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ABSTRACT 

This paper introduces the base-X notation and discusses the conversion between numbers of different bases. It also in-
troduces the tri-value logic that is associated with the base-3 system. 
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1. Introduction 

People use decimal numbers in their daily life. However, 
our computers use the binary system and the binary logic 
[1-3]. A computer also involves other number systems 
such as octal numbers and hexadecimal numbers. There 
is an easy way to convert a number in one system to 
another using the base-X notation. 

2. Base-X Notation 

Let X be an integer, X > 1. Using X as the base, we can 
form a number system. A base-X system uses the digit 
set {0, 1, ···, X − 1} to constitute a number. Any number 
Y in the system can be written as: 

1 1 0 1 2m m nY Y Y YY Y Y Y     

1
1




          (1) 

where m and n are integers, 0 ≤ m <∞, 1 ≤ n < ∞. In the 
above notation, Yi is the digit at position i and Yi is in {0, 
1, ···, X − 1}, −n ≤ i ≤ m. When X = 2, we have the bi-
nary system; when X = 8, we have the octal system; 
when X = 10, we have the decimal system; when X = 16, 
we have the hexadecimal system.  

Let us consider how to convert Y into a decimal num-
ber when X ≠ 10. Notice that for each position i, there is 
an associated weight Xi, and Yi represents a term YiX

i. 
Thus, adding all terms together, we get the corresponding 
decimal number: 
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The following examples illustrate the above conver-
sion, where the subscript indicates the base: 

1) Binary to Decimal 

   4 3 1 3

2 10

10

11001.101 1 2 1 2 1 1 2 1 2

5
25

8

         

   
 

 

The binary system has the advantage that it uses only 
two digits: 0 and 1. Within a binary number, digit 0 
always represents a zero term while digit 1 always repre-
sents a term identical to the weight associated with the 
digit position. Notice that we have dropped all zero terms 
in the above summation. 

2) Octal to Decimal 

   2 1

8 10

10

756.23 7 8 5 8 6 2 8 3 8

19
494

64

         

   
 

2

 

3) Hexadecimal to Decimal 

 
 

16

2 1

10

10

5 2

5 16 15 16 14 2 16 11 16

43
1534

256
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2  

The digit set used in the hexadecimal system is {0, 1, 2, 
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, where A = 10, B = 11, 
C = 12, D = 13, E = 14, F = 15. 

3. Decimal to Base-X Conversion 

The conversion of a decimal number to a base-X number 
is also indicated by Equation (2). Given a decimal num-
ber Y, we can treat Y as the summation of a sequence of 
terms where each term is a power of X, then we can write 
down the corresponding base-X number. For example, 
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given the decimal number 25.625, we have  

10
10

1 1
(25.625) 16 8 1

2 8
      
 

, 

therefore, 
2
. In general, one can 

use the following procedure for the conversion. 
10(25.625) 11001.101 

Let i f , where Yi and Yf are the integer portion 
and fraction portion of Y, respectively. We can convert Yi 
and Yf separately: 

Y Y Y 

1) Regarding Yi as the initial quotient and dividing the 
remained quotient by X repeatedly until it becomes zero, 
we get a sequence of remainder digits, the integer portion 
of the base-X number then can be obtained by reversing 
the order of the remainder digits in the sequence; 

2) Regarding Yf as the initial fraction and multiplying 
the remained fraction by X repeatedly, we get a sequence 
of digits from the integer portion of the products, the 
fraction portion of the base-X number then can be ob-
tained from this digit sequence.  

Consider the decimal number 123.65625 for example, 
we can convert it into binary, octal and hexadecimal 
number: 

1) Decimal to Binary 
Integer portion conversion: 
 

Quotient  Remainder 

123   

61  1 

30  1 

15  0 

7  1 

3  1 

1  1 

0  1 

 
Fraction portion conversion: 
 

Fraction  Integer Product 

0.65625   

0.3125  1 

0.625  0 

0.25  1 

0.5  0 

0  1 

 

  10 2
123.65625 1111011.10101

2) Decimal to Octal 
Integer portion conversion: 
 

Quotient  Remainder 

123   

15  3 

1  7 

0  1 

 
Fraction portion conversion: 
 

Fraction  Integer Product 

0.65625   

0.25  5 

0  2 

 

   10 8
123.65625 173.52  

3) Decimal to Hexadecimal 
Integer portion conversion: 
 

Quotient  Remainder 

123   

7  B 

0  7 

 
Fraction portion conversion: 
 

Fraction  Integer Product 

0.65625   

0.5  A 

0  8 

 

   10 16
123.65625 7 8B A   

Notice that in the above conversion, we always get a 
finite digit sequence for the integer portion because the 
remained quotient always becomes zero by repeated di-
vision. On the other hand, we may get an infinite digit 
sequence for the fraction portion if the remained fraction 
never becomes zero through the repeated multiplication. 
In such a case, it may produce an endless circulate frac-
tion.  

For example,    10 2
0.4 0.011001100110  . 

4. Base-3 System and Tri-Value Logic 
  Let us consider the base-3 number system that uses the 
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T

digit set {0, 1, 2} to constitute a number.   A BB A     
Denote T = {0, 1, 2} and let A, B in T, the results of A 

+ B are shown in Table 1. A AB B    
In addition to the above, we can also define other com-

pound logic operators from the basic logic operators  , 
, ', such as the exclusive or operator :  2:T T 

Consider a tri-value logic associated with the digit set 
T. Let 0, 1, 2 represent false, true, and neutral (neither 
false nor true) state, respectively. We can generalize the 
basic logic operators  (logic and),  (logic or) and 
′(logic not) in Boolean algebra to this tri-value case such 
that , , and . Let A and 
B be two variable, A, B in T, then the definition of these 
generalized logic operators is given in Table 2. 



2:T



T 2:T T   : T

A B A B A B     

5. Conclusion 

In this paper, we have introduced the base-X notation 
and have discussed the conversion between numbers of 
different bases. We have also introduced a tri-value logic 
that is associated with the base-3 system. We have shown 
that the tri-value logic is compatible with the binary logic, 
and the De Morgan’s law and the implication rule can be 
extended into this tri-value case. Here we point out that 
all base-X systems are equivalent to each other because 
any number in one system can be uniquely mapped into  

Notice that if we delete all rows that contain state 2 
from Table 2, then we get the truth table in Boolean 
algebra as Table 3. 

From Table 2, it is easy to see that the following 
equalities hold: 

A A A   

A A A   

 0 0A   
Table 1. Base-3 addition. 0 A A   

A/B  0  1  2 

0  0  1  2 

1  1  2  10 

2  2  10  11 

1 A A   

1 1A   

It is obvious that the De Morgan’s law and the binary 
implication can be extended into this tri-value case: 

 A BB A     
 

Table 2. Tri-value logic. 

A B A B  A B  A  B  A B   A B   

0 0 0 0 1 1 1 1 

0 1 0 1 1 0 0 1 

0 2 0 2 1 2 2 1 

1 0 0 1 0 1 0 1 

1 1 1 1 0 0 0 0 

1 2 2 1 0 2 0 2 

2 0 0 2 2 1 2 1 

2 1 2 1 2 0 0 2 

2 2 2 2 2 2 2 2 

 
Table 3. Binary logic. 

A B A B  A B  A  B  A B   A B   

0  0  0  0  1  1  1  1 

0  1  0  1  1  0  0  1 

1  0  0  1  0  1  0  1 

1  1  1  1  0  0  0  0 
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another system as implied by Equation (2). Furthermore, 
any rational number in one system remains rational in 
another system because its integer numerator and de-
nominator can be converted into integers in another sys-
tem as indicated by the integer conversion process. 
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