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ABSTRACT 

The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It 
solves a discretized Schrödinger equation in an iterative process. However, the method provides only a second-order 
accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition 
in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with 
absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schrödinger equation and obtain a 
more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free 
space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical 
analysis.  
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1. Introduction 

The 1D time-dependent linear Schrödinger equation, 
which is the basis of quantum mechanics [1,2], can be 
expressed as follows [3,4]: 
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where m is the mass of the particle (kg), 341.054 10   
J·sec is Planck’s constant, V is the potential (J),  ,x t  
is a complex number, and 1i    The product of 
 ,x t  with its complex conjugate,    , ,x t x t   

indicates the probability of a particle being at spatial lo-
cation x at time t.  

It can be easily seen that the classic explicit two-level 
in time finite difference scheme, i.e.,  
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is unconditionally unstable, where  is the ap- 
proximation of . Here, 

 n k
 ,k x n t   x  and t  are 

the spatial grid size and time step, respectively, k Z  
that denotes the set of all positive and negative integers, 
and 2

x  is a second-order central difference operator 
such that  

       2 1 2 1n n n n
x k k k k         .   (3) 

There are many numerical schemes developed for 
solving linear Schrödinger equations [1-33]. In particular, 
Sullivan [3] and Visscher [4] applied the finite-difference 
time-domain (FDTD) method, which is often employed 
in simulations of electromagnetic fields, to solve the 
above Schrödinger equation. The application of FDTD 
technique for the analysis of quantum devices is often 
called the FDTD-Q scheme, which can be described as 
follows [3]. 

The variable  ,x t  is first split into its real and 
imaginary components in order to avoid using complex 
numbers:  

    real imag, , ,x t x t i    x t .      (4) 

Inserting Equation (4) into Equation (1) and then 
separating the real and imaginary parts result in the fol-
lowing coupled set of equations:  
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and  
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Thus, the second-order central finite difference ap- 
proximations in space and time result in the FDTD-Q 
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schemes as follows: 
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and 
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Here, we assume that V is dependent only on x for 
simplicity. The computation of the above FDTD-Q 
scheme is very simple and straight-forward because 
one may obtain  from Equation (7) and then 

 from Equation (8). Previously, the second 
author analyzed the stability of the FDTD-Q scheme us- 
ing the discrete energy method and obtained a condition 
for determining the time step, , so that the scheme is 
stable as follows [13]:  
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where c is a constant. It should be pointed out that Sori- 
ano et al. [27] and Visscher [4] also used the eigenvalue 
method to analyze the stability of the FDTD-Q scheme 
and obtained a very similar condition of  
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 However, as pointed out in [13], 
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 is chosen,  

the numerical solution is still divergent. Equation (9) 
indicates that the condition must be less than 1 but not 
close to 1.  

The motivation of this study is to apply the idea of the 
FDTD method to develop a generalized FDTD method 
with absorbing boundary condition for solving the linear 
Schrödinger equation, so that a more relaxed condition 
for stability may be obtained.  

2. Generalized FDTD Method 

To develop a generalized FDTD scheme, we assume that 
real , x t  and imag , x t  are sufficiently smooth 

functions which vanish for sufficiently large x  and the 
potential V is dependent only on x. We first rewrite 
Equations (5) and (6) as  
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where 
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We then evaluate those derivatives in Equation (12) by 
using Equations (10) and (11) repeatedly: 

  real 1 2

imag 1 2

,
,

2
n

n

x t V
A x t

t m






       


  ,    (13a) 

 

   

 

 

3 2
real 1 2 imag 1 2

3 2

real 1 2

3

imag 1 2

, ,

2

,

2 2

, ,
2

n n

n

n

x t x tV
A

mt t

x tV V
A A

m m t

V
A x t

m

 





 





       

          

    
 




 
 




 (13b) 

 

   

 

 

5 25
real 1 2 imag 1 2

3 2

3
real 1 2

5

imag 1 2

, ,

2

,

2 2

, ,
2

n n

n

n

x t x tV
A

mt t

x tV V
A A

m m t

V
A x t

m

 





 





      

            

    
 




 
 




 (13c) 

and so on. Substituting Equation (13) into Equation (12) 
gives 
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Similarly, we employ the Taylor series method to ex- 
pand  imag 1 2, nx t   and  imag 1 2, nx t   at nt t n t    
as follows:  
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Again, using Equations (10) and (11) repeatedly to 
evaluate those derivatives in Equation (15), we obtain 
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and so on. Substituting Equation (16) into Equation (15) 
gives 
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Thus, if  imag 1 2, nA k x t   and  real , nA k x t   are 
approximated using some accurate finite differences, one 
may obtain a generalized FDTD scheme for solving the 
time-dependent linear Schrödinger equation as follows:  
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It should be pointed out that in Equation (18a) 
imag 1 2, nx t    may be approximated by a higher-order 

accurate Lagrange polynomial or some other higher-or- 
der accurate approximations. Once  is obtained 
from Equation (18a), one may construct a similar higher- 
order accurate Lagrange polynomial or some other 
higher-order accurate approximations for 
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3. Stability 

In order to prevent the numerical solution from diverging, 
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and similar finite difference approximations for  
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      
 


   (24) 

It can be seen that 

 
 
 

 

2 1
2

0

2 1
2

0

2

1
lim sin

2 1 ! 2 2

1
sin

2 1 ! 2 2

sin sin ,
2 2

p pN

N p

p p

p

x V t
r

p m

x V t
r

p m

x V t
r

m









 





      

       

    
 














  (25) 

implying that, when  Equation (24) is auto- 
matically satisfied, and, hence, the scheme with , 
is unconditionally stable. However, we cannot choose 

 and, therefore, the generalized FDTD scheme 
should be imposed the condition in Equation (24). Noting 
that the condition in Equation (24) gives only 

,N 
N 

N  

real 1   
and does not indicate whether or not there is a double 
root with real 1   in Equation (23) (for this case, the 
numerical solution may still blow up), we choose the   

maximum value of 2sin
2

x
 and require  

 
 

2 1

0

1
1,

2 1 ! 2

p pN

p

V t
r c

p m





      
 


      (26) 

where c is a constant. Using a similar argument, we may 
obtain the same inequality as that in Equation (26) for 

imag .  Hence, we obtain the following theorem.  
Theorem 1. The generalized FDTD scheme  

   
 
   

1
real real
n nk k  

1 2 1
21

2
p pN V t

r 
       1 2

imag
0

,
2 1 ! 4 2

n
x

p

k
p m



   
(27a) 

   
 

   al

1 2 1 2
imag imag

2 1
2

re
0

1
2 .

2 1 ! 4 2

n n

p pN
n

x
p

k k

V t
r k

p m

 

 

 







      
 


(27b) 

is stable if Equation (26) is satisfied. 
It can be seen that when N = 0 the condition in Equa- 

tion (26) reduces to that in Equation (9). Also, the accu- 
racy of the scheme is  2 2 2 2 2 .Nt   O x x t      

Similarly, for the fourth-order central difference 
2

2

1
xD

x
 case, we let  real real

n n ik xk e     and   

 1/2
imag imag ,n n ik xk e     and substitute them into Equation 

his gives  (19b). T

 2
real2

2 2
real2

1

4
x

sin 3 4sin ,
2 23

n
x

n ik x

D k

x x
e

x




   


       

  (28a) 

2 1 2
imag2

2 2
imag2

1
( )

4
sin 3 sin .

2 23

n
x

n ik x

D k
x

x x
e

x




  






       

  (28b) 

Replacing A with 2
2

1
xD

x
 substituting Equat

into Equation (18), and deleting the common factor 
quadratic equation for 

ion (28)  

, we obtain a real
ik xe     as fol- 

s:  low

 2 2
real real2 1 0,                (29) 

where 

 
 0

2 1

2 2

1
2

2 1 !

sin 3 sin .
3 2 2 2

pN

p

p

p

x x V t
r

m



 










           






 

Hence, we use a similar argument as before and o  
the following theorem.  

Theorem 2. The generalized FDTD scheme 

btain
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   

   

1
real real
n nk k  

2 11
2( 1)

2
ppN

x

V t
rD

      1 2
imag

0

,
2 1 ! 4 2

n

p

k
p m

 

   
(30a) 

   

   .k

1 2 1 2
imag imag

2 1
2

real
0

( 1)
2

2 1 ! 4 2

n n

ppN
n

x
p

k k

V t
rD

p m

 



 







      
 


(30b) 

is stable if the following condition is satisfied 

 
 

2 1

0 2 1 ! 3 2p p m

1 4
1,

p pN V t
r c

      
  

where c is a constant. 
The accuracy of the scheme is  

It can be seen from the 
ger N, the evaluation for 

  
 (31) 

 2 2 2 2 2 .NO x x t t         
at for a lar

po
above both schemes th

wers of 2
x  or 2

xD  can be very
a smaller N for computa- 

tion.  

4. Absorbing Boundary Condition 

When t

 expansive. Therefore, 

he particle travels and hits the boundary, it will 
on. This will 
to create an 

it is our suggestion to choose 

reflect back to the domain under considerati
distort the wave packet solution. It is ideal 
absorbing boundary condition so that the particle will not 
reflect back. Here, we develop a second-order absorbing 
boundary condition (ABC) which is obtained from ana- 
lyzing the group velocity of the wavepacket at the 
boundaries [15]. To this end, we assume group velocities 
of the traveling particle to be  

1 2
1 2

1 2

2π 2π
,   

k k
v v

m m m m 
   
  

,       (32) 

where
2π

,   1,2,j
j

k j


   is the wavenumber and j  is 

the wavelength. By incorporating the dispersion  relation
2 2

jk
 


ved from Equation (1), one may 

see that the wavenumber 

2π
2 jv V

m
  deri

2π
j

j

k


  corresponds to xi  . 

obtained as  
Thus, the differential form of the wavenumber can be 

 , 0.j
xi x t   

 
        (33) 

mv 

Since a wave maintains various components with dif- 
ferent group velocities, we impose a highe
ary condition as follows:  

r-order bound- 

 1 2 , 0.x x

mv mv
i i x t        
   

     (34) 

It should be pointed out that for a wave traveling to- 
wards the left,  and are substituted b1v 2v  y 1v  and 

2v . It may n fr  Equations (33) and ( at if 

an av
 a

 be see

 v

om

s 

34) th

1v

d 
ne

 does not equal 2v  the two different wave compo- 
nents with group elocitie 1v  and 2v  will be absorbed, 
an on the other hand, if 1v  is equal to 2v  the compo- 

nt of the wave with group velocity 1v  (or 2v ) will be 
absorbed to the second order  

With Equations (5), (6) d (34), the w efunctions at 
the left and right boundaries can be determined s  

. 

 ,  ,

   
real 1 real

1 2 imag , 0,

x tx t c     x t

c V c x t  
        (35a) 

  
   

imag 1 imag

1 2 real

, ,

, 0,

x t x t c x

c V c x t

 



  

  

   t

where 

       (35b) 

   
1 2

1 2
1 2 1 2

2
,   .

mv v
c c

v v v v
 

 
  

, the upper signs in Equation (35) apply to the left 
boundary, whereas the lower signs apply
then use the second-order finite difference schemes to 
ap

        (36) 

Here
 to the right. We 

proximate real  and imag  at the left  1k   and 
right  1k N   boundaries as follows, respectively,  

     1 2 1 2
imag imag

imag 1 2

1

2

n nk k
x t

 


  
 (37a) , ,k n   

     1 2 1 2
imag imag

imag 1 2

1
, ,

n n

x k n

k k
x t

x

 


 



 
 


 (37b) 

     1 2 1 2
imag imag

imag 1 2, ,
n n

t k n

k k
x t

t

 


 




 


   (3

and 

7c) 

     real real
real

1
,

2

n n

k n

k k
x t

 


 
 ,  



   (38a) 

    real real
real

1
,

n n

x k n

k k
x t

x

 


 
 


,   (38b) 

     1
real real

real ,
n n

t k n

k k
x t

t

 



 


.  

Upon substituting Equations (37) and (38) into Equa- 
tion (35), we obtain discrete absorbing bou
tions as follows:  

   (38c) 

ndary condi- 

     

   
 

1
real 1 real1 2 1

imag

1 2

11 n n
n

n

k c kc
k

x t x t

k k

 


 






         
 1 2

imag imag

1

1 2

1
,

2

n

c V c



 
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 (39a) 
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and 

     

   
 

1 2 1 2
imag 1 imag1 1

real

real real
1

1 2

11

( ) 1
.

2

n n
n

n n

k cc
k

x t x t

k k

c V c

 


 

 




         
 

 






(

k

39b) 

5. Numerical Examples 

To test the stability of the generalized FDTD schem
Equation (27) and Equation (30) with discrete absorbing 
boundary conditions, Equation (39), we employed the 
present schemes and the original FDTD scheme to simu- 

space and then hitting an 

es in 

late a particle moving in free 
energy potential as tested in [3]. To this end, we initiated 
a particle at a wavelength of   in a Gaussian envelop 
of width   with the following two equations:  

   
2

00.5
00

real

2π
cos

k k
k k

k e 


   
 

 
  

 
    (40a) 

and 

   
2

00.5
00

imag

2π
sin

k k
k k

k e 


   
 

 
  

 

e is the center of the pulse. We chose a mesh of 
id points and the following values for pa- 

rame :  Jsec, 

,   (40b) 

wher
1600

0k  
 spatial gr
ters [3]  341.054 10  319.1 10m  

0.1 
 kg, 

 and 10 m, 0 400,k 0.1 1 0x   1010 
0 in the first 800 gri

  m. 
Furt ore, herm V was chosen to be d 

and 1

culated from

points  00 eV in the next 800 grid points.  
Two quantities of importance in quantum mechanics 

are the expected values of the kinetic energy and the po- 
tential energy. They are cal   real

n k  and 
 1 2

imag k  in the simulation as follows,  

 

n 

   

   

2
1 2

real imag
1

2 1 22
imagreal

2

N
n n

k

nn

k i k
m

kk

 









    
  


    (41b) 

2 2
,i

x x
     

and 

Kinetic Energy KE

 

      2 21 2
real imag

1

Potential Energy PE

,
N

n n

k

V k k k  



       
 (41b) 

where 
 2

real
2

n k

x




     

     

2
real

real real2 2

real real real

1
2 16 1

12

30 16 1 2 ,

n
n n

n n n

k
k k

x x

k k k


 
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
     

     
(42a) 

and 

   

     

2 1 2
imag 1 2 1 2( ) 1
n

n nk
 


 

 imag imag2 2

1 2 1 2 1 2
imag imag imag

2 16 1
12

30 16 1 2 .n n n

k k
x x

k k k    

     
     

  

(42b) 

Based on the above formula, the electron mov
space and then hits an energy potential with a total 
gy of about 150 eV. The energy is purely kinetic due 

to the fact that there is no potential energy available be- 
fore the energy barrier is reached. With an increase 
time, the electron will propagate in the positive spatial 
direction. The waveform begins to spread, but the total
kinetic energy remains constant. After the electron 
st

es in 
free 
ener

in 

 

rikes the potential barrier, part of the energy will be 
converted to potential energy. The waveform indicates 
that there is some probability that the electron is reflected 
and some probability that it penetrates the potential bar- 
rier. However, the total energy should remain constant.   

In our computations, we chose N = 2 in Equation (27) 
and Equation (30), and let 

22
,

m x
t  

 


             (43) 

where   is a parameter used in [3]. Using Equation 
(43), we rewrite the conditions in Equation (26) and 
Equation (31) for N = 2 as  

 
 

2 1
2 m1

2

pp






0

ax
1,

2 1 ! 2p

V t
c

p

 
  

  
   (44a)  

 
 

2 1
2

0

max1 8
1.

2 1 ! 3 2p

V t
c

p




  
pp 

     
  (44b) 

Figures 1 and 2 show the simulation of an electron 
moving in free space and then hitting a potential of 100 
eV, which was obtained by using the original 
scheme (N = 0) with μ = 0.46875. It can be seen that   

when μ = 0.46875 (in which 

FDTD-Q 

max
2

2 2

V t t
r

m

  


 
   

26max 0.9375 1.7 10 1)V     
is stable and indeed the numerical 

, the FDTD-Q scheme 

ondition milar results  

solution does not di- 
verge. Figure 1 shows that when the absorbing boundary 
condition is not imposed, the wavepacket is distorted at 

45.0 10n    On the other hand, Figure 2 shows that the 
wavepacket disappears at 45.0 10n    when an ab- 

 and 
 2 1 2

imag

2

n k

x

 


 are evaluated us- 

ing the fourth-order finite difference approximations:  sorbing boundary c is imposed. Si
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Figure 1. Simulation of an electron moving in free spac
and then hitting a potential. The original FDTD-Q schem
was employed with µ = 0.46875 and no absorbing boundary 
condition. Here, the horizontal coordinate is k and the ver- 
tical coordinate is ψreal.  
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Figure 2. Simulation of an electron moving in free spac
and then hitting a potential. The original FDTD-Q schem
was employed with µ = 0.46875 and absorbing boundary 
condition.  

are obtained when we used the generalized FDTD 
scheme (N = 2) with μ = 0.46875.  

It is noted that when μ = 0.5 the original FDTD-Q 
scheme produces a divergent solution, because  

e 
e 

max 2 max 1
2 2

t t
r V V

m
 

   


 
 which violates the  

stability condition. Thus, we employed the generalized 
FDTD scheme, Equation (27) with N = 2 and Equation 
(30) with N = 2 for this case. It is noted that when μ = 
0.5,  

 
 

2 1
2

0

max1
2

2 1 ! 2

pp

p

V t

p






  
  

 
260.8418 1.7 10 1,   
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implying the stability condition Equa
and 

tion (26) is satisfied, 
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implying the stability condition Equation (31) is satis- 
fied.  

Figures 3 and 4 show the simulation of an electron mov- 
ing in free space and then hitting a potential of 100 eV, 

 which was obtained using the generalized FDTD scheme,  
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Figure 3. Simulation of an electron moving in free space 
and then hitting a potential. The second-order FDTD sche- 
me was employed with µ = 0.5 and no absorbing boundar
condition. 
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Figure 4. Simulation of an electron moving in free space 
and then hitting a potential. The second-order FDTD sche- 
me was employed with µ = 0.5 and absorbing boundary 
condition.   
 
Equation (27) with N = 2 and μ = 0.5. It can be seen from 
Figure 3 that when the absorbing boundary condition is 
not imposed, the wavepacket is distorted at 
On the other hand, when an absorbing boun
is imposed, the wavepacket disappears at 
as shown in Figure 4.  

Figures 5 and 6 show the simulation of an electro

 from Figure 5 that when the absorbing 
oundary condition is not imposed, the wavepacket is 

in Figure 6. 

tion (μ <
TD-Q scheme. It should be 

po

undary con

laxed condition for stability when central difference  

45.0 10n    
dary condition 

45.0 10n    

n 
moving in free space and then hitting a potential of 100 
eV, which was obtained using the generalized FDTD 
scheme, Equation (30) with N = 2 and μ = 0.5. Again, it 
can be seen
b
distorted at 45.0 10n    On the other hand, when an 
absorbing boundary condition is imposed, the wave- 
packet disappears at 45.0 10n    as shown 

The above numerical example indicates that both gen- 
eralized FDTD schemes break through the limita  
0.5) of the original FD

inted out that one may obtain a larger value of μ if N is 
chosen to be larger in the generalized FDTD scheme.  

6. Conclusion 

We have developed a generalized FDTD method with 
absorbing bo dition for solving the 1D time- 
dependent Schrödinger equation and obtain a more re- 
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Figure 5. Simulation of an electron moving in free space 
and then hitting a potential. The fourth-order FDTD sche- 
me was employed with µ = 0.5 and no absorbing boundary 
condition.  
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Figure 6. Simulation of an electron moving in free space 
and then hitting a potential. The fourth-order FDTD sche- 
me was employed with µ = 0.5 and absorbing boundary 
condition. 
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approximations are employed for spatial derivatives
Numerical results coincide with those obtained based on
the theoretical analysis.   
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