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ABSTRACT 

The theoretical foundation of a new N-body simulation method for the dynamics of large numbers (N > 106) of gravi-
tating bodies is described. The new approach is founded on the probability description of the physical parameters and a 
similarity method which permits a manifold reduction of the calculation time for the evolution of “large” systems. This 
is done by averaging the results of calculations over an ensemble of many “small” systems with total particle number in 
the ensemble equal to the number of stars in the large system. The method is valid for the approximate calculation of 
the evolution of large systems, including dissipative systems like AGN containing a super-massive black hole, accretion 
disc, and the surrounding stellar cluster. 
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1. Introduction 

At present the methods of modeling systems of many 
gravitating bodies have been highly refined, but appli- 
cation of these methods to the calculation of very large 
systems containing N ~ 106 - 1011 stars (large globular 
clusters, galaxies and their active nuclei) faces major 
limitations due to limited computer resources. Further- 
more, direct calculation of interactions of every pair of 
stars demands time proportional to the square of the 
number of stars (gravitating bodies) N in the system, the 
whole calculation time (with the calculation time ∆t for 
every pair) is proportional to Т ~ ∆t(N)2. Usually, one 
needs to carry the calculations out to a time of the order 
of the relaxation time trx of the system, which is propor-
tional to the number of the gravitating bodies N. Thus the 
real “cost” of the calculations behaves as [1] 

  3, rxT N t tN                  (1) 

Such calculations are difficult or impossible for the 
systems with N > 106 due to limited resources of even the 
most advanced modern supercomputers, with the fast 
processors with about 1 Petaflops (1015 sec−1) [1]. Of 
course, now many approximate methods are developed, 
such as tree-codes [2], which use the averaged descrip- 
tions of the gravity for the distant particle groups. But the 
classical task of the “direct” calculations of every pair of 
the gravitating bodies keeps its central role as the most 
precise method. 

In the present paper we discuss a new approximate 
method for the acceleration of N-body simulations of 
large stellar systems. We refer to it as the Aldar-Kose 

method, using the name of a cheery hero of the Kazakh 
folklore. We discuss its likely areas of application and 
limitations of the method. In the accompanying paper [3] 
we show with a sample of simulations, that the method 
promises essential acceleration of calculations of the 
evolution models of stellar systems and active galactic 
nuclei (AGN). 

2. Statistical and Dynamical Equivalence of 
the Gravitating Systems’ Models with 
Different Initial Particles’ Distributions 

Any numerical calculation of N-body dynamics has to be 
started with definition of the initial coordinates and ve-
locities of all bodies, Xni(t0), Vni(t0), where i = 1, 2, 3 
corresponds to the Cartesian coordinates and velocity 
projections of every n-th of the total N number of the 
bodies at the starting time t0 = 0. This initial distribution 
is defined usually with the special procedure of random 
numbers’ generation, which represents some initial quasi- 
equilibrium (with the given full energy of the system) 
distribution function of the bodies in the common gravity 
field. 

As soon as the initial distributions of the coordinates 
and velocities of bodies are determined with a random 
numbers’ generation, the condition of the “statistical and 
dynamical equivalence” of the solutions is implicitly 
used in any numerical simulations. Let us analyze the 
concept more distinctly. To avoid non-essential details 
we simplify the model task supposing equality of the 
masses of the stars and ignoring direct (contact) stellar 
collisions, so reducing the task to the “gravitating points” 
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dynamics. Also, for simplicity, further we will ignore the 
problem of “primordial binaries”, supposing that their 
number is determined with the random numbers in the 
initial conditions. 

As the stellar systems are open, the achievement of the 
exact equilibrium distribution function of the stars’ ve-
locities (in Boltzmann’s sense) is impossible, because the 
tendency to statistical equilibrium leads to dissipation of 
stars with large energies, which determines slow evolu-
tion of the system due to the “evaporation” of the stars 
and the final collapse of the core of the system. The rate 
of the evolution is determined with the relaxation time of 
the system [4] 

 
0.14

ln 0.4rx cr

N
t

N
 t



             (2) 

where N is the total number of stars in the system, 
ln(0.4N) is the so-called “Coulomb logarithm” for stellar 
systems, tcr—the crossing time, determined usually as the 
time needed for a star to cross the region of the system 
containing half of the system’s mass. Note that the nume- 
rical coefficients in (2) are known with the precision ~ 
30% - 50% only; here we give the most commonly used 
values. 

Let us turn back to the question of equivalence of the 
evolution processes in the systems with different (in the 
sense of different realization of random numbers choos- 
ing) initial conditions. Of course, the concrete orbits of 
particles in the systems with different initial conditions 
will be completely different, but the dynamical behavior 
and the secular evolution of the distribution functions of 
the physical parameters of the orbits in both systems will 
be equivalent in statistical and dynamical sense, if we are 
interested of distribution functions, but not of the con- 
crete orbits. Note that the quality of modern computers is 
such that the orbits of the particles, calculated in two 
simulations with the same initial conditions will be ab-
solutely identical. In contrast, in real stellar systems there 
are always some random factors, which lead to a mixing 
(random small deviations) of the orbits. As a result, the 
distribution functions only, not the concrete stellar orbits 
may be compared between a model and real systems. 
Consequently, one may speak not about identity, but only 
about dynamical and statistical equivalence of a model 
and real stellar systems. The situation is similar, in a 
sense, (not literally!) to the quantum-mechanics des- 
cription: Only the probability description is valid, so the 
description with a single numerical calculation is “too 
much deterministic” and, in that sense, non-adequate 
(fuller analyses of some analogies in quantum mechanics 
were discussed earlier in [5]). 

In fact, the characteristic times of achievement of the 
“chaotic” (statistical) equilibrium in stellar systems are 
much shorter than the relaxation time (2), due to the 

quick dynamical mixture of the systems [6]. As a result, 
the solutions with different initial conditions in the same 
system (the “microscopically” different solutions) are 
supposed to be dynamically and statistically equivalent. 
As a rule, the problem of different initial condition (in 
the sense of different random realization) is usually even 
not discussed, and the solution for the system evolution 
is realized with a single initial condition of stars’ (par- 
ticles’) coordinates and velocities distribution. 

With particle numbers more than several thousands, 
the probability of a deviation from “almost equilibrium” 
initial distribution is diminishingly small, but the pro- 
blem becomes actual for the systems with comparatively 
small number of particles, and for the systems feebly 
stable relative to the small perturbations. Because of that, 
the question of equivalence of the numerical solutions 
became important for comparison of the systems with 
different numbers of particles, N1 and N2 << N1. 

3. The Dynamical Equivalence of the 
Systems with Different Particle Numbers 

Let us consider the question of the dynamical equiva- 
lence of the evolution of two systems with different par- 
ticle numbers, N1 and N2 << N1. To compare the relaxa-
tion processes in the systems it is convenient to use di-
mensionless unit system (the N-body units, NBU [4]), 
usually employed in model tasks. In these units, the total 
mass of the system is M = 1, its characteristic size R = 1, 
and the gravitation constant G = 1. In this system, the 
characteristic particle velocity is V = (GM/R)1/2 = 1, the 
characteristic particle crossing time Tcr = R/V = 1, and 
the characteristic time of evolution of the system (the 
relaxation time) is  


0.14

ln 0.4rx

N
T

N
               (3) 

We define the concept of the dynamical equivalence of 
the solutions for the systems with different particle num-
bers. It is naturally to suppose that the behavior of two 
systems with different (but large enough) particle num-
bers N1 and N2  N1 will be dynamically equivalent, if 
the physical parameters of the systems are compared at 
equivalent moments of evolution, defined by equal evo-
lution time of systems Tev = t/Trx. The evolution times are 
measured in N-body relaxation time units of both sys-
tems (one may call these units the NBEU, the “N-body 
evolution units” system), 



2 2 1 1rx rx evt T t T T           (4) 

In the NBU system, the time (and the relaxation times) 
for both systems are defined through the crossing times, 
which are equal to unity (Tcr1 = Tcr2 = 1), and in the 
NBEU the evolution time is defined through the relaxa- 
tion time. The relation of the “equivalent dynamical evo- 
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lution times” in the NBU system is equal to the relation 
of their relaxation times: 

 
 
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ln 0.4
rx

rx

NTt N

t T N N
          (5) 

In the NBU system, the sizes and dynamical parameters 
of stellar systems are equal, but the particles in the small 
(N2) system have masses m2 = m1N1/N2, and the volume 
densities of the particles relate as N1/N2. As a result, the 
crossing times are equal, and the NBU dynamical evo- 
lution times in the systems are related as (5). In the NBEU, 
the time units are relaxation times, so the evolution time of 
systems in equal (identical) moments of evolution is 
universal, Tev = Tev1 = Tev2. 

The stellar dynamics in star systems is defined with 
superposition of two processes: The motion along the 
“smooth” orbits in the averaged gravitation field of the 
system, and the “quasi-Brownian” motion as the result of 
random approaches of stars and their density fluctuations. 
From (4) and (5) it follows that independently of the par-
ticle numbers in the systems, their dynamical properties 
and the time behavior of the physical parameters will be 
dynamically equivalent in identical moments of the evo-
lutions Tev, defined through the relaxation times of both 
similar systems. 

4. The Scaling Coefficient of the Dynamical 
Equation for the Dissipative Systems with 
Different Particle Numbers 

Let us consider the behavior of the stellar systems in the 
presence of dissipative processes. For definiteness, let it 
be the active galactic nuclei (AGN), consisting of the 
compact stellar cluster (CSC) with mass M, the central 
super-massive black hole (BH) with mass МBH = 0.1М, 
and the accretion disc (AD) with the mass Мd = 0.01М, 
surrounding the BH. The model is, as they say, the “toy” 
one—in the sense that the disc parameters (the mass and 
the rotating moment) are considered to be constants, in 
spite of the star-disk interactions and the gas and star 
accretion to the BH; so the total mass and the total rotat- 
ing moment of the system are not conserved—but it is 
not important for the further comparative analyses of the 
N-body tasks (one can imagine that the accretion disk is 
fed by gas from the outer “obscuring torus” of the AGN). 
The dynamics of the system, besides the star-star pair 
interaction, will be defined with gravitation of the black 
hole and the dissipative star-disk interactions [7]. In the 
simplest case, the last one is reduced to a friction force, 
which is directed opposite to the velocity of the star re- 
lative to the gas in the disk Vsd and is proportional to the 
square of the velocity, the square of the stellar radius Rs 
and the gas density ρ(r). So, the dissipative force is 

 2 Vs sd sdQR r F V  

where Vsd = Vs – Vd is the (vector) difference of the star 
and gas velocities, Vsd is the module of the velocity, and 
Q is a coefficient of the order of 10.  

In a typical AGN, the mass of the CSC is М ~ 108 MS, 
(of the solar masses), and the number of stars in the sys-
tem are N1 ~ 108. Let us compare the evolution of this 
“large” (real) system (N1 stars with masses MS = M/N1) to 
the evolution of a similar “small” (the representing) sy- 
stem with the number of particles N2 = N1/m and with the 
same subsystem’s mass relations as in the large one. In 
NBU, the masses of the particles M2 = mM1, and the 
sizes and masses of subsystems are the same as in the 
large AGN system, with the total masses normalized to 1. 
The dissipative acceleration per unit mass in the NBU 
has to be the same in both systems to keep the net velo- 
city change of a particle per disk crossing independent of 
m = N1/N2 (one can imagine that groups of m = N1/N2 

stars are decelerated coherently in the small system). So, 
the dissipative accelerations of the particles are the same 
in the both systems,  

 2 Vs sd sd sa QR r M  V          (6) 

Now, to compare evolution of the small and large sys-
tems, we have to take into account also the difference 
between the relaxation times in both systems, to keep the 
dissipative and relaxation time-scales comparable. As in 
the NBU all sizes and masses of the subsystems (i.e. 
CSC, BH and AD), as well as the typical velocities of 
particles and crossing times are the same in both large 
and small systems, it is natural to suppose, that behavior 
(the dynamical evolution) of both systems will be dy- 
namically equivalent, if we compare them at equal mo- 
ments of evolution (4) of both systems. So, we have to 
take into account, that the relaxation time in the small 
system is diminished as compared to the large system 
according to (5). Due to this, to keep the balance between 
the effects of the particle-particle and the particle-disk 
interactions, we must multiply the dissipative accele- 
ration (6) in the small system by the “scaling coefficient” 
of similarity, SС = SС(N2,N1), which is equal to the rela-
tion of numbers of the disk crossing events by stars per 
their relaxation times in both systems. So, the scaling 
coefficient to equalize the dissipative and the relaxation 
time scales in the small system is 

   
 
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2 1
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ln 0.4
rx

rx

NT N
SC N N

T N N
         (7)  

The introduction of the SC to the dissipative force to 
keep the similarity of evolution of both systems is rea- 
sonable at least for the cases when the energy changes of 
the particles per crossing time (due to the relaxation pro- 
cesses and due to dissipative force per crossing time) are 
relatively small both in the “large” and the “small” sy- 
stems. This circumstance can limit the relation m = N1/N2 
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of the particle numbers in the real and the “representing” 
model systems. 

Now let us take into account that the particle numbers 
N2 and N1 in both systems can change in time both be-
cause of the accretion of the stars to the central BH (the 
intensity of the process is essentially increased in AGN 
as the result of star-disk interactions [7]) and due to the 
“evaporation” of the stars from the systems. These ef-
fects can be taken into account with introduction of the 
variable relaxation and evolution times. Denoting i = 1, 2 
for the large and the small systems, and using t for the 
dynamical time, we can write:  

   
  ,

0.14

ln 0.4
i

rx i
i

N t
T t

N t
             (8) 

 
  
 0
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0.14
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ev
i

N t
T t t

N t




          (9) 

where      , out,i i bh i iN t N N t N t     ;  ,bh iN t  and 
 out,i  are the numbers of stars captured to the BH 

and evaporated from the systems. Remind that Tev(t) are 
equal in both systems by definition. 

N t

The time-dependent N1(t) and N2(t) have to be intro- 
duced to the SC as well:  
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Here the number N1(t) is present, which is supposed to be 
unknown in the A-K model simulation and has to be de-
fined through N2(t). For that, let us transform (10) from 
the NBU time units to the evolution time units NBEU, 
defined with (9). Then we have 
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As, by definition, 
       1 1 2 20ev ev ev evN T N T N T N T   0 , finally we 

have  
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where N1/N2 is the relation of initial particle numbers in 
the systems. So, in the approximation, the SC depends on 
t very slowly (logarithmically). 

Using (12), one can calculate the evolution of the 
small system (which “represents” the evolution of the 
large system), using only the initial relation of the parti-

cle numbers in both systems, and the universal Tev, equal 
in both systems. 

Here we can see the meaning of approximating re- 
presentation of the large system by the small one: The 
small system “represents” the large one, but not literally. 
The main difference is that we change many disk-cross-
ing events of small particle in the large system, to one 
crossing event (with the SC) of a large particle in the 
small system. In the first case the crossing point can 
move along the disk radius (due to scattering of the orbits 
and small distortion of the spherical symmetry of the BH 
potential by the disk gravity), slowly changing the con- 
ditions of the crossings. In the “small” system the pro- 
cess is changed with one event at the single crossing 
point. This difference is the main reason limiting the re-
lation m = N1/N2 (see discussion below in the Part 6 of 
the paper). 

So, the dynamical equivalence of the small and the 
large dissipative systems is approximate only and has to 
be carefully controlled. The corresponding scaling coeffi- 
cients can be obtained for other processes as well, like 
the direct (contact) stellar collisions, stellar evolution and 
other processes. 

5. The Statistical Equivalence of the 
Solutions for the Systems with Different 
Numbers of Particles: The Aldar-Kose 
Method 

It is obvious that the above-described dynamical equi- 
valence of the small and the large systems does not mean 
the statistical equivalence of the model solutions for them, 
because the statistical precisions of the solutions are re-
lated as (N2/N1)

1/2. The natural way to increase the statis-
tical precision of solutions for the small systems is the 
manifold repeated calculations among the ensemble of 
small systems. Providing the simulations of small systems 
m = (N1/N2) times with different (randomly defined) ini-
tial conditions, and averaging the results over the full 
ensemble of the solutions at identical Tev moments, one 
will obtain the demanded increasing of the precision to the 
statistical precision, achieved with a single model solution 
of one large system.  

So, we conclude that the mean values of physical pa- 
rameters, obtained with averaging over m = N1/N2 model 
solutions for the ensemble of dynamically equivalent 
“small” systems (every with N2 particles), are equivalent 
to those obtained with one solution for the “large” system 
(N1 particles), both in the dynamical and statistical senses. 

This conclusion has principal meaning for substanti- 
ation of the proposed new method (the A-K method) for 
the model simulations of evolution of the stellar systems 
and AGN, containing compact stellar clusters. Remind 
that the “classical” direct method of the N-body simula- 
tions of the systems evolution demands spending of the 
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calculation time proportional to the third power of the 
particle number in the system (1). With the A-K-method 
of averaging over ensemble of m = N1/N2 subsystems, the 
total demanded time is 

     3 2
1 1 2 2~AKT N t N N N tN N  1 2 ,      (13) 

where N1 and N2 are the particle numbers in the “large” 
and the “small” systems. 

The relation of the calculation times demanded in the 
A-K method and the “direct” (Usual Calculations) method 
is 

      2

1 1 2AK UC AK UCT N T N t t N N   1    (14) 

where (∆tАK/∆tUC) is the relation of calculation times of 
the both methods, demanded for equal time intervals in 
the NBU. 

6. Possible Limitations of the A-K Method 

Let us discuss possible limitations of the method. Esti- 
mations of the calculation times demanded for equal dy-
namical times (∆tАK/∆tUC) in both AK and UC methods 
depend on many factors, including the precision de- 
manded in the task. The point is that in the “small” system, 
imitating (representing) the behavior of the “large” system, 
the gravitation accelerations of close particles are larger 
than those in the large system. Besides, as mentioned in 
the Part 5, the limitations for the SC(N2,N1) do exist. These 
circumstances can demand diminishing of the integration 
steps and increasing of the calculation time in the A-K 
method. But these problems appear in the limited areas of 
particles close encounters and the disk crossing in the 
large gas density areas. The encounter problem can be 
avoided with the “softening parameter” є in the potential 
U ~ 1/(r+є), and one can control the gas density in the 
disk as well. And, last but not least, because of poor 
knowledge of the accretion disks’ structure, one usually 
needs not too much precision of the star-disk interaction 
calculations close to the BH. All these circumstances in- 
crease possible using of the AK-method for the appro- 
ximating calculation for the sake of finding the quality 
differences of the “evolution tracks” of AGN with dif- 
ferent initial properties. 

The more definite conclusion about influences of all 
such factors can be obtained only with corresponding nu- 
merical experiments. The model calculations performed 
by us [3] had partly dispelled our anxieties regarding the 
possible slowing down of the calculations of the “small” 
systems evolution. The possibilities of our computer are 
limited, so the largest systems we can calculate (for sev-
eral days) up to the evolution time Tev ~ 2 with the direct 
(UC) method are those with N1 ≤ 32 × 103 particles. 

Here, just for illustration, we show a result of calcula-
tion of the stellar orbits’ inclinations to the plane of the 

accretion disk (cos(i)) for the inner region of the AGN 
with size equal to the outer disk radius (Rad = 0.22), at the 
moment of evolution time Tev = 1.7 (Figure 1). The result 
for the direct simulation with N = 16 × 103 (16 K particles) 
is shown with red line, and the A-K calculations with 
numbers of the representing ensemble members m = 4 and 
m = 8 are shown with green and blue colors (accordingly, 
for N2 = 4 K and 2 K). The “truncated” A-K variant (av-
eraged over 4 instead of 8 solutions with m = 8) is shown 
with agenda broken line. One can see that the distribu-
tions are indistinguishable, with larger noise in the last 
case. 

It appears that the direct calculations of “large” sys-
tems with N1 = 16 × 103 (and N1 = 32 × 103, see [3]) 
particles, and with the particle numbers in the “small” 
subsystem N2 ≥ (2 - 4) × 103, both (A-K and UC) 
methods lead to practically equal results, but with 
smaller representing systems N2 (N2 < 2 × 103) the in-
accuracy and duration of the A-K calculations are 
quickly increased. More detailed numerical investiga-
tions of the A-K applications are presented and dis-
cussed in the paper [3]. 

7. Conclusions 

The main conclusions are: 
1) The proposed new A-K similarity method for mo- 

deling large stellar systems and AGN evolution promises 
an essential improvement in the calculation time as com- 
pared to the direct N-body simulation. The gain increases 
with the number m of small systems in the ensemble. 
Though the maximal m is limited by the condition on the 
dynamical equivalence precision, the A-K method can 
essentially increase the possibilities of model calcula-
tions with “medium” power (and price) computers; 

2) The proposed method is approximate, but it is 
enough for the quality investigations of evolution of the 
complicated systems like AGN, where the main interest 
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Figure 1. The distribution of the cos(i) of the stellar orbits’ 
declinations at the evolution time Tev = 1.7. 
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is the qualitative differences between evolution tracks of 
the systems with different initial parameters; 

3) Since the statistical precision of solutions for dif- 
ferent physical parameters behaves as σ ~ 1/(N1)

1/2, the 
achievable formal precision of the A-K method is usually 
far greater than those obtained from observations. This 
permits further optimization of the method using “trun- 
cated” A-K method: The number of the small systems for 
averaging the physical parameters in the ensemble can be 
chosen to be much smaller than m = N1/N2, which further 
reduces the demands on calculation time compared to the 
“complete” (full) A-K method. 

4) Numerical experiments with more powerful compu- 
ters are necessary to investigate the exact possibilities 
and limits of applications of the method for the solutions 
of specific problems of stellar dynamics and AGN evo- 
lution. 

In conclusion, it should be noted that our formulae (8 - 
12) are approximate, as we use the concept of the “total” 
relaxation time, which possibly is only approximate when 
a stellar system changes its spatial structure and symmetry. 
This issue will be investigated in future works. 
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