. Ali and S. Sanyal, “A Finite Edge GTD Analysis of 
the H-Plane Horn Radiation Pattern,” IEEE Transactions 

on Antennas and Propagation, Vol. 58, No. 3, March 
2010, pp. 969-973. 

[17] J. F. Aurand, “Pyramidal Horns, Part I: Simple Expres-
sions for Directivity as a Function of Aperture Phase Er-
ror,” Proceedings of the 1989 IEEE Antennas Propaga-
tion Society International Symposium, San Jose, Vol. 3, 
1989, pp. 1435-1438. 

[18] J. F. Aurand, “Pyramidal Horns, Part II: A Novel Design 
Method for Horns of Any Desired Gain and Aperture 
Phase Error,” Proceedings of the 1989 IEEE Antennas 
and Propagation Society International Symposium, San 
Jose, Vol. 3, 26-30 June 1989, pp. 1439-1442. 

[19] T. Milligan, “Scales for Rectangular Horns,” IEEE Trans- 
actions on Antennas and Propagation, Vol. 42, No. 5, Oc-
tober 2000, pp. 79-83. 

[20] T. A. Milligan, “Modern Antenna Design,” 2nd Edition, 
John Wiley & Sons, Inc., Hoboken, 2005. 

[21] J. N. Sahalos, “Orthogonal Methods for Array Synthesis: 
Theory and the ORAMA Computer Tool,” John Wiley & 
Sons, Inc., Chichester, 2006. 

[22] M. J. Maybell and P. S. Simon, “Pyramidal Horn Gain 
Calculation with Improved Accuracy,” IEEE Transac-
tions on Antennas and Propagation, Vol. 41, No. 7, July 
1993, pp. 884-889. 

[23] E. W. Weisstein, “CRC Concise Encyclopedia of Mathe-
matics,” 2nd Edition, Chapman & Hall/CRC, Boca Raton, 
2002. 

[24] D. M. Pozar, “Microwave Engineering,” 3rd Edition, John 
Wiley & Sons, Inc., New York, 2005. 

[25] T. Hastie, R. Tibshirani and J. Friedman, “The Elements 
of Statistical Learning: Data Mining, Inference, and Pre- 
diction,” 2nd Edition, Springer, New York, 2008. 

[26] J. Fox, “Applied Regression Analysis and Generalized 
Linear Models,” 2nd Edition, Sage Publications, Inc., 
Thousand Oaks, 2008. 

[27] C. R. Rao, H. Toutenburg, S. Shalabh and C. Heumann, 
“Linear Models and Generalizations: Least Squares and 
Alternatives,” 3rd Edition, Springer, Berlin, 2009. 

[28] F. Yang, J. Han, J. Yang and Z. Li, “Some Advances in 
the Application of Weathering and Cold-Formed Steel in 
Transmission Tower,” Journal of Electromagnetic Analy-
sis and Applications, Vol. 1, No. 1, March 2009, pp. 24-30. 

[29] A. Gilat and V. Subramaniam, “Numerical Methods for 
Engineers and Scientists: An Introduction with Applica-
tions Using MATLAB®,” 2nd Edition, John Wiley & 
Sons, Inc., Hoboken, 2010. 

 
 


