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ABSTRACT

This paper introduces the base-X notation and discusses the conversion between numbers of different bases. It also in-
troduces the tri-value logic that is associated with the base-3 system.
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1. Introduction

People use decimal numbers in their daily life. However,
our computers use the binary system and the binary logic
[1-3]. A computer also involves other number systems
such as octal numbers and hexadecimal numbers. There
is an easy way to convert a number in one system to
another using the base-X notation.

2. Base-X Notation

Let X be an integer, X > 1. Using X as the base, we can
form a number system. A base-X system uses the digit
set {0, 1, ---, X — 1} to constitute a number. Any number
Y in the system can be written as:

Y :YmYm—l "'Y1Y0 'Ylefz "'an (1

where m and n are integers, 0 <m <o, 1 < n <. In the
above notation, Y; is the digit at position i and Y;j is in {0,
1, -, X—1},—n <i<m. When X =2, we have the bi-
nary system; when X = 8, we have the octal system;
when X = 10, we have the decimal system; when X = 16,
we have the hexadecimal system.

Let us consider how to convert Y into a decimal num-
ber when X # 10. Notice that for each position i, there is
an associated weight X', and Y; represents a term Y;X'.
Thus, adding all terms together, we get the corresponding
decimal number:

Y=Y Y Yo Y Y, Y,
=Y XY X Y XY+ Y X

FY X4y X7
:Ziri—nYixi

The following examples illustrate the above conver-
sion, where the subscript indicates the base:

2
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1) Binary to Decimal
(11001.101)2 =(1><24 F1x 2 +1+1x27" +1x2'3)

(=4
8 10

The binary system has the advantage that it uses only
two digits: 0 and 1. Within a binary number, digit 0
always represents a zero term while digit 1 always repre-
sents a term identical to the weight associated with the
digit position. Notice that we have dropped all zero terms
in the above summation.

2) Octal to Decimal

10

(756.23), =(7x8" +5x8+6+2x8" +3x87)

= (494£j
64 )1,

3) Hexadecimal to Decimal

10

(5FE-2B),,
=(5><162+15><16+14+2><16'1+11x16'2)

:(1534ﬁj
256 ),

The digit set used in the hexadecimal system is {0, 1, 2,
3,4,5,6,7,8,9,A,B,C,D, E, F}, where A=10,B =11,
C=12,D=13,E=14,F=15.

10

3. Decimal to Base-X Conversion

The conversion of a decimal number to a base-X number
is also indicated by Equation (2). Given a decimal num-
ber Y, we can treat Y as the summation of a sequence of
terms where each term is a power of X, then we can write
down the corresponding base-X number. For example,
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given the decimal number 25.625, we have

(25.625),, :(16+8+1+%+l) ,
10

therefore, (25.625),, =(11001.101),. In general, one can
use the following procedure for the conversion.

Let Y =Y, Y, , where Y; and Y; are the integer portion
and fraction portion of Y, respectively. We can convert Y;
and Y; separately:

1) Regarding Y; as the initial quotient and dividing the
remained quotient by X repeatedly until it becomes zero,
we get a sequence of remainder digits, the integer portion
of the base-X number then can be obtained by reversing
the order of the remainder digits in the sequence;

2) Regarding Y; as the initial fraction and multiplying
the remained fraction by X repeatedly, we get a sequence
of digits from the integer portion of the products, the
fraction portion of the base-X number then can be ob-
tained from this digit sequence.

Consider the decimal number 123.65625 for example,
we can convert it into binary, octal and hexadecimal
number:

1) Decimal to Binary

Integer portion conversion:

Quotient Remainder
123
61 1
30 1
15 0
7 1
3 1
1 1
0 1

Fraction portion conversion:

Fraction Integer Product
0.65625
0.3125 1
0.625 0
0.25 1
0.5 0
0 1

(123.65625),, = (1111011.10101),
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2) Decimal to Octal
Integer portion conversion:

Quotient Remainder
123
15 3
1 7
0 1
Fraction portion conversion:
Fraction Integer Product
0.65625
0.25 5
0 2

(123.65625),, =(173.52),

3) Decimal to Hexadecimal
Integer portion conversion:

Quotient Remainder
123
7 B
0 7
Fraction portion conversion:
Fraction Integer Product
0.65625
0.5 A
0 8

(123.65625),, =(7B- A8),,

Notice that in the above conversion, we always get a
finite digit sequence for the integer portion because the
remained quotient always becomes zero by repeated di-
vision. On the other hand, we may get an infinite digit
sequence for the fraction portion if the remained fraction
never becomes zero through the repeated multiplication.
In such a case, it may produce an endless circulate frac-
tion.

For example, (0.4)10 = (0.01 10011001 10'--)2 .

4. Base-3 System and Tri-Value Logic

Let us consider the base-3 number system that uses the
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digit set {0, 1, 2} to constitute a number.

Denote T = {0, 1, 2} and let A, B in T, the results of A
+ B are shown in Table 1.

Consider a tri-value logic associated with the digit set
T. Let 0, 1, 2 represent false, true, and neutral (neither
false nor true) state, respectively. We can generalize the
basic logic operators N (logic and), U (logic or) and
'(logic not) in Boolean algebra to this tri-value case such
that N:T> >T, U:T*>T,and T > T.LetA and
B be two variable, A, B in T, then the definition of these
generalized logic operators is given in Table 2.

Notice that if we delete all rows that contain state 2
from Table 2, then we get the truth table in Boolean
algebra as Table 3.

From Table 2, it is easy to see that the following
equalities hold:

ANnA=A
AUA=A
0nA=0
OUA=A
INnA=A
1UA=1

It is obvious that the De Morgan’s law and the binary
implication can be extended into this tri-value case:

(ANB) =A'UB'

(AUB) = A'NB'
A—>B=A'UB
In addition to the above, we can also define other com-

pound logic operators from the basic logic operators N,
U, ', such as the exclusive or operator ®:T> T :

A®B=ANB'UA'NB

5. Conclusion

In this paper, we have introduced the base-X notation
and have discussed the conversion between numbers of
different bases. We have also introduced a tri-value logic
that is associated with the base-3 system. We have shown
that the tri-value logic is compatible with the binary logic,
and the De Morgan’s law and the implication rule can be
extended into this tri-value case. Here we point out that
all base-X systems are equivalent to each other because
any number in one system can be uniquely mapped into

Table 1. Base-3 addition.

A/B 0 1 2
0 0 1 2
1 1 2 10
2 2 10 11

Table 2. Tri-value logic.

A B ANB AuUB A B’ ANB A'UB'
0 0 0 0 1 1 1 1
0 1 0 1 1 0 0 1
0 2 0 2 1 2 2 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 2 2 1 0 2 0 2
2 0 0 2 2 1 2 1
2 1 2 1 2 0 0 2
2 2 2 2 2 2 2 2
Table 3. Binary logic.
A B ANB AUB A B’ A'NB' A'UB'
0 0 0 0 1 1 1 1
0 1 0 1 1 0 0 1
1 0 0 1 0 1 0 1
1 1 1 1 0 0 0 0
Copyright © 2012 SciRes. AJCM
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another system as implied by Equation (2). Furthermore,
any rational number in one system remains rational in

another system because its integer numerator and de- (2]

nominator can be converted into integers in another sys-

tem as indicated by the integer conversion process. (3]
REFERENCES

[11 J. Sanchez and M. P. Canton, “Microcontroller Program-

Copyright © 2012 SciRes.

247

ming: The Microchip PIC,” CRC Press, Boca Raton,
2006.

J. E. Whitesitt, “Boolean Algebra and Its Applications,”
Dover Publications, New York, 2010.

S. Givant and P. Halmos, “Introduction to Boolean Alge-
bras (Undergraduate Texts in Mathematics),” Springer,
New York, 2008.

AJCM



