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ABSTRACT 

A stationary axially symmetric exterior electrovacuum solution of the Einstein-Maxwell field equations was obtained. 
An interior solution for rotating charged dust with vanishing Lorentz force was also obtained. The two spacetimes are 
separated by a boundary which is a surface layer with surface stress-energy tensor and surface electric 4-current. The 
layer is the spherical surface bounding the charged matter. It was further shown, that all the exterior physical quantities 
vanished at the asymptotic spatial infinity where spacetime was shown to be flat. There are two different sets of junc- 
tion conditions: the electromagnetic junction conditions, which were expressed in the traditional 3-dimensional form of 
classical electromagnetic theory; and the considerably more complicated gravitational junction conditions. It was shown 
that both—the electromagnetic and gravitational junction conditions—were satisfied. The mass, charge and angular 
momentum were determined from the metric. Exact analytical formulae for the dipole moment and gyromagnetic ratio 
were also derived. The conditions, under which the latter formulae gave Blackett’s empirical result for rotating stars, 
were investigated. 
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1. Introduction 

There are difficulties in finding exact solutions of the 
Einstein or of the Einstein-Maxwell field equations for a 
volume distribution of rotating bounded matter [1]. Such 
solutions should consist of an interior filled with matter 
and an asymptotically flat vacuum or electrovacuum ex- 
terior, these being separated by a surface on which ap- 
propriate boundary conditions should be satisfied. The 
main aim of this work is to obtain an exterior and mat- 
ching interior solution of the Einstein-Maxwell field 
equations with finite bounded rotating charged matter as 
a source of the spacetime. Due to the rotation, the boun- 
dary will actually be an oblate spheroid, but it is assumed 
that it is a spherical surface with equation r = a. The 
main objective and emphasis after all, is to see how far 
the attempt at finding a solution can be taken—a solu- 
tion with finite bounded rotating matter as a source of the 
spacetime. The additional complication of spheroidal co- 
or-dinates is avoided, in a problem which is already enor- 
mously complicated. 

Most of the equations and expressions for the various 
physical quantities are difficult to derive and they require 
involved and lengthy analysis. It is not therefore possible 
or desirable to include these calculations in the paper, but 
directions in which to proceed are indicated. 

2. The Einstein-Maxwell Field Equations 

Consider electrically charged pressure-free matter (char- 
ged dust) bounded by the hypersurface r = a and rotating 
with constant angular velocity about the polar axis 

0   under zero Lorentz force. It is assumed that the 
current is carried by the dust. The transformed expression 
(2.1) in [2] for the Weyl-Lewis-Papapetrou metric for a 
stationary axially symmetric spacetime V is 

 
 

2 2 2 2

1 2 2 2 2 2

d d d

sin d 2 d d d

s e r r

F r K K t F t

 

  

  

   
  (1) 

where we have taken the signature of the spacetime met- 
ric tensor g  to be 2.  It is implicit in the form (1) 
of the metric that we have assumed, without loss of gene- 
rality, that 2 2 2sinLF K r    and so the component 

33 g  is 33g  of g .L 
c

 We shall use units c = G = 1 
where  is the vacuum speed of light and G the Newto- 
nian gravitational constant. Unless otherwise specified, 
we shall adopt the convention in which Roman indices 
take the values 1, 2, 3 for the space coordinates  , ,r  

1, 2,3,4
 , , ,r t

 
which are spherical polar coordinates co-moving with the 
dust, and Greek indices take the values    for 
the spacetime coordinates   . Semicolons and 
commas indicate covariant and partial derivatives respec- 
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tively, and the suffixes r and θ denote partial differentia- 
tion with respect to r and θ. All the functions are as- 
sumed to depend on r and θ only, or they are constant. 

The results to be used in this work may be found in a 
number of different publications [2,3] but we shall use [2] 
where all the necessary equations have been collected 
together and written in terms of the cylindrical polar co- 
ordinates and time  , , ,z t 

 , , ,r t

. We shall transform those 
equations in [2] that are required here, to the spherical 
polar coordinates and time    with  

 1 22 2 , tan ,   ,r z z        cosz r  ,  

sinr  
u

  and .t t  
The contravariant and covariant forms   and u  

of the 4-velocity are 

 3 4 .w     1 2 1 2
4       u F u F 


     (2) 

The electric 4-current J  , the electromagnetic 4-po- 
tential A  and the Faraday tensor F

3 4
3 4

, ,

 +

 .

J u

A A A

F A A

 

  

, are 

    



 
 



           (3) 

where   is the electric charge density. The Einstein- 
Maxwell field equations for charged dust are 

8πG T 
                   (4) 

 
,

,

0     

4π .

F, ,

1

F F

g F J

 

g

   

 





 

G

 



     (5) 

Here, 
  is the Einstein tensor 

:
1

2
G R R  

   

R

             (6) 

where 
  is the Ricci tensor of the spacetime defined 

by its fully covariant form as 

, ,:R      
                   (7) 

with 
  the Christoffel symbols of the second kind 

based on the metric of V in Equation (1), 


R g R
  is 

the spacetime scalar curvature invariant and g is the de- 
terminant of 



.g T The total stress-energy tensor 
  is  

T M E  
                   (8) 

where 

M u u 
                (9) 

1 1

4π 4
E F 
  F F F 

 
  
 

    (10) 

are, respectively, the matter and electromagnetic stress- 
energy tensors and 

Instead of expressing the electromagnetic field equa- 
tions in 4-dimensional form as in Equations (5), we shall 
use the Maxwell form (Maxwell’s equations), because 
we can make direct comparisons with the results from 
classical electromagnetic theory. The electric and mag- 
netic intensities and corresponding inductions in 3-vector 
form, are [4,5] 

4
4       , 

1 1
=       

2 2

a a
a a

kp a akp
a akp kp

E F D F F

  is the mass density. 

H F e F B e F

    

  

E D

H B
 (11) 

 akpewhere akp akpe    , akp    are the com- 
pletely antisymmetric permutation tensors,  

g F   ,   being the determinant of the spa- 
tial metric tensor ab  which is given by  

ab ab a bg    with 4a ag F  akp, and    is the 
Levi-Civita symbol. It is easy to show that 

3 2 2= sinF r 

2 2 3 *2 *2
4 3

2 2
4 4 3 3

4π sin

r r r r

r e J K A F A

. 
The transformed equations (2.14) and (2.13) of [2] 

may be written as  

A r K A F A r F A



K    


 

   

   

2 2 4 *2 *2
4 3

2 2
4 4 3 3

4π sin

r r r r

r e J L A K A

L A r L A K A r K A



   (12) 

   


 

    

   

2

   (13) 

where the operators   and  are defined by *2
2 2

2
2 2 2 2

1 2 cot

r rr r r




  
    

  
    14) 

2 2
*2

2 2 2 2

1 cot
.

r r r




 
   

 
       (15) 

Equations (12) and (13) are the detailed form of the 
source-containing Maxwell equations given in the second 
of (5). 

The non-zero components of the Ricci tensor obtained 
from the transformed Equations (2.16)-(2.21) of [2] are: 

22
3 4 2
3 4 2 2

22
*2 2

2 2 2

2 2 2

1 1

2

sin

2

sin

r

r

r r

FF
R R e F

F F r

wF
w w w

r r

F wFw
F w

r r

 



 





        
  

 
    

 
    

 

  (16) 

1
1 2 2

2 2 2

2 2 2

cot1

2

2
      + 

sin

rr

r r r

R e
r r

F F F w

rFF r

    




    



  



        (17) 
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2
2

2

2 2 2

21

2

2 cot
     + 

r
rrR e

r

F F

r F r F r



 

2 2

2 2

4 2

cot

sin

r r

F w

 



  














    


 
      (18) 

3 *2
4 2 2

2
2 sin

e
R F w







   
2r r

F w
F F w

r r
     

  
 (19) 

 2 2 2 3
4

2

r K R

F

 3
4 3
3

sin2KR
R

F
               (20) 

1

2

2 2sin
r

F FR e2 2
1 2 2 22

sin1
cos

sin

sin1
+ cos

sin

r

r

r

R
r r F

F
F

F r

F w w

r



 



r






 
 

 

 




 
  


  


 

 
 
 

    (21) 

2
2

2

2
2

2

1r
r

r r

F
F

r

F w
F w

r r

  

 

      
 

 

2 2

2

2 2

2

cot1

2 sin

rrR e
rr F

F

rF r






    


     
 

 
 

 r a

   (22) 

The entire Riemannian spacetime V, will be separated 
into the following 4-dimensional manifolds: the hyper- 
surface  with equation   separates V into the 
interior  and exterior a  V a r0V r    



V 

i

 
spacetimes. We shall use the + and – signs to denote 
quantities in V  and V  whenever it is necessary to 
do so. Quantities without the + or – indicators, may be 
associated either with  or with V . 





3. The Exterior Solution 

In accordance with the formalism in [2], we first form the 
complex function 

                   (23) 

where   and   are harmonic functions. With a star 
denoting complex conjugation, the metric functions F   
and 

   1 2expF

 are then given by 

* 2  
    

1

 .   (24) 

If we denote the real and imaginary parts of   by 
  and  , then 

2 2 2
       .

 
2


   

  
 

       (25) 

We now choose the functions   and   as follows: 

         1

0 π

m
r C r

r




  

 

 

   

        a r  

bC
        (26) 

 

2 2
2 1 2 1

1

2 2
2 1 2 1

1

cos

    0 π 2

0
,

         = π 2

( ) cos

   π 2< π

n n
n n

n

n n
n n

n

b C r A a r P

a r

r
a r

b C r A a r P

a r

 



 


 






 





 


    
 

     

    
     

 
    





,  b m

(27) 

where  and   are constants whose significance 
will emerge later. From now on we shall omit writing the 
argument cos  of the Legendre polynomials and we 
shall write, for example, 2 1n  instead of  cosP2 1nP  . 
We note the significant fact that at 2 1 0;nP , = π 2   
this enables us to set  , 0r    at a r = π 2     
as in (27). 

The function :w K F
 

3 4
3 4A A A

 and the electromagnetic 4- 
potential       

 2

2 sin       

2 sin

r

r r

w

w r





 

 in the exterior are obtained 
from 

  







 

  1

3 sinr rA w F 

       (28) 

  
    

  1 2
3 sinrA w F r 

    (29) 

  
    

4A b

  (30) 

                    (31)   

where an arbitrary constant in 4A b
.

 was set equal to  
in order to satisfy the continuity condition of 4A  Note 
that the full expression for r  in the first of (28) is w

 2sinrw        0, but by (26),  

  1
,F

  exp , ,w

. 
From Equations (24) and (28)-(31), we obtain the fol- 

  lowing expressions for   3
   A

and 4
 : A

     

 

1 2 2

2
2 2 2

2 1 2 1
1

exp

n n
n n

n

F b C r

b C r A a r P





 




 


 

   
 


 (32) 

   

2 22 1

1

1 2 2
2 2 2

2
4 1

2

nn

n

n n
n n

AK
w b a

nF

nC r r mr P P

 
 




 


 


  


    (33) 

  
 

3

2 2 1 22 1

1

2 2 2

( )

2
4 1

n nn

n

n n

A bC r F w

A
b nC a a r m

n

P P

  








 

 


 

      (34) 

 4 .bF C r b A                      (35)  
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It is a little difficult to solve the two equations in (28) 
to find  in (33). It is even more difficult to solve the 
two Equations (29)-(30) to find 3

w

A  in (34) and com-
plete details of the calculation are not given. Whenever 
there are two signs in a term, the upper sign gives the 
expression in 0 π 2   and the lower sign the ex-
pression in π 2 π,   as in Equation (32). 

The function B defined by 

 

 

  

   0         

C a

B

C a




 



  0 < π 2

        = π 2

    π 2 < π

 


 

 

 

      (36) 

has Legendre polynomial expansion of the form 

 2 1

   

dn n

2 1 2 1
1

1

2 1
1

 

4 1

2

n n
n

B A P

n
A BP x x 

0  1, 2,A n  
 ,  0   B

A





 






   
 




    (37) 

where 2 2  It therefore follows from 
(27), that . The function in (36) satisfies 
the conditions for such an expansion [6] and we have for 
the odd coefficients  

n

a

2 1n

    
 

 
2 !

,
n

1

2 1 22 1

1 4 1 2

2 !

=1, 2,

n

n n

n n
A C a



 , 0,a  
r a

n

n



 

 




 (38) 

With  by Equations (24) and (26), the 
metric function F+ at  becomes  

   2 2 21 ., 1F a   


b C a
 , 1F r  

r a
 

  It will be shown in Sec- 
tion 4, that  everywhere in the interior. In 
order to satisfy the junction condition at  therefore, 
we must have   2 2 1b C a , 1F a 

,
. It is easily 

seen that, as  r    2 2, 1 1bF r   

 

, which is 
a constant. If we take this to be equal to 1, we obtain 

 and collecting these relationships toge- 
ther we have 

2b  21 1

 2 2

2

1 1    

2m m

a a





 

    
 

2
2

2

1
 

 .

b b
C a



r a

     (39) 

The third of Equation (39) is the result of substituting 
the second of these equations into the first, bearing in 
mind the second of Equation (26) for . 

For the calculations that follow the functions X and 
 defined by  Y

2 2 1
2 1

n n
n n2 1

1

2
n

X A n




  a r P 
        (40) 

  2 22 1

1

2 2 1
4 1

n nn

n

A
Y n n

n






 
  2 2 2n na r P P 

,  r r

  (41) 

will be required. We express    and   as 

2 2
=      =    .

sinr r

bm b m bY
bX

r r 
  


    

G

 (42) 

The components of 
  are therefore calculated using 

the exterior functions (32)-(35) with Equations (16)-(22) 
and, whenever necessary, bearing in mind the first of 
Equation (39). The calculations give the following non- 
zero components: 

 

 

1 2 1
1 2 1

2 2 2 2
2 2 2

4 2 2 2

8π

2

sin

G G E

m b mX b Y
F b X

r r r



  



   


 

     
 

(43) 

 
 

1 2 2 1
2 1 2

22
2

8π

2
sin

G r G E

m Y
b F X

r




  



  

    
 

 

             (44) 

32

3 3
4 4 4 2

2
8π

sin

b m F Y
G E

r 


   

 

               (45) 

 

   

4 4
3 3

2 2
2 2

4 2

22 22

2 2 2

3 22

4 2

8π

2
2

sin

sin

G E

m b mX
F w b X

r r

b F w Yb F mY

r r

b F w mY

r







 

 

 

 

 

     
  

 


 




     (46) 

 

 

 

4 3 + 4
4 3 4

2 2
2

4 2

22 2
2 2

2 2 4 2

8π

2

.
sin sin

G G E

m b mX
F

r r

b F mw Yb Y
b X

r r



 

 



 

   


  


   




E

     (47) 


Here, 

E
 are the nonzero components of the elec- 

tromagnetic energy tensor. The components of 


  
were obtained from (10) the third of (3) for F , the 
exterior electromagnetic potentials in (34) and (35). 
Equation (22) gives 0R   in  and so by (6), V 

G R 
   whether   is equal to    or not. Another 

consequence of the result , is that the matter en-
ergy tensor 

0R 
M 

  will be null as should be the case in the 
electrovac  . V

The sourceless Maxwell equations in the first of (5) 
give 41, 42,r 0F F   23, 0F F  

3

 and 31,r  . By the third 
of (3) and with   and A 4A

3, 3, 0r rA A 
 

 given by (34) and (35), 
these become   4, 4, 0r rA A 

  ,  which 
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are trivially satisfied. The source-containing Maxwell 
Equations (12) and (13) with 3A  and 4A

4 0J
 given by 

Equations (34) and (35) will give  and 3 0J    
and so the 4-current is null in the electrovac V  . 

4. The Interior Solution 

In accordance with the results of [2], the functions 
,  F  

4 and A  are constant which we shall take as 

4 11  0   F A  b          (48) 

The functions K   and 3A  satisfy an equation of the 
form  with  given by (15). This implies 
that 

*2  0 *2
K   for example, is obtained from  

 cos
1rsin sinrK r        (49) 

where   is a harmonic function, which therefore satis-
fies Laplace’s equation  with  given by 
(14).  

2  0 2

We choose   as  

2
n

K

2 1D r

 ,

2
n

nP

 ,a

1n





 

2 1nD 

K a

            (50) 

where the constants  are determined from the 
junction condition    . We use Equa- 
tion (49) for K   with   given by (50) to find 

 

 

2 2

1

cos

cos

2 1

2 1

4 1

2
1

n n
n

2 1 2

2 1n

n n

K D nr

P P 

 

 

P

n

n





 

 






 

. 

We can further show that 

 1 n  

2

2 1

1 cos

1 nP 



 

2

cos

4 1

P

n




2 2

n

P n2 2P n n

 

and with this, the above expression for K 

22 coP 

 becomes  

 1s .nP 
2

2 1K D 2
n

n nnr
1n





   

Finally, after a little manipulation, the above expres- 
sion for K   becomes  

   2 2
1

.n n
n

K D P P







   2
2

nr2 1

2 2n n

n

 

1

4 1n




  (51) 

The junction condition for the continuity of K implies 
that on  ,r a  ,,K a K a   . Using the expres- 
sion (33) for w+ and bearing in mind that  , 1,F a    
we have  K a w a ,, 

2 22b

 

 1n

. It therefore follows from 
(33) and (51), that the constants  are given by 2 1n

2 1 2na

D

n nA    C a m2 1 2 2D n  .  na

This implies that K  , but also  and w  are 

given by 

3A

   

2 2 22 1
3

1

2 2 2

2 2
4 1

2 .

n nn

n

n n

A
w A b a r

n

naC a m P P


   





   


  

K
   (52) 

The functions Z and U defined by  

  

 

2 1

1

2 2 1
2 2 2

2
4 1

2

n

n

n n
n n

A
Z naC a m

n

na r P P






 


 


 



   2 2
2 1 2 1

1

2 n n
n n

n

U A naC a m a r P




            (53) 

 


 

G

  (54) 

will be required to simplify the components of the Ein- 
stein tensor. 


The components of 

 

 are calculated using the in- 
terior functions (48) and (52) with Equations (16)-(22) 
and, whenever necessary, bearing in mind the first of 
Equation (39). The calculations give the following non- 
zero components: 

2 2
1 2 1 4
1 2 1 4 2 2

8π
sin

U Z
G G E b

r r 
    

       
 

 (55) 

2 2
3 3 4
3 3 4 2 2

8π
sin

U Z
G E b

r r 
   

    
 

 

          (56) 

2 2
4 4 4 4
4 4 4 4 2 2

8π 3
sin

U Z
G M E b

r r 
    

      
 

 

(57) 

2 2
4 4 4 4
3 3 3 4 2 2

8π 4
sin

U Z
G M E b w

r r 
   

     
 

 

 (58) 

4
1 2 2 1
2 1 2 2

2
8π  .

sin

b UZ
G r G E

r 
     

E

         (59) 




  and 
MHere, 

E

 are the nonzero components 
of the electromagnetic and mass energy tensors respec- 
tively. The components of 


  were obtained from (10) 

the third of (3) for F , the interior functions in (48) and 
(52). The components of 

M



0F F 

 were obtained from 
Equations (3) and (9) together with the interior functions 
(48) and (52). Equations (55)-(59) state that Einstein’s 
Field Equations are satisfied in V . The sourceless 
Maxwell equations in the first of (5) give  

23, 31,r   3. By the third of (3) and with A   given 
in Equation (52), this becomes 3 , 3,r r   which 
is trivially satisfied. The source-containing Maxwell 
Equations (12) and (13) with 

0A A   

4


3 and A A as in (48) and 
(52) respectively, will give 

4 2 2
3 4

4 2 2
0  .

2π sin

b U Z
J J

r r



    

     
 

  (60) 

It is easily seen that 
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2 2

4 2 2sin

U Z

r r
4 2
48π 8π 2M b


  

 
 

 

2

. 

It follows from this and Equation (60) that      
or, in dimensional units, 2 G    . 

If N is any function in V, we write 

   
 

 
0

: ,

, : li

: li,

N N a

N a

N a




 
 

 
0

,  

m ,

m ,

N a

N a

N a

 

  

 

  

 

 













      (61) 

where the second and third of Equation (61), represent 
the values of  on the V  and V  sides of .N    

It follows from Equations (32)-(35), (48) and (52) that 
 and 0g     0.A   The functions g  and A  

are therefore continuous across  but one degree of 
smoothness is lost because the first order partial r-deri- 
vatives of these functions are discontinuous on 

,

.  It 
follows that the ordinary junction conditions requiring 
the continuity of the directional derivatives of these func- 
tions normal to  cannot be applied. The discontinue- 
ties of these normal derivatives will generate a surface 
layer on  with surface stress-energy tensor and sur- 
face 4-current and a more complicated set of junction 
conditions will apply. The Equations (12) and (13) for 

,



3J  and 4J  will give rise to expressions with factors of 
delta-functions and first order partial r-derivatives which 
are discontinuous on  We shall denote these terms by 
Gothic symbols, and we find from (12) and (13) that 
these are  

.

   3r




2 2 3

4 3

4π sin

r r

r e

KA F A


   

J

A r a  

    3r r a  

    (62) 

2 2 4

4 3

4π sin

r r

r e

LA K A A


    

J

, 

   (63) 

where 3 4A A  ,  and 3A are given in (34), (35) and (52) 
respectively. To obtain the surface 4-current s and 4s , 
we form the integrals of 3J  and 4J  with respect to 
proper distance measured perpendicularly through   
from  r a    to r a    and then find the limits as 

0.   There are no sign indicators with the metric 
functions ,  K F

V
 and  in (62) and (63) because their 

values in both,  and V , are required in these inte- 
grations, where the only nonzero contributions will arise 
from the delta-function parts  and  of 

L
 

3J 34J J  and 
4J  in Equations (62) and (63). With  the unit vector 

in the 
ˆ  φ

  direction, this gives 

   3
2 2

ˆ ˆ , ,  
2π sin

b
s Y a bZ a

a
 


  s φ φ

3

 

      
3

4
2 2 2

, , ,
4π 2π sin

bm b
w a Y a bZ a

a a
  


   s  

The electromagnetic junction conditions are  

 

      

4

3

2 2 2

ˆ 4π

2b
+ , , ,

sin

bm
w a Y a bZ a

a a
  




 

  

D n s

 

 

    
32 ˆˆ = 4π , ,

sin

b
Y a bZ a 


  H s n θ

n̂ θ̂

 

where  is the unit normal to the sphere and  is the 
unit vector in the   direction. In these equations, the 
contravariant component  of 1D D  and the covariant 
component 2H  of H  from the second and third of 
Equation (11) were used. 

The Equations (16)-(22) for R
  and  will give 

rise to terms with factors of delta-functions and first or- 
der partial r-derivatives which are discontinuous on 

,R

 . 
Denoting these terms by Gothic symbols, the Einstein 

tensor 
G  and the associated matter stress-energy ten- 

sor 
M  are connected through the field equations, and 

so on   we have  

1
         8

2
    
     G := R - R G =- M

 exp

   (64) 

Bearing in mind that F  ,V and that in   
 exp 1,F   

1
1R

2
2R

 we display below the components 
 and  as examples:  

 1 2
1 2

1

2 rr a F    R R

S

. 

The surface stress-energy tensor 
  is expressed in 

terms of the limits as 0  of the integrals of 
2e M r a  with respect to r from   r a to    

and with 
M  given in Equations (64). The junction 

conditions on   are [2,7] 

 

1 (3) 2
1

1
2 1 2; ;2

1
2; 2 1

2

8π

0.

b a
a b

b
b

b b b
a a a

b
b

G R k k k

G n k k

S k k

S T n



   

 

   
   

abk

        (65) 

Here,  is the extrinsic curvature tensor of   de- 
fined by ;ab a bk n 

.V 0
, where the covariant differentiation 

is connected with the metric of  Since    on   
this gives ,1ab ab 2k g . 

The hypersurface scalar curvature invariant of   is 
 where the Ricci tensor  is given 

by 

   3 3: ab
abR R g  3

abR

 3
, , ,d d n d d n

ab ad b ab d ad bn ab dnR       
d

 

ab  being the Christoffel symbols of the second kind 
based on the metric of  . With these, all the elements in 
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the junction conditions (65) may be calculated and these 
conditions may be shown to be valid. 

5. Mass, Charge, Angular Momentum and 
the Magnetic Dipole Moment 

The mass, charge and angular momentum are defined by 
their imprints on the spacetime geometry far from the 
source. To obtain the gravitational mass and electric 
charge therefore, we expand the exterior metric function 
F   up to the term 2 23 .m r  Bearing in mind the first 
of (39), we then obtain from (32)  

 

2
1

1 1
2

2 2

2 3m m m
F

r rC r r


        

 
.     (66) 

We may transform F+  in (66) to the RNF  of the 
Reissner-Nordstrom solution, by the transformation  

r r m= -  giving
22

1RN

m q
F

r
= - q m=

2r
+  with  

[8], or in physical units, 
2 2

2 4 2

Gm G m

c r c r
+

2
1RNF = -  with  

q Gm=
m q

. This expression therefore implies that the 
gravitational mass is  and the electric charge is  
and these are connected by [8]  

q Gm=                (67) 

If we now expand K+  to ( )O 1 r  we have  
2 2 2

12 sinb A a

r

q
K+ =         (68) 

where 1A  is obtained from (38) by setting  
which will then give, bearing in mind (39)  

1,n =

( )
1

3 3

2 2

C a
A

b

l l
= = .          (69) 

If J  is the total angular momentum, we have [9] 
22 sinJ

r

q
=

2 2
1

K+             (70) 

From (68) and (70), we then obtain J b a A=  and 
on using (69), this gives 

23
.

2
J b al=               (71) 

The dipole field is the part of the magnetic field Η  
whose physical components rH  and Hq  contain the 
factors  and  respectively. Since 
only the  power is required, we only need the  
mode of the third of the expressions in (11) for 

3 cos
3-

r- sin q
r 1n =

q 3r-

Η . We 
find that these components are 

( )

( )

3 2
1

3 2
1

2 1

 

r

b A a
H

b A a
Hq

=

=

2

3

2

3

cos
 

1 sin

r

r

l q

l q

-

-

( )3 2 2
1 1P b A a l= -

.       (72) 

With these, the magnetic dipole moment is therefore, 
 and on using (69), this gives 

( )3 2 2
1

3
1

2
P b A a l= -         (73) 

From (71) and (73), we deduce that the gyromagnetic 
ratio is  

( )21 .
P

b
J

l= -              (74) 

In physical units Equations (71), (73), (74) and the 
third of (39), become  

3
23

2

c
J b a

G
l

æ ö÷ç ÷= ç ÷ç ÷çè ø
             (75) 

( )
2

2 2 23
1

2

c
P b a

G
l l= -       (76) 

( )2= 1
P G

b             (77) 
c

l-
J

2
2

2 2
2

Gm Gm

ac ac
l

æ ö÷ç= + ÷ç ÷çè ø
          (78) 

J  and  are PIt may be shown that the units of 
[ ] [ ]2 1J M L T-=  and 1 2 5 2 1P M L T-=

( )

 respectively, 
which are the units of angular momentum and magnetic 
dipole moment. We also find from the second of (26) and 
the second of (39) that 

( )2

1
1     

Gm
C a b

C aac
= + =

2a
l

b

     (79) 

We stress the fact that all the above formulae are for 
an electrically charged sphere whose mass m and charge 
q are related by Equation (67). We note from (75) and 
(76) that the angular momentum J and dipole moment P 
depend on  but also in a somewhat more subtle way, 
on the mass to radius ratio through the quantities  and 

. The analytical Formula (77) may be applied to a 
number of different objects. We note that there exists a 
formula for the gyromagnetic ratio of stars known as 
Blackett’s empirical Formulas [10-12], which reads 

P G
            (80) 

J c
b=

bwhere  is a constant of the order of  unity so that  
(80) becomes  

.
P G

c

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
           (81) 

J

Blackett suggested that an explanation of this relation 
“must be sought in a new fundamental property of matter 
not contained within the structure of present day physical 
theory.” We note in this connection that the factor 
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 G c , occurs in both our analytical Formula (77) and 
in Blackett’s empirical Formula (80). The explanation for 
the presence of this factor in the analytical Formula (77) 
however is implicit in its derivation. Furthermore, the 
coefficient of  G c ( )21b l-

( )21b l-

b

a
m

2l b

 in this formula is , and 
in Blackett’s Formula (80), it is a constant equal to 1, or 
approximately equal to 1. The quantity  with 

 and b  given by (78) and (79) respectively, is ex- 
pected to vary from star to star, but  in Blackett’s 
Formula (80) is a constant equal to 1 for all stars, an as- 
sertion that seems improbable. In the context of our solu- 
tion, it is difficult to see why different objects which can 
be as diverse as the Earth and the Sun, will conform to 
such a requirement as implied by Blackett’s empirical 
Formula (81). Although the “new physics” idea was sub- 
sequently abandoned, it is nevertheless of interest to in- 
vestigate further under what circumstances, if any, our 
exact analytical Formula (77) reduces to Blackett’s em- 
pirical Formula (81). 

l

In order to gain an insight into the relation between the 
analytical Formula (77) and Blackett’s empirical Formu- 
la (81), we shall consider three cases with different nu- 
merical values for the radius  and gravitational mass 

 of the sphere. We shall then proceed to calculate the 
corresponding quantities in , ,  and l P J  in 
(78), (79) and (77): 

33

2 6

1.989 10 g   6.9599 1

4.243406362 10   2.0

0.999997878   0.9999936

m a

P
b

J

l -

= ´ =

= ´

= =

10

3

0 cm

59953 10

35
G

c

l -

´

= ´  (82) 

33

2 6

4.33602 10 g  1.4337

4.493 10    2.119669

0.999997755 0.9997278

m a

P
b

l l-

= ´ =

= ´ =

= =

11

3

394 10 cm 

786493 10

77
G

J c

-

´

´  (83) 

27 8

2 9

5.976 10 g  6.3675 10

1.393554681 10  3.733

0.999999999 0.999999998

m a

b

l -

= ´ = ´

= ´ =

= =

5

cm 

034531 10

.
P G

J c

l -´  (84) 

The above masses and radii were deliberately chosen 
to be numerically equal to those of the Sun, 78 Virginis 
and the Earth. These correspond to the three astronomical 
objects that are quoted in the literature by later authors in 
connection with Blackett’s empirical Formula (80) [10]. 
It is seen from the numerical results in (82)-(84), that in 
the case of our electrically charged spheres, the coeffi- 
cient of G c  is very nearly equal to1 in every case. 
We must conclude that in situations where the ratio m a

( )21b l-

( )21 1b l- =

 
is such that  is approximately equal to 1, our 
analytical Formula (77) will give Blackett’s empirical 

Formula (81). These reductions however, are only possi- 
ble in the cases where, . Thus, if we con- 
sider a typical neutron star as a fourth case we have 

33 6

2

1.4 2.7846 10 g  10 cm 

0.4562170327    0.6754384003  

 0.959011213    0.521493962

sm M a

P G
b

J c

l l

= = ´ =

= =

= =

  (85) 

Mwhere S  is the mass of the Sun. 
It is seen that P J G c¹
( )21 0.521493962 1b l- = ¹

 and this is because 
. In the context of our equa- 

tions, we found the precise condition under which our 
analytical Formula (77) will give Blackett’s empirical 
Formula (81). Again, in the context of our equations, this 
provides a full explanation why Blackett’s formula is 
sometimes valid and why this occurs only for a range of 
objects. Our formula for the gyromagnetic ratio P J  is 
not empirical, but an exact analytical formula which is a 
consequence of the equations derived from the exact 
global solution of the Einstein-Maxwell field equations 
found here. It does not require any new fundamental 
properties of matter or any new physics and it is valid for 
all values of the ratio m a

m
q

m

m q

m q

. 
We note that Wilson [12,13] observed that in the case 

of the Earth and the Sun, the Formula (80) can be ac- 
counted for, if we assume that a rotating mass  has 
the same effect as a rotating electrical charge  where 

 and q  are connected by Equation (67). It is a little 
puzzling that our electrically charged spheres charged as 
they are in accordance with Equation (67), seem to echo 
the above observation by Wilson. In our case however, 

 and  are connected by Equation (67) in reality. 
The quantity of charge required is quite small. As noted 
by Bonnor [8], if the mass  and charge  are related 
by Equation (67), then if in a sphere of neutral hydrogen 
one atom in 1018 had lost its electron, this would be suf- 
ficient. 

6. Discussion and Conclusions 

Exact exterior and interior solutions of the Einstein- 
Maxwell field equations for rigidly rotating pressure-free 
matter were obtained. The exterior and interior space- 
times are separated by a boundary which is a surface 
layer with surface stress-energy tensor and surface elec- 
tric 4-current. 

Perhaps one of the most important aspects of this work 
is that the source of spacetime, is rotating charged matter 
bounded by a closed surface. As far as we know, a global 
solution with a volume distribution of finite bounded 
rotating matter as a source of the spacetime, does not 
exist in the literature, although flat disk solutions do in- 
deed exist [1]. Another important outcome of this work is 
the derivation of analytical formulae for the angular mo- 
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mentum, dipole moment and gyromagnetic ratio of a ro- 
tating sphere based on general relativistic equations. 

The mass, charge, angular momentum and the mag- 
netic dipole moment were determined in Section 5. In 
particular, we derived the analytical Formula (77) for the 
gyromagnetic ratio and discussed special cases to estab-
lish the facts regarding the connection between the ana-
lytical Formula (77) and Blackett’s empirical for For-
mula (80) the conditions under which the analytical For-
mula (77) reduces to Blackett’s empirical formula, were 
obtained. No new properties of matter and no new phys-
ics was required. Perhaps the analytical Formula (77) is 
valid for all rotating objects and in particular for stars, 
but we have no data to demonstrate this, except for the 
cases of the Sun, 78 Virginis and the Earth. 

All the physical quantities of interest in the interior 
and exterior were calculated as well as those associated 
with the spherical surface layer. In this problem, the or- 
dinary gravitational junction conditions are inappropriate. 
In fact there are two sets of junction conditions, the elec- 
tromagnetic and the gravitational ones. The former were 
expressed in the familiar form of classical electromag- 
netic theory. The gravitational junction conditions in this 
problem are more complicated than the usual ones, be- 
cause of the surface layer. These were clearly stated, al- 
though no detailed formulae were displayed.  

This solution permits a reversal of the signs of 3A+  
and 4A+  in (34) and (35) [14], which will cause a rever-
sal of the signs of 3A-  and 4A-

h
 in (52) and (48). If we 

replace the harmonic functions  and z  in (26) and 
(27) by 

( ) 2

cos
 =

m J

r

q
h z1     C r

r
= = +  

then, instead of the metric functions in (32) and (33), we 
shall have 

12 2

2

cosm J

r

q
-ì üï ïæ öï ï÷ ÷ç ç+÷ ÷í ýç ç÷ ÷ç ç ïè ø ïþ

1F
r

+ æ ö
= +
ïè øïî

 

2sin
 2

J m

r r

q æ ö÷ç= + ÷ç ÷çè ø
w+  

with appropriate modifications to the remaining func-
tions in (32)-(34). Our exterior solution, given by these 
equations, reduces to the solution obtained by Perjes 
[14]. 

To find the limit of the exterior solution (32)-(35) 
when the angular momentum J  is reduced to zero, we 
replace the harmonic function  in (27) by zero, choose 

 and base the solution on the single harmonic 
function  in (26). This leads to  

z
1,b =

h = ( )C r

( ) ( )

( )

1 2

4 3

exp ( )     

1
1      0

F C

A A
C r

m
-+ +

+ +

= =

= - =

which is the Papapetrou solution [15] for which Bonnor  
has found a matching interior solution [8].  

=0   r K w+ +=

.r a=

 

Referring to the surface layer that occurs in our solu- 
tion, we note the result obtained by Ruffini and Treves in 
a non-relativistic treatment, in which they had shown that 
a magnetized rotating object has surface charge and cur-
rent densities; it is also endowed with a net electric 
charge [16]. This agrees with our results and in particular, 
it confirms the existence of a surface layer with 4-current 
and stress-energy tensor on the boundary   

The mass, charge, angular momentum and the mag- 
netic dipole moment were determined in Section 5. In 
particular, we derived the analytical Formula (77) for the 
gyromagnetic ratio and discussed special cases to estab- 
lish the facts regarding the connection between the ana- 
lytical Formula (77) and Blackett’s empirical Formula 
(80). The conditions under which the analytical Formula 
(77) reduces to Blackett’s empirical formula, were ob- 
tained. No new properties of matter and no new physics 
were required. Perhaps the analytical Formula (77), is 
valid for all rotating objects and in particular for stars, 
but we have no data to demonstrate this, except for the 
cases of the Sun, 78 Virginis and the Earth. 
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