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ABSTRACT 

Finding the origin of Hawking radiation has been a puzzle to researchers. Using a loop quantum gravity description of a 
black hole slice, a density matrix is defined using coherent states for space-times with apparent horizons. Evolving the 
density matrix using a semi-classical Hamiltonian in the frame of an observer outside the horizon gives the origin of 
Hawking radiation. 
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1. Introduction 

A new theory is expected to take over at Planck distances 
as “quantum effects” of gravity start dominating. One of 
the promising approaches to the theory of quantum grav-
ity is the theory of Loop Quantum Gravity (LQG), which 
is by formulation non-perturbative and background in-
dependent [1-3]. LQG has a well defined kinematical 
Hilbert space, and though the Hamiltonian constraint 
remains unsolved, the theory allows for a semiclassical 
sector of the theory. This includes “coherent states” [4,5] 
which are peaked at classical phase space elements. Us-
ing these as a starting point, I defined in a series of pa-
pers [6-8] coherent states for the Schwarzschild space- 
time, and derived an origin of entropy using quantum 
mechanical definition of entropy from density matrices. 
The exact entropy is a function of the graph used to ob-
tain the LQG phase space variables [9]. The zeroeth or-
der term is proportional to the area of the horizon signi-
fying a universality of the Bekenstein-Hawking entropy. 
The proportionality constant and the correction terms 
bring out the details of the graph [8]. 

In this paper we take this new way of finding the ori-
gin of entropy a step further by evolving the spatial slice 
in time [10], and observing the evolution of the density 
matrix in the process. This state as of now does not sat-
isfy the Hamiltonian constraint, but one is allowed to 
take an arbitrary initial state, or a wavepacket with ap-
propriate properties, representing a macroscopic con-
figuration. The evolution discussed in this paper is semi-
classical, i.e. no attempt is made to use the full Hamilto-
nian. 

The quasilocal energy (QLE) of an outside observer, 
defined in [11] is used as the Hamiltonian to evolve the 
system. As the time clicks in the observers clock, the 

Hamiltonian evolves the coherent state such that the area 
of the horizon remains the same as predicted by classical 
physics. However, classically forbidden regions become 
accessible quantum mechanically, and vertices of the 
graph hidden behind the horizon in one slice emerge out-
side the horizon in the next slice. This gives a net change 
in area, and the mass deficit is emitted from the black 
hole. This evolution is not unitary, and the quasi-local 
energy which is used to evolve the slice is not mapped to 
a Hermitian operator. When matter is coupled to the gra- 
vitational system, a net flux emerges causing a decay of 
the horizon. 

In Section 2 we introduce the formalism by describing 
the coherent state, the black hole time slice, the apparent 
horizon equation, and the density matrix. Section 3 de-
scribes the time evolution of the system and gives a 
derivation of the change in entropy. In Section 4 we give 
a description of a matter current emergent from behind 
the horizon. Finally in the concluding section we in- 
clude a discussion about the implications of the non- 
Hermitian evolution. 

2. The Coherent State in LQG 

For gravity, finding the canonical variables which de-
scribe the physical phase space is an odd task as there is 
no unique time. Nevertheless a fiducial time coordinate 
can be chosen, which breaks the manifest diffeomorphism 
invariance, restored in the Hilbert space of states by im-
posing constraints. 

The constant time slices are described by the intrinsic 
metric ab  and the extrinsic curvature abq K  (a,b = 1,2,3). 
The theory can be formulated in terms of the square root 
of the metric, the triads I

ae  defined thus: 
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=I I
a b abe e q                  (1) 

where I  represents the internal index for the rotation 
group SO(3) of the tangent space and . The 
internal group is taken to be SU(2), as this is locally 
isomorphic to SO(3). The theory is then defined in terms 
of the “spin connection” a bK  and the triads. 
However, a redefinition of the variables in terms of tan- 
gent space densitised triads 

, = 1, 2,3a b

e e=I IJK b
a J

I
aE  and a corresponding 

gauge connection I
aA  where I represents the SU(2) in- 

dex simplifies the quantisation considerably. 

 1
= det=I I Ib

a a ab
a a
I IA K e E  e e


     (2) 

( I
ae  are the usual triads, abK  is the extrinsic curvature, 
I
a  the associated spin connection,    the one parame-

ter ambiguity which remains named as the Immirzi pa-
rameter). The quantisation of the Poisson algebra of these 
variables is done by smearing the connection along one 
dimensional edges e  o length ef    a graph of   to 
get holonomies  eh he triads are smeared in a set 
of 2-surface decomposition of the three dimensional spa-
tial slice to get the corresponding momentum 

A . T

I
eP . e 

algebra is then represented in a kinematic “Hilbert space”, 
in which the physical constraints have been “formally” 
realised [12]. Once the phase space variables have been 
identified, one can write a coherent state for these [4] i.e. 
minimum uncertainty states peaked at classical values of 

,

Th

I
e eh P . In analog  the harmonic oscillator coherent 

states, where the coherent state is a function of the com-
plexified phase space element 

y with

x ip , the SU(2) cohe
ent states are peaked at the complexified phase space ele- 
ment 

r-

2=
I IiT P

e eg e h . Thes ee g  are thus elements in the 
complexification of SU(2) as 2I IiT Pe  ( IT  being the ge- 

 ma ices of SU(2)) is a Hermitian matrix and eh  
is the unitary SU(2) mat . Whether these are physical 
coherent states, or have appropriate behavior under the 
action of the constraints has to be examined carefully 
[13]. The coherent state in the momentum representation 
for one edge is defined to be 

nerator tr
rix

     1 2>= πtj jt
e

jmn

>j eg e   g jmn

e

     (3) 

In the above g  is a complexified classical phase  

space element 
c 2I I l

ePe ciT l
eh , (the cI l

eP  and the  re-  cl
eh

present classical momenta and holonomy obtained by 
embedding the edge in the classical metric). The >jmn   
are the usual basis spin network states given by  π j mn

h

h
   2 1 2 1j j  

,  

which is the jth representation of the SU(2) element e . 
Similarly,  dimensional representations 
of the  matrix e2 2 g  are denoted as j e mn

. The 
j is the quantum number of the SU(2) Casimir operator in 
that representation, and  represent azimuthal quan- 

tum numbers which run from . The coherent state 
is precisely peaked with maximum probability at the e  
for the variable e  as well as the classical momentum 

 g

..j j
clh

h
c

π

,m n

I lPe  for the variable I
e . The fluctuations about the 

classical value are controlled by the parameter t (the 
semiclassicality parameter). This parameter is given by 

P

2l ap  where pl  is Planck’s constant and a a dimen-
sional constant which characterises the system. The co-
herent state for an entire slice can be obtained by taking 
the tensor product of the coherent state for each edge 
which form a graph  , 

= t
e

e

.                  (4) 

In [7] the eg  was evaluated for the Schwarzschild 
black hole by embedding a graph on a spatial slice with 
zero intrinsic curvature. The particular graph which was 
used had the edges along the coordinate lines of a sphere. 
This simplistic graph, was very useful in obtaining the 
description of the space-time in terms of discretised ho- 
lonomy and momenta. A particularly interesting conse-
quence of this was that the phase space variables were 
finite and well defined even at the singularity. 

Given that the area of a surface in gravity is measured 
as the integral of the square root of the metric over the 
surface, the area operator can be written simply as  
ˆ ˆ ˆ= I I

e eA P P . The expectation value of the area operator  

in the coherent state emerges as [9] 

1ˆ =
2

A j t    
 

            (5) 

Thus we are considering a semiclassical state, which 
is a state such that expectation values of operators are 
closest to their classical values. The information of the 
classical phase space variables are encoded in the 
complexified SU(2) elements labeled as eg . The fluctua- 
tions over the classical values are controlled by the semi- 
classical parameter t. 

The density matrix which describes the entire black 
hole slice is obtained as 

Total = ><               (6) 

where >  is the coherent state wavefunction for the 
entire slice, a tensor product of coherent state for each 
edge. 

2.1. Apparent Horizons 

We concentrate on the coherent state near the apparent 
horizon contained in the spatial slice. We find that moti-
vated from the apparent horizon equation the graph 
across the horizon can be taken to be populated by radial 
edges, linking vertices outside and inside the horizon. 
One then traces over the coherent state within the horizon. 
Initially we take a particular time slicing of the black 
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hole, which has the spatial slices with zero intrinsic cur-
vature [7]. One such metric which has the time slices as 
flat is the Lemaitre metric 

 

   22 .sin

2
2 2

2 3

4 3
2 3 2

d
d = d

3

2

3
 d d

2

g

g

R
s

R
r

R r





   

= 2r GM =

 
 

 
  

    

    (7) 

The g , (in units of c = 1) and in the   
constant slices one can define the induced metric in terms 
of a “r” coordinate defined as  

  1 3

g cr R   

=

d = d 3 2r R  

( c 

 2 22 d .sin

) on the slice. One gets the metric of the three 
slice to be 

2 2 2
3d = d ds r r             (8) 

The entire curvature of the space-time metric is con-  

tained in the extrinsic curvature or 
1

=
2

K g  

=

 ten-  

sor of the   constant slices. Now if there exists an 
apparent horizon somewhere in the above spatial slice, 
then that is located as a solution to the equation 

= 0a a b
bS S K

( , = 1, 2,3)a b

a aS K             (9) 

where , (  denote the spatial indices) is 
the normal to the horizon, ab

aS
K  the extrinsic curvature 

in the induced coordinates of the slice, and  the trace 
of the extrinsic curvature. If the horizon is chosen to be 
the 2-sphere, then in the coordinates of (8), 

K

 1,0,0aS 

1 = 0rK q 
 

1 = rrq
rrq

, 
the apparent horizon equation as a function of the metric 
reduces to: 

 rr
rr rK q K q 

         (10) 

Note that the first term of the equation disappears trivi-
ally as  for any point in the spatial slice. Even at 
the operator level the  can be set to the identity 
operator in the first approximation, as 2=q P P V

ˆ r re e  
(V  being the volume operator) upto normalisations, and 
in the spherically symmetric metric 

r re e

rr

=V P   (upto dis- 
cretisation constants). Thus the operators in the numera- 
tor and denominator cancel and the normalisation con- 
spire, leaving . To understand the rest of the 
equation in terms of the holonomy and momentum vari-
ables of LQG, which are classically measured in the 
same metric as (8), we use the following regularisation 

ˆ =rrq

    = I I

I

         , = ,I I
K e K q e e               

   

     (11) 

 

(N is a constant, a function of the edge lengths and the 
area bits of the discretisation) and V is the volume op-
erator. 

 1 ,e eh h V
   

 
  

 

, TrI Ie N T 
          (12) 

11
= TI I

e e
e

K r h T h
 



  
 

 
        (13)   

  has been used as a parameter to identify the Here 
I
aK  operator, and this is mainly a trick. In the continuum 

limit 

   d

0= limit e =
a

aA xaI I I
e a a ee a

h A I A T      (14) 

As the gauge connection is a function of the Immirzi 
parameter due to (2), the expectation value of this opera-
tor in a coherent state will be a function of the Immirzi 
parameter. By taking the derivative wrt to the Immirzi 
parameter we are giving the same status to the parameter 
as is given to “dimension” in a dimensional regularisa-
tion of Feynman diagrams. We let the parameter vary by 
an infinitesimal amount from its value in the particular 
quantisation sector, take the derivative, and put its 
original value in the final answer for the I

aK  operator. 
The Formula (13) is facilitated by the fact that the de- 
pendence of I

aA  on the   is linear. One way to check 
whether this gives the proper answer is to take a solved 
quantum mechanical system and use a similar method 
there. The most useful example is the Harmonic Oscilla-
tor Hamiltonian, which can be written as 

2
2 21

=
2 2

p
H m x

m
               (15) 

The ground state is a coherent state, so we take that as 
an example. We define the operator 

2
2

2
=

H
x

m
                 (16) 


Thus 

2
2 2

2 2
= = =

2 2

H
x

m m m


 

   
    
 

    (17) 

The regularisation (13) is thus an allowed approxi- 
mation. 

The terms involving the Christoffel connections like 

r

  include derivatives in the regularised version, the 

derivatives appear as difference of triads across two ver-
tices. Thus 

      1 2 1

1
=

r

J J J
r I I

e

e e e v e v e v  
   

 

v
v

     (18) 

As a result of this if we impose restrictions on the 
Christoffel connections and one of the vertices 1  is 
within the horizon, whereas 2  is outside the horizon, 
there will be correlations across the horizon. 

If one evaluates the expectation value of the apparent 
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horizon equation using the regularised variables in the 
coherent states, then one would obtain 

   

 

2 1 1/2

1 1 2

2

1

1

4 Tr Tr

    Tr

    Tr

J J
e e e

v

J
e e

v

I I
e e

P T h V h

T h V h

N h T h P

  

 

 





 






 



    

1 1 2

1 2

= 0

e e
v

e v

T h V h
 



  


N 

(19) 

(  is a constant). 

2.2. Density Matrix 

The density matrix is obtained as 

Total = ><               (20) 

where >

outside local inside 
local

  is the coherent state wavefunction for the 
entire slice, a tensor product of coherent state for each 
edge. 

But given this, we concentrate in a “local” region to 
see the behavior of the horizon 

Total =              (21) 

where   covers a band of vertices surrounding the 
horizon one set on a sphere at radius 2r 

rg e  and one 
set on a sphere at radius 2r 

local

rg e  within the horizon, 
as described in [9], and in the figure enclosed. This local 
density matrix and the correlations due to the apparent 
horizon equation (19) was used to derive entropy [6]. 
This entropy counts the number of ways to induce the 
horizon area using the spin networks, though the con-
straints have not been appropriately imposed as was ob-
tained using a Chern-Simons theory in [14]. However, 
the entropy calculation using the coherent states provides 
a tracing mechanism, and a method to obtain correlations 
across the horizon which are gravitational in origin. We 
will henceforth deal with  , but we will drop the 
local label for brevity. 
 

 

3. Time Evolution 

In physical systems, the Hamiltonian generates time evo- 
lution, but in General Theory of Relativity, the Hamilto-
nian is a constraint and generates diffeomorphisms in the 
time direction. So the question is, what is physical time, 
and if that exists, what would be the operator evolving 
the system in that direction? In case of space-times with 
time like Killing vectors, notion of time can be identified 
with the Killing direction, and a notion of “quasilocal 
energy” (QLE) defined using the same. The QLE then 
generates translations in the Killing time. In case of the 
Schwarzschild space-time, the QLE has been defined in 
[11]. We build the Hamiltonian which evolves the hori-
zon from one time slice to the next by appropriately re- 
gularising the QLE. Note the “Killing time” and QLE are 
classical concepts, and thus regularising QLE gives us a 
“semiclassical” Hamiltonian. 

3.1. Change in Entropy 

Before we get into the analysis of what QLE evolution 
means, we take a simple system made up of two subsys-
tems, and examine the consequences of a Hamiltonian 
evolution. Let the density matrix be defined for a system 
whose states are given in the tensor product Hilbert space 
H1 2H  and given by 

>= d > >ij
ij

i j             (22) 

where  is the basis in 1H  and >i >j  is the basis in 

2H  and dij  are the non-factorisable coefficients of the 
wavefunction in this basis. Let us label the wavefunction 
at time  to be given by the coefficients . The 
density matrix is 

= 0t 0dij

0 0* 0= d d > >< <i j ij
iji j

i j j i  
 

         (23) 

The reduced density matrix if one traces over 2H  is: 

0 0* 0
2Tr = d d ><i j ij

ii j

i i 


          (24) 

We now evolve the system using a Hamiltonian which 
has the matrix elements H >| >< |<iji j i j j i   , we assu- 
me that the Hamiltonian does not factorise, that is there 
exists interaction terms between the two Hilbert spaces. 
The evolution equation is: 

 = ,i H


             (25) 




which in this particular basis gives the density matrix 
elements at a infinitesimally nearby slice to be 

 * 0* 0 0 0* 0 0*d d = d d d d d di j ij i j ij ijkl kl i j ij kl kli j
kl

i
H H         

    


(26) 
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 2 2 2 2 2 22d = d d d .sins f t rThus we evolve the “unreduced” density matrix and 
then trace over the 2H  in the evolved slice. The reduc- 
ed density matrix in the evolved slice is: 

 0 0*d d .ij kl kli jH H 

 
 



* 0* 0

0 0*

d d = d d

d d

i j ij i j ij
j j

ijkl kl i j
klj

i

 



 

 


 



  (27) 

This gives: 

0=
i

A  


              (28) 

where A represents the commutator. Clearly the entropy 
in the evolved slice evaluated as 

 = Tr lnBHS    

can be found as 

0
BH BH= Tr

i
S S A  


0 0 0 1ln Tr A    

ii

   (29) 

Given the definition of A , one gets 
0 0

lij ijkl klijH   =ii ijkl k
jkl

A H          (30) 

In case both the Hamiltonian and the density operator 
are Hermitian, one obtains 

 0ImTr= 2jj
j

A H 

0ln

             (31) 

This is clearly calculable, and gives the change in en-
tropy BH . The S   term yields corrections, and we 
ignore it in the first approximation. 

3.2. The Hamiltonian 

To trace the origin of Horizon fluctuations, we must take 
an observer who is stationed outside the horizon, or in 
other words is not a freely falling observer. The quasilo-
cal energy is defined using a “surface” integral of the 
extrinsic curvature with which the surface is embedded 
in three space. In our case, we take the bounding surface 
to be the horizon and the quasilocal energy is given by 
the surface term [11,15]. 

21
= dH x k
 

k
2S

               (32) 

where  is the extrinsic curvature with which the 2- 
surface, which in this case is the horizon  is embed-
ded in the spatial 3-slices, and   is the determinant of 
the two metric   defined on the 2-surface. This 
“quasilocal energy” is measured with reference to a 
background metric. Thus o=H H H

= constr

. We concentrate 
on the physics observed in an observer stationed at a r = 
constant sphere. 

The metric in static  observer’s frame is 

      (33)     

fThe = 1 gr r  where gr
n

 is the Schwarzschild ra- 
dius. If we take   to be the space-like vector, normal 
to the 2-surface, then the extrinsic curvature is given by: 

=k n
    

=k n

               (34) 

and the trace is obviously 

                (35)  

In the special slicing of the of the stationary observer 
the normal to the horizon 2-surface is given by  
   0, ,0,0f r . However, we built the coherent state on 
the Lemaitre slice. The Lemaitre and the Schwarzschild 
observer’s coordinates are related by the following coor-
dinate transformations, 

 d = d d
g

r
r R

r
   

 1
d = d d =

1
grt f R f

f r
  



d = dR

        (36) 

The r = const cylinder of the Schwarzschild coordinate 
corresponds to   of the Lemaitre coordinates, 
and for these d = dt  . Thus unit translation in the t co-
ordinate coincides with unit translation in the   co- 
ordinate. Further, the intersection of the r = constant cy- 
linder with a t = constant surface coincides with the in- 
tersection of r = constant and the   = constant surface. 
Thus in the initial slice, the QLE Hamiltonian can be 
written as 

 

0

1
= d d

2

gg
g g g g f r

r r

H

 
  


      



H
(37) 

The reference frames’ quasilocal energy is a number, it 
just defines the zero point Hamiltonian. Thus, we replace 
the classical expressions by operators evaluated at the   
= constant slice. In the first approximation we simply 
take the  f r  as classical  

1 = 2 =
rg e gr r r 

n

, 

as this arises due to the coordinate transformation and the 
norm of the vector r  in the previous frame. In the re- 
writing of (37) in regularised LQG variables the Ha- 
miltonian appears rather complicated. 

One can rewrite these in a much simpler form, using 
the apparent horizon equation. Since the Hamiltonian is 
an integral over the horizon, the variables will satisfy the 
apparent horizon Equation (10) upto quantum fluctua-
tions. Thus the Hamiltonian operator is then re-written as 

horizon = d d I I I I
H g g K e K e 

    


       (38) 
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where we have used the classical apparent horizon equa- 
tion (10) (with ). = 1rrq

 

1
Horizon

1

= T
2

. .

I

ve e

Ca
e e e IH r h T

s

h c

h P
  




 
  

C

 




 



  


    (39) 

where  consists of some dimensionless constants es


 
is the 2-dimensional area bit over which IE  is smeared, 

 is a dimensionfull constant which appears to get the 

e I

a
P


 dimension less. e

  is the length for the angular 
edge e  over which the gauge connection is integrated 
to obtain the holonomy. The sum over 1  is the set of 
vertices immediately outside the horizon. The (39) can 
then be lifted to an operator. 

v

This regularised expression for QLE is for the horizon 
2-surface only and would not apply for any other sphe- 
rical surface in the Schwarzschild space-time. 

3.3. U(1) Case 

Let us take the U(1) case to make the calculations easier 
and observe the action of the QLE Hamiltonian on the 
evolution of the coherent state. The spin network states 
are replaced by >= nn e  , 0 < < 2π , n is an integer 
and the coherent states are: 

     2
e ein ipt n

2

=
tn

e
n

g e e e  


  

 = e ein ipg e  

      (40) 

n e  is the complexified phase space element 
in the “n-th” representation. 

The QLE operator also takes the simplified form 

1ˆ1 ˆˆ ˆ e
e e

h(1) 1
Horizon

1 ˆ ˆ=
2 2

U
e e eH C h h p   C p h 

 


 

C

e

  (41) 

The prefactors have been clubbed into . 
In the calculation of the matrix elements, we drop the 

label of the edges  for the Hamiltonian. 

(1)
Horizon

ˆ U mm H n e   (1)
H= dU n

orizonH e           (42) 

This calculation can be done by putting an assumption 
that the 1 2=   ,. In this 1 2   are completely 
independent of  . It is an allowed assumption, and 
identifies the   dependence of the operator matrix 
elements, which are otherwise “hidden”. The calculation 
however introduces an arbitrariness in the formula, which 
can be fixed by requiring that the expectation value of 
the Hamiltonian agrees with the classical QLE [10]. 
However, in this paper we use the “annihilation” opera-
tors defined in [16]. 

This is done by observing that the U(1) coherent states 
are eigenstates of an annihilation operator defined thus: 

ˆ/2 ˆˆ ˆ= pt e
e eg e e h g

The holonomy operator can thus be written as 

>= >e eg 

ˆ/2ˆ ˆ= pt e
e eh e e g

       (43) 

             (44) 

And the derivative wrt Immirzi parameter of the ho- 
lonomy which appears in the definition of the Hamilto-
nian replaced by 

ˆ ˆ2

ˆ2

ˆ ˆˆ
ˆ=

ˆ
ˆ ˆ=

p pte ee e
e

pt p ee
e e

h gp
e e g e

g
e p e g e

  



  




 

 

  
     

 
  

p

   

   (45) 

The dependence of the operator  on the Immirzi 
parameter is known (2), and thus we could evaluate the 
derivative  

    = 1 =e e ep p p         

The term 

 0 U(1)
HorizonTr H               (46) 

is then computable. Let us take the first term of (41) and 
find (46). As 0 = ><   , (46) gives simply (we drop 
the “e” label for brevity) 

U(1) 1
Horizon

ˆ ˆ ˆ† 2 2

ˆ ˆ*

ˆ2

1 ˆ ˆ ˆ=
2

                            . .

ˆ1
ˆ ˆ ˆ ˆ=

2

     . .

1
ˆ ˆ=

2

ˆ
ˆ     

     . .

t p t p p

t p p

p

H C h h p

h c

g
C g e e e p e g e p

h c

C e g e p e p g

g
e p

h c

     


 

   


 

  

  






    

  








    




 




 
 



 



We then concentrate on the 2nd term of the above 

  

 

ˆ2

ˆ2

ˆ2

ˆ
ˆ

ˆ
ˆ= d

ˆ= d

p

p

p

g
e p

g
e g p

g
g e p

  


     


     











   


  






0t  =

    (47) 

where we have used the fact that coherent states resolve 
unity. It can be shown that the expectation value of the 
operators in the  collapses the integral to g g  
point [16]. Thus one obtains from the above 

Copyright © 2012 SciRes.                                                                                 JMP 



A. DASGUPTA 1295

 0 (1)
Horizon

2 *

Tr

1

2

=

U

t p

H

C e p g e

C p








  




2= . .
g

p h c



 

BH = 0S

 0H

v
v

v

    (48) 

which is real, and thus 

                (49) 

this is actually the classical QLE as it should be from 
. Horizon

This is obvious, as the way the Hamiltonian is defined, 
this is simply a function of the Hilbert space outside the 
horizon, and the matrix elements of this will not yield 
anything new. We approximated the horizon sphere by 
summing over 1  vertices immediately outside the ho-
rizon. We could do the same by summing over 2  ver- 
tices immediately within the horizon. For the Lemaitre 
slice, the metric is smooth at the horizon, and one can 
take the “quantum operators” evaluated at the vertex 2 . 
In this case however, as the region is within the classical 
horizon, the norm of the Killing vector is negative, and 

has components which are imaginary. The 

Tr

rn     .  

Thus Horizon

1
=

2
H H

1 21 2
v vv v

H 
   . In the evaluation  

QLE, the energy would emerge cof the orrect in the 
0er

   limit as 0   The regularised Hamiltonian 
rmitian, an volution equation is is no d the et He

†= H H
  

           


   (50) 

And thus the operator which appears in the change of 
entropy equation is 

0 0 ?HBH = TrS H



             (51) 

BH =S C p
 





            (52) 

The “rate of change” of entropy is thus 

 

BH = 2
p

S p
l

C 




              (53) 

we extracted   frothe m C  to get 2
pl  and rewrote 

n . 
entropy, but, to see if this 

is

3.4. SU(2) Case 

easily reduced to the U(1) case in the 

 

a b

the rest of the consta ts as C
Thus there is a net chang n e i

 Hawking radiation, we have to couple matter to the 
system. 

The SU(2) case is 
actual calculation due to the gauge fixing. This is 
achieved by making the following observations: To re-
tain the metric as in the same form as the classical metric,

we impose the conditions at the operator level 

= 0e eP P                (54) 

such that the corresponding metric has only the diagonal 
terms as non-zero. With these additional “constraints” on 
the operators, we can put the 

a

I
eP  such that each has 

only one component surviving, let’s say 3=I I
e eP P
 

 . 
This also makes the holonomy restricted to the , 
as the gauge connection 

U(1) case
I
eA


 gets restricted to the = 3I  
and other directions can be ut to zero. Thus we can  
the holonomy to be diagonal. If the holonomy matrix is 
off-diagonal the U(1) projection still works out to be the 
same 

p  take

0
=

0
e

e
h

e





 
 
 

              (55) 

The operator is then obtained as 

1 I= Tr e
e

h
H h T 


  

  
 



1 3= Tr e
e

h
h T    

  
 



3= eP





                  (56) 

This is same as the U(1) Hamiltonian (upto normalisa-
tions). The spin network states also project on to U(1) 
subgroup, thus giving us the same techniques to use in 
the calculation of the U(1) states as for this one. To ob- 
serve this, the non-zero elements for the holonomy matrix 

=h
b a  

                (57) 

in the j-th representation is given by: 

    

a b 

    ! !j m j m j n 

     
! !

π =
! ! ! !

 

j mn
l

j n l j m l m n l l

j n
h

j m l j n l m n l l

a a b b     

 

     



   (58) 

Clearly in the particular case we are considering, the 
b
eleme

= 0 , and m, n = –j and j. Thus the two non-zero 
nts are 

   2 2= π =π j j
j jjj j j

h e h e 
 

       (59) 

The sum over j in the  0
HorizonTr H  with the co- 

he us reduces torent state defined in (3) th  the U(1) case 
in the computation of the change in entropy. Thus the 
rate of change in entropy of a classically spherically sym- 
metric black hole is given by 

BH 2=
ee

e e
vp

C
S P P

l


 


 

 

 
  

   



      (60) 
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where the classi
 

 =
e

eh ecal holonomies  

 


.

in the actual values, we get this to be 

 If we plug  

BH 2

2
= d

C
S A

l v g
vp

r
       (61)       

where d vA  the area element at vertex v  on the sphere. 
This change in entrop tally gravitational in origin, 
and seems to signify the emergence of “
within the horizon. 

ct, i e

y is to
geometry” from 

In fa f we some over the area, we g t the  

BH 2

8π
= g

p

S r
l


   (if we set = 1C  ), which would  

be the change in entropy when the radius of the horizon 
changes by =gr  ! 

4. Outgoing Flux of Radiation 

ime, the horizon fluctuates and the area de-
 Adding matter to 
assical gravity has 

In the previous section we found that as the system 
evolves in t
creases. But is this Hawking radiation?
a “coherent state” description of semicl
been discussed [17]. Thus, given a massless scalar field 
Lagrangian coupled to gravity, whose Hamiltonian is 
given by 

 
2

23
sc

π
= d ,H x

q


 
  

  
          (62) 

the “gravity” in the Hamiltonian can be regularised in 
s of the ,term I

e eh P  operators in the coherent state for-
. The integral over the three vo

verted to a sum over the vertices dotting the region. Thus 
malism lume gets con-

 sc = , ,v I
v e e

v

H H h P V            (63) 

This Hamiltonian is an operator, and one evaluates an 
expectation value of the Hamiltonian in the reduced den-
sity matrix of the initial slice, to find th
ior of the scalar field as observed by an observer outside 
th

e classical behav-

e horizon. Thus 

 sTr cH                  (64) 

This Hamiltonian and the density matrix are then both 
evolved according to the time-like observers frame. One 
gets 

 sc
sc= ,i H H


             (65) 

This gives 

H

   
 

sc

sc

Tr

, ,

H H

H H H

 



 

     

he order 

 
sc

2

Tr

= Tr

   

 

  

  
        (66) 

It is very clear thus that t   terms are zero 

for this. However, allowing for the non-unitary evolution 
using the non-Hermitian Hamiltonian, the   terms sur- 
vive. In fact the terms are 

 

 

†
sc

†
sc sc

Tr

Tr

H H H

HH H H

  

 

   

   





        (67) 

The first term is remarkable, it shows that the term 
giving rise to entropy change teams up wi
tion value of the scalar Hamiltonian. Th
yields corrections, so we ignore it in the first approxima-
tion.

th the expecta-
e second term 

 The exact details of the computation have to be ob-
tained using the coherent state of the matter and gravity 
coupled system [17,18]. If one simple takes the matter + 
gravity system in a tensor product form, and one has 
matter quanta of energy   sitting at one vertex, then 
the first term would give new matter in the evolved slice 
as BHS  . The “rate” of particle creation thus has the 
form 2 HT  where HT  is the Hawking temperature 
for the signs ( )   and negative (positive)  . 

Thus from the above it seems 
1) One has found emission of matter quanta from a 

black but from a “semiclassical” description rooted 
in a theory of antum gravity, beyond quantum fields in 
curved space-

 hole 
 qu

5.

 
unction 

al slice, peaked with maximum prob-
e-variables. We then evolved 

time. 
2) The results indicate a non-unitary evolution which 

allows space to emerge from within the horizon. 
3) The emission is perceived by a static or an acceler-

ating observer as anticipated, and the non-unitary flow 
might be due to the semiclassical approximations. A 
quantum evolution using the quantum Hamiltonian might 
still be unitary. 

The above derivation seems to be a “quantum gravity” 
description of the tunneling mechanism for describing 
Hawking radiation [19]. However, the results are pre-
liminary and further investigation has to be done. 

 Conclusion 

In this paper we showed a method to obtain the origin of 
Hawking radiation using a coherent state description of a
black hole space-time. We took a quantum wavef
defined on an initi
ability at classical phase spac
the slice using a Hamiltonian, which is the “quasilocal 
energy” at the horizon. This QLE evolved the system in 
the time and the entropy was shown to change, indicating 
a change in black hole mass and hence an emergence of 
interesting non-unitary dynamics. One of course has to 
investigate further to see what is the endpoint of this time 
evolution. The time flow indicates one might have to 
formulate quantum theory of gravity rooted in irreversi-
ble physics. The presence of additional degrees of free-
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lis, Napoli, 1988.  
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dom in the form of “graphs” also indicates that the clas-
sical phase space might not be described by deterministic 
physics, but by distributions, a manifestation of micro-
scopic irreversible physics in complex systems. 

6. Acknowledgements 

This research is supported by NSERC; research funds of 
University of Lethbridge. I would like to thank B. Dit-
trich for useful discussion; J. Supina for proofrea  
manuscript. 

REFERENCES 
[1] A. Ashtekar, “New Perspectives in Canonical Gravity,” 

Bibliopo

ersity 
dge, 2004.  
BO9780511755804 

[3] T. Thiemann, “Introduction to Modern Canonical Quan- 
tum General Relativity,” Cambridge University Press, Cam- 
bridge, 2007. doi:10.1017/CBO9780511755682 

[4] B. Hall, “The Segal-Bargma
for Compact Lie Groups,” Journal 

nn ‘Coherent State’ Transform 
of Functional Analysis, 

Vol. 122, No. 1, 1994, pp. 103-151.  
doi:10.1006/jfan.1994.1064 

[5] T. Thiemann, “Gauge Field Theory Coherent States (GCS): 
1. General Properties,” Classical and Quantum Gravity, 
Vol. 18, No. 1, 2001, pp. 2025-2064.  
doi:10.1088/0264-9381/18/11/304 

[6] A. Dasgupta, “Semiclassical Quantisation of Space-Times 
with Apparent Horizons,” Classical and Quantum Grav- 
ity, Vol. 23, No. 3, 2006, pp. 635-671.  
doi:10.1088/0264-9381/23/3/007 

[7] A. Dasgupta, “Coherent States for Black Holes,” Journal 

 Canadian Jour- 
8, pp. 659-662.  

 

n,” 
arcel Grossman Meeting, Paris, 

ved from the Gravitational Action,” Physical 

of Cosmology and Astroparticle Physics, Vol. 3, No. 8, 2004, 
pp. 1-36.  

[8] A. Dasgupta, “Semiclassical Horizons,”
nal of Physics, Vol. 86, No. 4, 200

[9] A. Dasgupta and H. Thomas, “Correcting Gravitational 

Entropy of Spherically Symmetric Horizons,” 2006. 
arXiv:gr-qc/0602006  

[10] A. Dasgupta, “Entropic Origin of Hawking Radiatio
Proceedings of 12th M
July 2009.  

[11] J. Brown and J. York, “Quasilocal Energy and Conserved 
Charges Deri
Review D, Vol. 47, No. 4, 1993, pp. 1407-1419.  
doi:10.1103/PhysRevD.47.1407 

[12] B. Dittrich and T. Thiemann, “Testing the Mast
straint Program for Loop Quan

er Con- 
tum Gravity: I. General 

Framework Class,” Classical and Quantum Gravity, Vol. 
23, No. 4, 2006, pp. 1025-1066.  
doi:10.1088/0264-9381/23/4/001 

[13] B. Bahr and T. Thiemann, “Ga
States for Loop Quantum Gravity.

uge-Invariant Coherent 
 II. Non-Abelian Gauge 

ole Entropy,” Physical Re- 

Groups,” Classical and Quantum Gravity, Vol. 26, No. 4, 
2009, Article ID: 045012.  

[14] A. Ashtekar, J. Baez, K. Krasnov and A. Corichi, “Quan- 
tum Geometry and Black H
view Letters, Vol. 80, No. 5, 1998, pp. 904-907.  
doi:10.1103/PhysRevLett.80.904 

[15] S. W. Hawking and G. Horowitz, “The Gravitation
iltonian, Action, Entropy and Surface

al Ham- 
 Terms,” Classical 

and Quantum Gravity, Vol. 13, No. 6, 1996, pp. 1487- 
1498. doi:10.1088/0264-9381/13/6/017 

[16] T. Thiemann and O. Winkler, “Gauge Field Theory Cohe- 
rent States (GCS) III: Ehrenfest Theorems,” Classical and 
Quantum Gravity, Vol. 18, No. 21, 2001, pp. 4629-46841.  
doi:10.1088/0264-9381/18/21/315 

[17] H. Sahlmann and T. Thiemann, “Towards the QFT on 
Curved Space-Time Limit of QGR. 1. A General Scheme,” 
Classical and Quantum Gravity, Vol. 23, No. 3, 2006, pp. 
867-908. doi:10.1088/0264-9381/23/3/019 

[18] H. Sahlmann and T. Thiemann, “Towards the QFT on 
Curved Space-Time Limit of QGR. 2. A Concrete Imple- 
mentation,” Classical and Quantum Gravity, Vol. 23, No. 
3, 2006, pp. 909-954. doi:10.1088/0264-9381/23/3/020 

[19] M. K. Parikh and F. Wilczek, “Hawking Radiation as 
Tunneling,” Physical Review Letters, Vol. 85, No. 24, 
2000, pp. 5042-5045. doi:10.1103/PhysRevLett.85.5042 

 

http://dx.doi.org/10.1017/CBO9780511755804
http://dx.doi.org/10.1017/CBO9780511755804
http://dx.doi.org/10.1017/CBO9780511755804
http://dx.doi.org/10.1017/CBO9780511755682
http://dx.doi.org/10.1017/CBO9780511755682
http://dx.doi.org/10.1006/jfan.1994.1064
http://dx.doi.org/10.1006/jfan.1994.1064
http://dx.doi.org/10.1088/0264-9381/18/11/304
http://dx.doi.org/10.1088/0264-9381/18/11/304
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://dx.doi.org/10.1103/PhysRevD.47.1407
http://dx.doi.org/10.1088/0264-9381/23/4/001
http://dx.doi.org/10.1088/0264-9381/23/4/001
http://dx.doi.org/10.1088/0264-9381/23/4/001
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1103/PhysRevLett.80.904
http://dx.doi.org/10.1088/0264-9381/13/6/017
http://dx.doi.org/10.1088/0264-9381/13/6/017
http://dx.doi.org/10.1088/0264-9381/13/6/017
http://dx.doi.org/10.1088/0264-9381/18/21/315
http://dx.doi.org/10.1088/0264-9381/18/21/315
http://dx.doi.org/10.1088/0264-9381/18/21/315
http://dx.doi.org/10.1088/0264-9381/23/3/019
http://dx.doi.org/10.1088/0264-9381/23/3/019
http://dx.doi.org/10.1088/0264-9381/23/3/019
http://dx.doi.org/10.1088/0264-9381/23/3/020
http://dx.doi.org/10.1088/0264-9381/23/3/020
http://dx.doi.org/10.1088/0264-9381/23/3/020
http://dx.doi.org/10.1103/PhysRevLett.85.5042

