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ABSTRACT 

This paper aims to obtain the simple closed-form results for the combined effects of surface elasticity, initial stress/ 
strain, and material Poisson ratio on the bending stiffness, natural frequency and buckling force of nanowires and nano-
plates. The results demonstrate that all these properties of nanowires or nanoplates can be designed either very sensitive 
or not sensitive at all to the amplitude of an applied electric potential; show how much of those properties can be con- 
trolled to vary; and thus provide a reliable guide to the measurement of the Young’s modulus of nanowires/nanoplates 
and to the design of nano-devices, such as nano-sensors or the cantilever of an AFM. 
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1. Introduction 

Owing to the large surface area to volume ratio at the 
nanoscale, the mechanical properties, such as the bending 
stiffness [1-7], yield strength [8], resonant frequency 
[9-17] and buckling force [18-21], of nanowires (NWs) 
and nanoplates (NPs) are size-dependent. In order to in- 
terpret the size-dependent mechanical behaviours of 
NWs and NPs, to extract the mechanical properties (e.g. 
the Young’s modulus) of the material from experimentally 
measured results, and to design nanoelectro-mechanical 
systems (NEMS) [22,23], one has to employ a mechanical 
model and the associated theoretical formula which re- 
lates all the parameters involved such as forces/stresses 
and dimensions. Many theoretical models have been 
proposed for the purpose for extracting, interpreting, or 
predicting the Young’s modulus [2-7], yield strength [8], 
resonant frequency [9-17], and buckling force [18-21] of 
nanowires. However, if the employed theoretical model 
is incorrect (e.g. [21]), it could mislead our under-standing 
of the experimentally measured results or result in wrong 
predictions for the mechanical behaviour of materi- 
als/structures or NEMS designed. It has generally been 
recognised that the initial surface stress can greatly affect 
the mechanical properties of nanostructures/materials 
[10-11,14,24-25]. More important and interesting is that 
the initial surface stress can be controlled to vary 

by adjusting the amplitude of an applied electric potential 
[17,26-31]. For example, the initial surface stress of Au 
(111) is 1.13 N/m. Biener et al. [26], however, have ex- 
perimentally found that for nanoporous Au material, by 
controlling the chemical energy, the adsorbate-induced 
initial surface stress 0  can reach 17 - 26 N/m. Weiss- 
muller et al. [29, 30] have experimentally demonstrated 
the recoverable deformation by adjusting amplitude of 
the initial surface stress via controlling an applied 
electric potential. There is a linear correlation between 
surface stress and surface charge in anion adsorption on 
Au(111) [31].  

This paper aims to provide the precise theoretical re- 
sults of the combined effects of surface elasticity, initial 
stress/strain and material Poisson ratio on the bending 
stiffness，natural frequency and buckling force of nano- 
wires and nanoplates, to give the upper and lower bounds 
of those tunable properties, to serve as a guide for the 
design and experimental measurement of nanostructures, 
and to clarify some existing mistakes in the treatment of 
the initial surface stresses. 

2. Tunable Bending Stiffness  

The combined effects of the surface elasticity and initial 
stress/strain on the bending stiffness have been obtained as  
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for nanowires with a circular cross-section [24],  0.1E
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for nanowires with a square cross-section [25] when 
bending is about a neutral plane parallel to the surface 
plane (1b) or about a diagonal plane (1c). Where, d is the 
cross-sectional diameter in Equation (1a) or the side 
length of the square cross-section in Equations (1b) and 
(1c); E is the Young’s modulus of the bulk material; 

n  is the intrinsic length of the material at the 
nano scale; and S is the surface elasticity modulus. In 
order to simplify the analysis and results, both the sur- 
face and the bulk materials are assumed to be isotropic 
and to have the same Poisson ratio v; the initial surface 
stresses in both the axial and the circular directions are 
assumed to be the same as 

0 . The initial residual stress 
of the bulk material in the axial direction of the nanowire 
with either a circular or a square cross-section is thus 

0 0  because equilibrium in the axial direction 
has to be held for a free nanowire such as a cantilever. 
For a uniform nanowire with either a circular or a square 
cross-section, the initial stresses in the bulk material in 
both the radial and the circular directions are half of that 
in the axial direction, i.e. 0 0 0 0 . 
The initial residual elastic strain in the axial direction, 

0
, of a nanowire is related to the initial surface stresses 

by 
00

. The von Mises stress of the 
bulk material should not exceed the material yield 
strength 
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y , otherwise, the nanowire would undergo 
permanent plastic deformation. Atomistic simulation [32] 
has shown that if the diameter of a gold wire is suffi- 
ciently small, it can automatically undergo plastic de- 
formation solely owing to the presence of the initial sur- 
face stresses. It is well known that the yield strength, y , 
of some conductive polymer materials or nano-sized me- 
tallic materials can be  (E is the Young’s modulus) 
or larger [33]. Biener et al. [26] have experimentally 
found that for nanoporous Au material, by controlling the 
chemical energy, the adsorbate-induced surface stress 

0

E1.0

  can reach 17 - 26 N/m. If the diameter of the liga- 
ments is 5 nm, 0

x  would be 20 GPa. As the bulk mate- 
rial discussed in this paper can be either metallic, or 
polymeric or biological, without losing generality, the 

von Mises yield strength is assumed to be y  . If 
the actual yield strength of the bulk material of a 
nanowire/nanoplate is larger or smaller than , its 
tunable ranges of the bending stiffness, natural frequency, 
and axial compressive buckling force can still be ob- 
tained by scaling up or scaling down the results that are 
presented in sections that follow. 

E1.0

  According to the aforementioned assumptions, for 
recoverable elastic deformation, the amplitude of the von  
Mises stress in the bulk material of a nanowire is limited 
by 0e y . The corresponding initial 
strain in the axial direction is 0 0 . The 
strain in the radial direction of the nanowire cross-section 
is related to the initial surface stresses or the initial re- 
sidual elastic strain in the axial direction by 
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when the effects of both the surface elasticity and the 
initial surface stress 0  are absent (i.e. n  and 
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0), the diameter or side-length of the 
cross-section of a nanowire is assumed to be 0  and the 
corresponding conventional bending stiffness to be 

 for a circular cross-section or  

0 0  for a square cross-section. When the ef- 
fect of the initial surface stresses   is present, 

   0 0 0 0

1 3
1 1

2 1
r xv

d d d
v

 
 

      
       (3) 

Substituting Equation (3) into (1a), the combined ef- 
fects of the surface elasticity and initial stresses on the 
bending stiffness of a nanowire with a circular cross- 
section can be obtained as 
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when the effect of the surface modulus S is absent (i.e. 

0   or 0 nd ), the effect of the initial stress 

0

l
x  on the dimensionless bending stiffness 0b  of a 

nanowire with a circular cross-section is plotted against 
the possible value of the Poisson ratio v of the bulk mate- 
rial for different amplitudes of the initial stress: 

0

/D D

x  0.2E, 0.1E, 0, −0.1E, −0.2E (note that the corre- 
sponding von Mises stresses are e 

/D D

0.1E, 0.05E, 0, 
0.05E and 0.1E, respectively), as shown in Figure 1(a). 
As can be seen from Figure 1(a), when the Poisson ratio 
of the bulk material v is close to 0, the normalised bend- 
ing stiffness, 0b , of a nanowire can be controlled to 
vary over a range from 0.65 to 1.4 by adjusting the am- 
plitude of the initial stress 0

x  from −0.2E to 0.2E (this, 
in turn, can be realised by adjusting the amplitude of an 
applied electric potential). The tunable range of   0/bD D
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depends strongly on the Poisson ratio v of the bulk mate- 
rial: approximately proportional to the amplitude of the 
initial stress 0

x ; narrowing with the increase of v; and 
vanishing when . When v is larger than 0.4, the 
trend of the effect of 0

0.4v 
x  on 0b  is reversed. When 

the effect of the surface elasticity S is present and when 

0  is fixed at 0.1, the combined effects of the ini- 
tial stress 0

/D D

/ DbD
x  and the surface elasticity on the normal- 

ised bending stiffness 0b  of a nanowire with a 
circular cross-section are plotted against the possible 
value of the Poisson ratio of the bulk material for differ- 
ent amplitudes of the initial stress: 0 0.2E, 0.1E, 0, 
−0.1E, −0.2E, as shown in Figure 1(b). When v is very 
small, 0  can be controlled to vary over a range 
from 1.25 to 2.45. The larger the amplitude of the initial 
stress 0

/D D

x 

/bD D

x , the larger the tunable range of 0b . The 
effect of the initial stress 0

/D D
x  on  reduces with 

the increase of v and vanishes when . When v is 
larger than 0.38, the trend of the effect is reversed. When 
the initial stress , 
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(a) 

 
(b) 

Figure 1. Effects of the surface elasticity and initial stresses 
on the bending stiffness of nanowires with a circular 
cross-section: a) 0 0nl d = ; b) 0 0.1nl d =

/D D

. 

The relationships between 0b  and v, shown in 
Figures 1(a) and (b), can well be approximated by the 
same linear function 
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As the amplitude of the initial stress 0 0 0  
can be controlled to vary by adjusting the amplitude of 
an applied electric potential [26-31], the normalised 
bending stiffness of a nanowire 0b  could be con- 
-trolled to either reduce 30% or to increase 40% form the 
amplitude 

0n , depending upon the value of the 
Poisson ratio v of the bulk material. It is noted that for 
different bulk material, such as a metal, polymer or bio- 
logical material, the nano-size scale intrinsic length  
may vary between 0.01 to 1 nm. In Figure 1(b), 0n  
is fixed at 0.1. If  shown in Figure 1(b) is di- 
vided by 0n

nl
/l d

0/bD D
(1 8 / ) 1.8l d 

nl

, the results will be very close 
to those given in Figure 1(a). This implies that whether 
the effect of the surface elasticity (i.e. S or ) is present 
or absent, the relative tunable range,  
   / / 1 8 /D D l d0 0b n , of the bending stiffness of a 
nanowire depends mainly on the amplitude 0

x  and the 
bulk material Poisson ratio v. Likewise, the bending 
stiffness of a nanowire with a square cross-section about 
a diagonal plane or a plane parallel to the surface plane 
can also be controlled to vary over a large range, de- 
pending on amplitude of the initial stress/strain and the 
material Poisson ratio. The tunable range,  
   / / 1 8 /D D l d0 0b n , is close to that of a nanowire 
with a circular cross-section. It is noted that in all the 
cases, the amplitude of 0

x  (or 0 ) is adjustable and 
controllable, while the Poisson ratio v remains constant 
for a given material.  

For a flat, wide and uniform nanoplate of width b and 
thickness h, the analytical result for the combined effects 
of the surface elasticity and initial stresses on the bending 
stiffness is obtained as [25] 
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b h /l S Ewhere ; E, n  , S and the initial surface 
stress 0  are exactly the same as those for nanowires. 
Again, both the surface and the bulk material are as-
sumed to be isotropic and to have the same Poisson ratio 
v for simplicity in the analysis and results. For recover-
able elastic deformation, the initial von Mises stress 
should not exceed the yield strength of the bulk material, 

0 0 0e y . The amplitude of 
the initial in-plane elastic residual strains of a nanoplate 
is related to the initial stresses by  

2 / 0.1x y h E        

 0 0 1 /x y x v E    0 . When the initial surface stress 

0  is absent (i.e. 0 0 0 0 0x y h      
0 0h

), the width and 
thickness of the nanoplate are noted as b  and . 
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When the initial surface stress 0  is present, the strain 
in the thickness direction of a nanoplate is related to the 
initial stresses by 

0
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and the plate current thickness thus becomes 
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b
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                 (8) 

For simplicity, the initial width 0  of the nanoplate is 
assumed to be a unit and much larger than 0  (i.e. 

0 0 ). Substituting Equations (7) and (8) into (6), 
the combined effects of surface elasticity, the initial 
stresses and the Poisson ratio on the bending stiffness of 
a nanoplate can be obtained and given as 
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where 0 0  is the conventional bend- 
ing stiffness of a nanoplate with a unit initial width when 
the effects of both the surface elasticity and the initial 
stress/strain are absent. When the effect of the initial 
stress is present, the initial unit width becomes 

0

D Eh

01 1y x    . That is why this factor appears in Equa-
tion (9). 

When the effect of the surface modulus S is absent (i.e. 
 or nh ), the effect of the initial stress 

0

/l S E 0n  l
x  on the normalised bending stiffness (i.e. 0b ) 

of a nanoplate is plotted against the material Poisson ra- 
tio for initial stress fixed at different values: 0

/D D

x  −0.1E, 
−0.05E, 0, 0.05E and 0.1E, as shown in Figure 2(a). 
When the effect of the surface elasticity is present with 

=0.1, the similar effect is plotted in Figure 2(b). 0

As can be seen from Figures 2(a) and (b), the rela-
tionship between 0b  and v can be controlled to 
vary over ranges from 0.85 to 1.15 when 0n

/nl

/ D
/ 0l h

h

D
  and 

from 1.35 to 1.85 when 0n / 0.1l h  , depending strongly 
on the value of the bulk material Poisson ratio v. The 
relationship given by Equation (9) can be approximated 
by  
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When the effect of the initial stress/strain is absent, 

0b  reduces to 0n . Similar to nanowires, 
whether the effect of the surface elasticity (i.e. S or nl is 
present or absent, the relative bending stiffness, 

0b n , of a nanoplate can be controlled 
to either reduce or increase by up to 15%, depending 
upon the amplitude of the initial stress and the value of 
the material Poisson ratio. 

D

  0/ / 1D D

Some bulk materials may have a negative surface elas-
ticity modulus [1], i.e.  or n . As can 
be seen from Equations (4) and (9), if the value of  

0S 

 
(a) 

 
(b) 

Figure 2. Effects of the surface elasticity and initial stresses 
on the bending stiffness of nanoplates: (a) n 0 = 0l h ; (b) 

n 0 = 0.1l h

8 /l d 6 /l h

. 

 

0n  (for nanowires) or 0n  (for nanoplates) is 
close to −1, by adjusting the amplitude of the initial 
stress 0

x  (or 0 ), 0b  could be controlled to vary 
from the initial positive to subsequent negative. As has 
been discussed in [34,35], this implies that the nanowire 
or nanoplate will become unstable and tend to deform 
automatically into a stable configuration and to output 
energy at the same time. This can be of useful applica-
tions because we sometimes wish a structure or a part to 
fail or to deform automatically in order to protect others. 

/D D

L

3. Tunable Compressive Buckling Force  

For uniform nanowires or nanoplates with an initial 
length 0 , the dimensionless axial compressive buckling 
force can be obtained as  
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for nanowires with a circular cross-section, 
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for nanowires with a square cross-section when buckles 
about a neutral plane which is parallel to the surface 
plane, 
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for nanowires with a square cross-section when buckles 
about a diagonal plane, and 
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for nanoplates. Where  0 01 xL L  

2 2/cr bP k D L

, 0 0cr  
is the buckling force of a nanowire or nanoplate when the 
effects of both the surface elasticity and the initial 
stress/strain are absent, , and k is a di-
mensionless constant depending upon the boundary con-
ditions at the two ends of the nanowire/nanoplate. 

0 2 2/P k D L

/ 0l d
  For nanowires with a circular cross-section, when the 
effect of the surface elasticity is absent (i.e. 0n

 
(a) 

 
(b) 

Figure 3. Effects of the surface elasticity and initial stresses 
on the dimensionless buckling force of nanowires with a 
circular cross-section: (a) 

 ), 
the effect of the initial stresses on the dimensionless 
buckling force is plotted in Figure 3(a). When the effect 
of the surface elasticity is present and 0n / 0.1l d  , the 
effect of initial stresses on the dimensionless buckling 
force is presented in Figure 3(b). As can be seen in Fig- 
ures 3(a) and (b), whether the effect of the surface elas-
ticity is present or absent, the dimensionless buckling 
force of a nanowire can be controlled to decrease by up 
to 25% or to increase by up to 33%, depending strongly 
on the amplitude of the initial stress and the material 
Poisson ratio. The larger the material Poisson ratio, the 
larger is the tunable range of the dimensionless axial 
compressive buckling force. The trend and amplitudes of 
the combined effects of the surface elasticity and initial  

n 0 = 0l h ; (b) n 0 = 0.1l h . 

 
stresses on the dimensionless buckling force of 
nanowires with a square cross-section, as described in 
Equations (11b) and (11c), is similar to those given in 
Figures 3(a) and (b). It should be noted that for a 
nanowire with a square cross-section, the upper and 
lower bounds of the tunable dimensionless axial com-
pressive buckling force have to be determined by com-
bining Equations (11b) and (11c) because the nanowire 
always tends to buckle in the weakest plane. For nano- 
plates, the combined effects of the surface elasticity and 
initial stresses on the dimensionless buckling force are 
presented in Figures 4(a) and (b). As can be seen, 
whether the effect of the surface elasticity is present or 
absent, the dimensionless axial compressive buckling 
force of a nanoplate could be controlled to vary over a 
range up to 60%, depending strongly on the amplitude of 
the initial stress and the value of the material Poisson  
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(a) 

 
(b) 

Figure 4. Effects of the surface elasticity and initial stresses 
on the dimensionless buckling force of nanoplates: (a) 

n 0 = 0l h ; (b) n 0 = 0.1l h . 

 
ratio. It should be noted that the results given in Equa- 
tions (11) and (12) and shown in Figures 3 and 4 apply 
only when the nanowires/nanoplates are relatively thin 
and long (e.g.  or /L h / 5 / yL d E  ). Otherwise, 
the nanowire/nanoplate may yield before losing stability. 

Wang and Feng [21] have studied the combined ef- 
fects of the surface elasticity and initial surface stress on 
the axial compressive buckling force of nanowires. 
However, we do not favour their analysis and results. 
The initial surface stresses are actually internal stresses 
in a nanowire or nanoplate because the nanowire/nano- 
plate contains both the bulk and surface materials. If the 
initial surface stresses are treated as external tractions, 
their counterparts (i.e. the initial residual stresses in the 
bulk material) should also be taken into consideration. 
Wang and Feng [21] only treated the initial surface 
stresses as external tractions and ignored the effects of 
their counterpart, and thus obtained the axial compres- 
sive buckling force of nanowires as 

2

02
2cr

EI
P k d

l

  

2l EI
2 2/ 2

           (13) 

For a very thin and long nanowire (i.e. ), 
Equation (13) reduces to 0crP k EI l H H d      
(see the Equation (11) of paper [21]), suggesting that 
when the initial surface stress 0  is positive, a very thin 
and long nanowire will not buckle if the axial compres-
sive force is no larger than 02 d . On the other hand, 
when the initial surface stress 0  is negative, the bulk 
material of a nanowire is actually stretched in the longi-
tudinal direction by 0 . Equation (13), however, sug-
gests that a free thin and long cantilever nanowire, which 
has already stretched in the longitudinal direction by 0 , 
would buckle even if a tensile force no larger than 

02 d  is axially applied to stretch it at its two ends. The 
implications of their results (i.e. (13)) are entirely against 
the common sense. It is noted that the same treatment (i.e. 
taking the initial surface stresses as external tractions and 
ignoring the effects of the initial residual stresses in the 
bulk materials) has appeared in many research papers on 
studying the bending stiffness, buckling force and reso-
nant frequency of nanowires, e.g. [6,11,13,21]. We do 
not agree with the way of their treatment on the initial 
surface stress and thus suspect their obtained results. 

4. Tunable Natural Frequency  

For a uniform cantilever nanowire or nanoplate, when the 
effect of the initial stresses is absent (i.e. 0  or 0

x  is 
0), the natural frequency is given by 

 
4 42 2

n i n i
i

i i i i

EIk k D
f

m L m L 
 

nk
3.52k

         (14) 

where,  is a constant for a given vibration mode, e.g. 

n   for mode 1; 0 0i n  
for nanowires with a circular cross-section, or  

  4 / 64 1 8 /D E d l d 

  4 /12 1 8 /D Ed l d 0 0i n  for nanowires with a square 
cross-section when bending is around a neutral plane 
parallel to a surface plane, or  

  4 12 1 4 2D Ed l d 0 0i n  for nanowires with a 
square cross-section when bending is around a diagonal 
plane, or   3 /12 1 6 /0 0i nD Eh l h 

m
L

 for nanoplates of 
an initial unit width; i  is the mass of per unit length of 
the nanowire or nanoplate; and i  is the length of the 
cantilever when the initial stress is absent. 

When the effect of the initial stresses/strains is present, 
the normalised natural frequency becomes 

3
2 2

0

1

1
b i i b

x
i i i

D m L Df

f D m L D 
          

bD

      (15) 

where  is the bending stiffness given by Equation (4) 
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for nanowires with a circular cross-section or by Equa- 
tion (9) for nanoplates; 0 1 x

iL L  

/ /i L L

/ 0.1l d

 is the length of 
the nanowire or nanoplate axially stretched by the initial 
surface stresses, and i  because of the mass 
conservation. 

m m

The effects of the surface elasticity and initial stresses 
on the normalised natural frequency of a cantilever 
nanowire with a circular cross-section and 0n   
and a cantilever nanoplate with 0  are plotted 
against the Poisson ratio of the bulk material, as shown in 
Figures 5(a) and (b). We also found that the effect of the 
amplitude 0  on the relationship given by Equation 
(15) is so small that it can be neglected. As can be seen 
in Figures 5(a) and (b), by adjusting the amplitude of the 
initial stresses (this can be realised by adjusting the am-
plitude of an applied electric potential), the normalised 
natural frequency  could be controlled either to 
reduce or to increase by up to around 20% for nanowires 
or around 15% for nanoplates from 1, and the tunable 
range depends upon the amplitude of the initial 

/nl h  0.1

/nl d

/ if f

 

 
(a) 

 
(b) 

Figure 5. Effects of the surface elasticity and initials tresses 
on the normalised natural frequency: (a) For nanowires 
with a circular cross-section and n 0 = 0l h ; (b) For nano-

plates with n 0 = 0.1l h . 

stresses and the value of the bulk material Poisson ratio. 
Experiments have demonstrated that micro-or nano-can- 
tilever wires or plates can be used as sensors to monitor 
the changes in the natural frequency [17,36], and that the 
elastic properties, such as the Young’s modulus, of 
nanowires can be extracted from the measured natural 
frequency [37]. Lagowski et al. [16] experimentally 
found that the normal mode of vibration of thin crystals 
depends strongly on the surface stress. Wang and Feng 
[11] and He and Lilley [13] have also studied the reso-
nant frequency of nanowires. As aforementioned, their 
results are suspicious because they simply treated the 
initial surface stresses as external tractions and totally 
ignored the effects of the initial residual stresses in the 
bulk material. 

5. Conclusion 

The analytic results obtained in this paper demonstrate 
that the bending stiffness, resonant frequency, and axial 
compressive buckling force of a nanowire or nanoplate 
can be designed either very sensitive or not sensitive at 
all to the amplitude of the initial stresses ( 0  or 0

x ); 
show how much those properties can be controlled to 
vary by adjusting the amplitude of an applied electric 
potential; and thus provide a reliable guide to the meas- 
urement of the Young’s modulus of nanowires or nano- 
plates and to the design of nano-devices, such as 
nano-sensor or the cantilever of an AFM. 
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