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ABSTRACT 

Scherrer Equation, .cosL K   , was developed in 1918, to calculate the nano crystallite size (L) by XRD radiation 

of wavelength λ (nm) from measuring full width at half maximum of peaks (β) in radian located at any 2θ in the pattern. 
Shape factor of K can be 0.62 - 2.08 and is usually taken as about 0.89. But, if all of the peaks of a pattern are going to 
give a similar value of L, then .cosθ  must be identical. This means that for a typical 5nm crystallite size and λ Cukα1 

= 0.15405 nm the peak at 2θ = 170˚ must be more than ten times wide with respect to the peak at 2θ = 10˚, which is 
never observed. The purpose of modified Scherrer equation given in this paper is to provide a new approach to the kind 
of using Scherrer equation, so that a least squares technique can be applied to minimize the sources of errors. Modified 
Scherrer equation plots lnβ against ln(1/cosθ) and obtains the intercept of a least squares line regression, ln /K L , 
from which a single value of L is obtained through all of the available peaks. This novel technique is used for a natural 
Hydroxyapatite (HA) of bovine bone fired at 600˚C, 700˚C, 900˚C and 1100˚C from which nano crystallite sizes of 22.8, 
35.5, 37.3 and 38.1 nm were respectively obtained and 900˚C was selected for biomaterials purposes. These results 
show that modified Scherrer equation method is promising in nano materials applications and can distinguish between 
37.3 and 38.1 nm by using the data from all of the available peaks. 
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1. Introduction 

X-ray diffraction is a convenient method for determining 
the mean size of nano crystallites in nano crystalline bulk 
materials. The first scientist, Paul Scherrer, published his 
results in a paper that included what became known as 
the Scherrer equation in 1981 [1]. 

This can be attributed to the fact that “crystallite size” 
is not synonymous with “particle size”, while X-Ray 
diffraction is sensitive to the crystallite size inside the 
particles. From the well-known Scherrer formula the 
average crystallite size, L, is: 

.cos

K
L


 

                  (1) 

where λ is the X-ray wavelength in nanometer (nm), β is 
the peak width of the diffraction peak profile at half 
maximum height resulting from small crystallite size in 
radians and K is a constant related to crystallite shape, 
normally taken as 0.9. The value of β in 2θ axis of 
diffraction profile must be in radians. The θ can be in 
degrees or radians, since the cosθ corresponds to the  
same number; 

π 2
cos cos 45

4 2
             (2) 

It can be taken as 0.89 or 0.9 for Full Width Half 
Maximum (FWHM) of spherical crystals with cubic unit 
cells. For an excellent discussion of K, a good reference 
is the paper “Scherrer after sixty years” in 1978 [2]. 

In conventional approximation, the integrated width of 
the pure profile (β) is separated from that of the observed 
diffraction profile (B) assuming that both profiles are 
either Gaussian or Cauchy [3]. 

If Gaussian profile is accepted, then 2 2B b 2   in 
the case of Cauchy B = b + β, where b is the instrument 
profile width. If the broadening of the pure profile is due 
to both crystallite size and lattice strain, one has to make 
another assumption concerning the shapes of the two 
contributing line profiles. Normally, these are supposed 
to be either Gaussian or both Cauchy, then 2 2

m n     
or, m n    respectively. m  is the line width re- 
sulting from small crystallite size, and n  is the line 
broadening due to the lattice strain. Then we have [4]: 

4. tg
n


                    (3) 
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Strain = Change in size/Original size    (4) 

It is usually considered that Cauchy function is rather 
well approximated, while Gaussian function gave 
considerably larger errors. In order to separate the size 
and strain contribution: 

4 . t g
.cosL

  


                (5) 

In the case of crystallite size and lattice strain, two 
diffraction peaks must be used to calculate two unknown 
parameters L and ε. 

In order to consider the Scherrer equation with 
obtained value of ε concerning only crystallite size, when 
no mechanical activation such as ball milling and 
mechanical alloying is the case, or the crystallite size is 
due to a nucleation and growth at high temperatures, we 
must only be concerned about corrections for instru- 
mental profile width. 

The Scherrer equation predicts crystallite thickness if 
crystals are smaller than 1000 Å or 100 nm. The simplest 
way to obtain Scherrer equation is to take the derivation 
of Bragg’s Law, 2 sind  . 

Holding the wavelength λ constant and allowing the 
diffraction angle to broaden from a sharp diffraction peak 
from an infinite single crystal with perfect 3-dimeintinal 
order. For a single crystal, the diffraction from a set of 
planes with the distance d* occurs at a precisely θ*, so 
that λ = 2d*sinθ*. 

For many small nano crystals, diffraction from a lot of 
tiny crystals deviate ± Δθ from θ*.  

This means 2Δθ on the 2θ axis of diffraction pattern. 
The value of Δθ correspond to FWHM or β, which is 
approximately half of 2Δθ. In other words since Δθ can 
be positive or negative, the absolute value must be taken 
and it reflects the half width of the shape line deviation in 
2θ axis (full width at half maximum height, β). Deriva- 
tive in d and θ of Bragg’s Law with constant λ gives λ = 
2Δd.cosθ.Δθ. 

The thickness Δd = L can be taken as; 

2cos .Δ cos .
L d

 
  

   


          (6) 

By applying a shape factor K, which is near the value 
of unit (0.9), the Scherrer equation can be given as:  

0.9

.cos
L


 

                   (7) 

The derivation approach is taken by Alexander in Klug 
and Alexander “X-ray Diffraction” [3] to describe the 
Scherrer equation. It is also easily adoptable to describe 
the dependence of any two terms in the Bragg equation 
in terms of variability. For crystals longer than 1000 Å 
(100 nm), grainy patterns can be analyzed in terms of a 
statistical analysis to grain size, although this is rarely 

done since grain size can be more easily determined from 
optical or electron microscopy studies in this size range. 

2. Modified Scherrer Equation 

It is assumed that if there are N different peaks of a 
specific nano crystal in the range of 0 - 180˚ (2θ) or 0 - 
90˚ (θ), then all of these N peaks must present identical L 
values for the crystal size. But, during the extensive 
research of the first author of thins paper, on different 
nano ceramic crystals, which were synthesized or mi- 
nerally achieved, it was surprisingly observed that each 
peak yields a different value and there is a systematic 
error on the results obtained from each peak.  
Further investigation approved the presence of a sys- 
tematic error in Scherrer formula. In fact since  

.cosL K   , if L is going to be a fixed value for 
different peaks of a substance, considering that K and λ 
and therefore Kλ are fixed values, then it is essential that 
β.cosθ be a fixed multiple during 0 < 2θ < 180˚ or 0 < θ 
< 90˚. Suppose that for a crystallite size of 5nm, obtained 
at a peak of say 2θ = 10˚ (θ = 5˚) by using K = 0.89 and 
λCukα1 = 0.15405 nm. 
then β10 must be, 

   10

0.89 0.15405
0.0275 1.576

5cos5
rad     


  (8) 

Now, suppose that the N th peak of this nano crystal 
occurs at 2θ = 170˚ (or θ = 85˚), then; 

   170

0.89 0.15405
0.3146 18.03

5cos85
rad     


  (9) 

This means that the ratio of 18.03 1.576 11.44  
must be applied 170 10/ for    . In other words if the first 
peak has a β10 of around 2 mm on the monitor of 
computer plot, or for example, a paper plot 21 cm width 
on A4 paper, then the last peak must have a β170 more 
than 22.88 mm and a base of peak more than 45.76 mm 
(4.576 cm). 

This has never been observed and cannot be true. 
Modified Scherrer formula is based on the face that we 
must decrease the errors and obtain the average value of 
L though all the peaks (or any number of selected peaks) 
by using least squares method to mathematically de- 
crease the source of errors. 

We can write the basic Scherrer formula as: 

1
.

.cos cos

K K

L L

 
 

               (10) 

Now by making logarithm on both sides; 

1
ln ln ln ln

.cos cos

K K

L L

 
 

          (11) 

If we plot the results of lnβ against ln(1 cos ), then a 
straight line with a slope of around one and an intercept  
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3. Experimental of about lnK/L must be obtained. Theoretically this 
straight line must be with a slope of 45˚ since tg45˚ = 1 
(Figure 1). But, since errors are associated with ex- 
perimental data, the least squares method gives the best 
slope and most accurate lnK/L. After getting the inter- 
cept, then the exponential of the intercept is obtained: 

Bovine bones were boiled for 2 hr to remove flesh and 
fat. The bones were heated at 60˚C for 24 hr to remove 
moisture. To prevent blackening with soot during heating, 
the bones are cut into small pieces of about 10 mm thick 
and heated at 400˚C (bone ash) for 3 hr in air to allow for 
evaporation of organic substances. The resulting black 
bone ash was heated for 2 hr at 600˚C, 700˚C, 900˚C and 
1100˚C [5]. 

ln
K

L
K

e
L

 
                   (12) 

Having K = 0.9 and λ(such as λCukα1 = 0.15405 nm), a 
single value of L in nanometer can be calculated. 

A Philips XRD instrument with Cukα radiation using 
40 KV and 30 mA, step size of 0.05˚ (2θ) and scan rate of 
1˚/min were employed. X’Pert software was used for 
qualitative analysis and report of β values at FWHM at 
different 2θ values according to location of the peaks.  
According to JCPDS:9-432 standard the main peaks are 
from the planes of (200), (111), (002), (102), (210), (211), 
(112), (300), (202), (212), (310), (311), (113), (222), 
(312) and (213) of HA phase for 20 - 50 deg. 2θ. 

 

In (1/cosθ) 

In β 

 

4. Results and Discussion 

Table 1 shows the β.cosθ values for different peaks at 
any given temperature. 

The XRD patterns are observed in Figure 2 with 
gradual sharpness of the peaks as the soaking temper- 
ature increases, indicating the growth and increase of 
crystallite size. 

Relatively gradual decrease in β.cosθ and almost 
increase in L values ( . / .cosL const )   is observed 
with the increase of 2θ. Such as increase in crystallite Figure 1. Modified scherrer equation plot. 

 
Table 1. Values of β.cosθ for different peaks. 

Temperature (˚C) 
d 

400 600 700 900 1100 
Calculated L at 900˚C (nm) 

(200) – – 5.06 × 10−3 5.06 × 10−3 5.06 × 10−3 27.1 

(111) – – – 5.05 × 10−3 5.05 × 10−3 27.1 

(002) 2.24 × 10−3 5.02 × 10−3 3.35 × 10−3 3.35 × 10−3 3.35 × 10−3 40.9 

(102) – – 2.50 × 10−3 3.34 × 10−3 2.50 × 10−3 41 

(210) – – – 3.23 × 10−3 2.50 × 10−3 42.4 

(211) 9.90 × 10−3 11.5 × 10−3 2.48 × 10−3 3.31 × 10−3 2.48 × 10−3 41.4 

(112) – – 2.48 × 10−3 2.48 × 10−3 2.48 × 10−3 55.2 

(300) – – 2.47 × 10−3 3.30 × 10−3 3.30 × 10−3 41.5 

(202) – – 3.29 × 10−3 3.29 × 10−3 3.29 × 10−3 41.6 

(212) – – – 2.43 × 10−3 2.43 × 10−3 56.4 

(310) 11.3 × 10−3 12.9 × 10−3 2.42 × 10−3 2.16 × 10−3 3.23 × 10−3 63.4 

(311) – – 2.41 × 10−3 4.81 × 10−3 2.41 × 10−3 28.5 

(113) – – 3.19 × 10−3 6.38 × 10−3 3.19 × 10−3 21.5 

(222) 7.88 × 10−3 7.88 × 10−3 3.16 × 10−3 2.11 × 10−3 3.16 × 10−3 65 

(312) – – 3.14 × 10−3 3.14 × 10−3 3.14 × 10−3 43.6 

(213) 9.35 × 10−3 6.25 × 10−3 3.89 × 10−3 3.12 × 10−3 2.09 × 10−3 44 
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Figure 2. Patterns of XRD analysis related to natural HA of thermal analysis at temperatures of: (a) 400˚C (bone ash); (b) 
600˚C; (c) 700˚C; (d) 900˚C and (e) 1100˚C. 
 
size of HA were also observed by Shipmen et al. [6]. The 
samples fired at 600˚C - 1100˚C were used. 

Figure 3 indicates four plots of lnβ vs. ln(1cos ) for 
individual soaking temperatures; together with the equa- 
tions of linear least squares method obtained from linear 
regression of data in excel plots. Due to sources of error 
in measuring β and treating for different available peaks, 
since the β.cosθ multiple is not really a constant value for 
all the peaks, π  deviate from 45˚ and are negative 
in some cases. The reason that the slopes are negative are 
due to the fact that at higher angles, of 2θ, with lower 
values of cosθ and higher values of ln( 1cos ), the 
amounts of β observed and measured are less than it must 
be according to Scherrer’s formula. This means that a 45˚ 
slope for the linear plots are hardly achieved. The errors 
involved in Scherrer equation when employing different 
peaks are the main cause of scattering of the points. 
Some other sources of error are measuring ln   and 
ln(1cos ). The significance of this work is to minimize 
the errors by applying a method to use least squares 
technique for obtaining the best results. 

The modified Scherrer equation can provide the 
advantage of decreasing the sum of absolute values of 
errors,  2

ln 

49 5.1196y x 
4.8149 ln1/ cos

, and producing a single line through 
the points to give a single value of intercept lnK/L. At 
600˚C, the linear regression plot is obtained as 

. This is equivalent to  4.81
ln   ln /K L 

K L e 
  

.006
. From this line, the 

intercept is −5.1196 and  and  5.1196/ 0

    0.89 0.15405 / 0.006 22.8 nmL       (13) 

It is interesting to notice that although variations exist 
in lnβ values, but the intercept systematically changes as 
−5.1196, −5.5542, −5.6054 and −5.6276 respectively for 
600˚C, 700˚C, 900˚C and 1100˚C. The treatment is 
shown in Table 2 leading to values of 22.8, 35.5, 37.3 
and 38.1 nanometers respectively. Danilchenko et al. [6] 
have also reported the bone mineral crystalline size of 
about 20 nm. 

The plot of crystal size of HA vs. firing temperature is 
given in Figure 4. From this figure it can be understood 
that the shape is similar to that of parabolic Law. 
Crystallinity sharply increase from 600˚C to 700˚C, but 
the rate slows down from 700˚C to 1100˚C. It seems that 
the driving force for the growth of nano crystallite size of 
HA is highly provided when the temperature increases 
from 600˚C to 700˚C, but is less affected by higher tem-
perature increases. In other words the experimental acti-
vation energy for the growth of nano HA crystallites can 
be provided in 600˚C to 700˚C. The values of ∆L/∆T 
representing the rate of growth in size are plotted against 
Temperature (˚C) in Figure 5. This figure can confirm  
 
Table 2. Treatment of linear plots to obtain nano size of 
crystallites. 

Temperature (˚C) 
ln 0.89 0.154051k

Le
L

 
  L (nm)

600 5.1196 0.006e   22.8 

700 5.5542 0.00387e   35.5 

900 5.6054 0.00368e   37.3 

1100 5.16276 0.0036e   38.1 
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Figure 3. Linear plots of modified scherrer equation and obtained intercepts for different firings of ha. 
 

 

Figure 4. Crystal size (nm) of HA against firing temperature. 
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Figure 5. Plot of ∆L/∆T (slope of plot in Figure 4) against temperature (˚C). 
 

 

Figure 6. All of the diffraction planes of HA firing at 900˚C. 

e about discussion that the most increase in size of 5. Conclusions 

tion systematically show increased 
values of 

employed, the intercept gives ln = Kλ/L, from  

 
th
nano HA or ∆L/∆T occurs at 600˚C to 700˚C. 

Some peaks of β-Tricalcium phosphate (β-TCP) shows 
up at 1100˚C. In order to obtain well developed 
crystallines of HA without the side effect of β-TCP, 
firing at 900˚C was selected for biomaterial purposes. 
The XRD pattern of this sample is shown in Figure 6, 
showing all of the diffraction planes. 

1) Scherrer equa
nano crystalline size as d values decrease and 

2θ values increase, since β.cosθ cannot be maintained as 
constant. 

2) If lnβ is plotted against ln(1/cosθ) and least squares 
method is 
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for producing HA for biomate-
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