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ABSTRACT 

The deposition of spherical nanoparticles by 
convection and Brownian diffusion in a pipe 
with a cartilaginous ring structure is studied. 
Analytical results for a fully developed flow are 
found for small amplitude rings using the in-
teractive boundary layer theory. It is found that 
the local deposition rate is at maximum at a po-
sition approximately one twelfth of the spacing 
between the rings before the minimum cross 
section of the tube. For larger ring amplitudes 
the problem is solved numerically and separa-
tion then takes place in the depressions be-
tween the rings, and maximum deposition is 
found at the point of reattachment of the flow 
approximately at the same point as in the analy- 
tical theory. Cumulative deposition results are 
also provided with larger deposition rates with 
the inclusion of the cartilaginous rings. Deposi- 
tion results for a developing flow are also provi- 
ded. For the same volume flux as for fully de-
veloped flow the deposition is about 25% larger. 
In general conclusions about the position of 
maximum deposition rate from the analytic the-
ory of fully developed flow also applies qualita-
tively to the case of developing flow. 

Keywords: Nanoparticles; Convection; Brownian 
Motion; Deposition; Respiratory Airways;  
Cartilaginous Rings 

1. INTRODUCTION 

Usage of nanoparticles in material design enables the 
development of new superior products as well as im-
provement of existing ones, but these tiny particles are 
potentially toxic and pose substantial health risks [1]. 

There is an increasing literature that discusses the ability 
of nanoparticles to cause adverse effects in cellular func-
tions [2]. Depending on the field of application, nano- 
particles may enter the body via inhalation, dermal, oral 
or injection exposure routes. Carbon nanotubes, for in-
stance, have a diameter of approximately 10 nm with a 
very much larger length of 1-10 µm, and if inhaled then, 
they may probably quite easily move through the air-
ways down to the alveoli. Once in the alveoli, they can 
get stuck and initiate different diseases, in a similar 
manner as asbestos fibres. Thus, knowledge of transport 
and deposition properties of aerosol particles in lung 
flows is essential. Such knowledge is also useful in the 
optimization of drug delivery with pharmaceutical aero-
sols. 

Of special interest is the effect of cartilaginous rings, 
located in the upper generations of the human airways, 
on nanoparticle deposition caused by convection and 
diffusion. These rings give the airway wall an uneven 
surface, with ring forms protruding into the airway lu-
men, and with depressions between the rings. These re- 
gular and symmetric structures are expected to influence 
turbulent as well as laminar airflow directly passing 
them, which could potentially affect deposition in this 
region. Measurements of a physical model with carti-
laginous rings have been done by Zhang and Finlay [3] 
using particles of size about 5 µm. They find an increase 
in deposition of about 20% due to cartilaginous rings. 

In the present study, we examine the diffusion of 
smaller spherical particles and their deposition on the 
walls of an airway with cartilaginous rings, while leav-
ing the corresponding problem for fibres for future stud-
ies. The results provided by the present analysis for 
spherical particles can then be considered as an upper 
limit for the deposition of fibres.  

One method to determine particle deposition in the 
diffusion limit is to solve the Langevin equation with a 
stochastic force on the particle in a given flow field cal-
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culated from the Navier-Stokes equations. To find depo-
sition statistics, however, a large number of particles 
need to be launched [4]. An alternative approach is to 
consider the equation describing the evolution of the 
probability density, the Fokker-Planck equation, which 
has the advantage of directly providing the statistical 
averages [5]. The disadvantage of this method is that for 
large Peclet-numbers (Pe), implying small diffusion, 
very thin boundary layers develop, and these are difficult 
to resolve numerically. The Fokker-Planck equation has 
the same form as the convective-diffusion equation, de-
scribing the evolution of the concentration of particles. 
In the present paper, the particle deposition is derived by 
combining the Navier-Stokes equations and the convec-
tive-diffusion equation. This methodology has previous- 
ly been applied by Ingham [6-8] and Martonen et al. [9] 
for deposition in smooth-walled tubes. 

A lot of research has been done using a similar set of 
equations describing in heat transfer and mass transfer 
with wavy walls that often occurs in engineering appli-
cations. In these applications however the Pe-number is 
often much smaller, of the same order as the Re-number. 
Here we consider Pe much larger than the Re-number. 
We also believe that these general results are not so well 
known in connection to the biological application con-
sidered in the present paper. 

The paper is organized as follows. In Section 2, an 
approximate analytic solution of the Navier-Stokes equa-
tion is presented together with solutions of the convec-
tive-diffusion equation. To solve the problem for the 
flow with a weakly perturbed sinusoidal boundary, a lin- 
earized interactive boundary layer theory is employed 
[10]. To start with, and as a zero-order solution, a fully 
developed pipe flow is chosen. The analytic solution has 
the advantages that it provides a better understanding of 
the flow and that it introduces the relevant scaling of the 
problem. Furthermore, it can be used to verify the cor-
responding numerical results, to be presented in Subsec-
tion 3.1 Due to the previously mentioned numerical dif-
ficulties with very large Pe, we only consider light brea- 
thing conditions, which implies large but modest Pe. In 
Subsection 3.2, a developing flow is considered. For this 
case, it turns out to be handy to take a numerical ap-
proach, since an analytical treatment is difficult, even 
without rings. To validate the numerical work, the results 
are finally compared with approximate treatments of 
entry flow in smooth-walled tubes presented by Ingham 
[7-8] and Martonen et al. [9]. Here two rather different 
configurations of cartilaginous rings are considered. 

In a real respiratory system neither fully developed 
nor developing axisymmetric tube occurs. It is rather a 
combination of the two since after an airway bifurcation 

approximately half the flow attaches a new wall creating 
a new developing thin velocity boundary layer. However 
we believe that the two extreme cases considered in this 
paper gives a first estimate of the number of deposited 
particles in the real case.  

2. THEORY 

2.1. The Interactive Boundary Layer Theory 

The axisymmetric geometry in Figure 1 is considered, 
for which the flow may be described by the dimension- 
less Navier-Stokes equations according to 
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Here u is the stream-wise velocity and v the radial veloc-
ity, and p is the pressure. In addition, the convective- 
diffusion equation is introduced in the form 
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in order to study the diffusion of particles embedded in 
the fluid. In (2), c can be considered as concentration of 
particles, while in a Fokker-Planck context as a prob-
ability density function. 

The Reynolds number Re and the Peclet number Pe 
are now defined as  

0
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where 0U is the maximum velocity for the fully devel-
oped pipe flow, U  is the mean velocity at the inlet for 
the developing flow,is the viscosity, D is the diffusion 
coefficient, and a is the inlet pipe radius. 
 

 

Figure 1. Axisymmetric geometry of a simple cartilaginous 
ring configuration. 
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The validity of Navier-Stokes depends on the Knud-
sen number, Kn / L , where λ is the mean free-path and  
L is a characteristic length scale of the problem. For 
small Kn the Navier-Stokes equations can be derived 
from an expansion in small Kn-numbers of the more 
fundamental gas kinetic theory (Chapman and Cowling, 
[11]). For the flow in a pipe the radius can be considered 
as a characteristic length and then the Knudsen number 
is very small in the present application. For the flow past 
a spherical particle with radius of the order of nano-me-
ters, the Knudsen number is however not small and the 
Navier-Stokes equations are not valid. In a layer close to 
the particle, of the order of the mean-free path of the 
air-molecules, the more fundamental gas kinetic theory 
must be applied. The role of the Navier-Stokes equations 
is then to provide with “outer” local values of the veloc-
ity field for the free-molecular flow around the particle. 
The drag force and the drag coefficient of the spherical 
particle are only known theoretically for small Kn num-
bers (continuum limit) and large Kn numbers (free- 
molecule limit). For the continuum limit the drag coeffi-
cient is 

3d fk d 
                 (4) 

where fd  is the particle diameter. 
For the intermediate range of Kn numbers an empiri-

cal correction, known as the Cunningham factor is in-
troduced as 
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The expression for the drag coefficient is then 
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which provides a value for the drag coefficient for all 
Knudsen numbers, Kn / fd . For Brownian diffu-

sion the diffusion coefficient D is then related to the drag 
as 
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D
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               (7) 

where is Boltzmanns constant and T is the tempera-
ture. The wavy boundary is described in terms of the di- 
mensionless amplitude , defined as  

*

a

  . 

In order to analyze the flow problem analytically, an 
interactive boundary layer theory is applied to the fluid 
flow problem. Following the presentation by Sobey [10], 
the solution of the Navier-Stokes equation is divided into 

two parts, the outer part describing the core flow and the 
inner one describing the flow in the neighbourhood of 
the boundary. The present formulation of the theory is 
applicable when the typical length scale of the wall per-
turbation is of the same order as the pipe radius. In this 
so called “fine indentation limit” a balancing of the order 
of magnitude of terms gives that the wave amplitude 
scales with the Reynolds number as 

1/3(Re )O  .                (8) 

The core flow is then described by the small  and large 
re-number expansions 
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in which the leading order terms correspond to unper-
turbed pipe flow, and the second terms are corrections 
due to the finite amplitude of the wavy boundary. In the 
correction terms note the relationship between the am-
plitude and the Reynolds number given in (8). For a 
description of the boundary layer, a coordinate R is in-
troduced in the following manner: 

1/3(1 ) ReR r                   (10) 

within the present formulation, the velocities in the 
boundary layer are scaled as 

1/3

2/3

Re , (1)

v = Re v , v (1).

u u u O

O





 


             (11) 

The boundary layer equation for the axial velocity com-
ponent can be defined as 
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where the pressure gradient is only a function of the 
stream-wise coordinate and the pressure scales as 

1/3 ˆ ˆRe , (1)p p p O  .             (13) 

It is convenient to rewrite (12) in terms of the stream- 
function   of the boundary layer as  
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u
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where 
2/3Re , (1).O                 (15) 

Another wall coordinate is introduced as 

( )Y R f x  ,                 (16) 
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where ( ) (1)f x O  is the shape of the wall and is a 
parameter controlling the amplitude of the wavy wall. The 
boundary layer (12) then becomes  
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where the asymptotic matching condition with the outer 
core solution is given by 
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and the boundary condition at the wall ( )R f x  is the 

usual condition of no slip, such that 
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Y
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To proceed analytically, the boundary layer (17) is solv- 
ed for the case of a small perturbation of the cylindrical 
wall so that << 1.  

This means that solutions corresponding to flow sepa- 
ration cannot be strictly described, however increasing 
from small values give a first indication of where the 
flow may separate. For larger wall perturbations   
(17) has to be solved numerically together with boun- 
dary conditions and matching with the core solution and 
the upstream solution. For small µ we assume that the 
solution of the boundary layer equation can be written as  
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The matching with the outer core solution is then ex-
pressed as  
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After linearization the boundary layer, (17) becomes 
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which can be solved by introducing the Fourier trans-
form 
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A solution for the first derivative is of the form 
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where ˆ ( )W k  is a general function of k and Ai is the 

Airy-function. Matching with the core solution requires 
that 

ˆ
ˆ2 ( )f k asY

Y

  


         (25) 

which determines the function ˆ ( )W k  and we find  
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The boundary layer velocity close to the boundary, 
therefore, is given by the Taylor expansion  
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After inverting the Fourier transform, the velocity be-
comes 
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For a specific form of the boundary f(x), the function 
g(x) in (28) can be calculated. An interpretation of this 
term is that it corresponds to the wall shear stress intro-
duced by the wavy boundary. The minimum of this func-
tion is therefore given to the position of minimum wall 
shear stress. Thus, in a situation in which µ increases 
from zero to small but finite values, this minimum gives 
an indication of where the flow first separates. The cor-
responding wall normal velocity to (28) is 

21
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The expanded results (28-29) are of importance for 
the large Pe solution of the convective-diffusion equa-
tion since, as will be shown below, only the velocity 
components close to the boundary are required. 

2.2. The Convective-Diffusion Equation 

Next, consider the convective-diffusion equation 
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Since we consider the limit of large Pe, the lowest order 
approximation to (30) is simply 
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c c

u
x r

 
 

 
.               (31) 

This suggests that the concentration is preserved along 
streamlines. For absorption of particles reaching the 
boundary, however, the required boundary condition is  

0c  , which cannot be fulfilled by solutions of (31), 
therefore, a boundary layer analysis of (30) is required. 
Using the boundary variables introduced in the previous 
section, the diffusion equation can be written in the form 
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where the second derivative of c with respect to x is ne-
glected as is a common praxis in boundary layer analysis. 
For the application in focus, is usually very small, so 
we consider this to be the case for the rest of this paper. 

Introducing a boundary layer variable Y    , (32) 

transforms to 
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By Taylor-expanding the arguments of the velocity com- 
ponents and balancing the order of magnitude of the 
terms it is found that 1/3 implying that only the ap-
proximate form of the velocities in (28-29) are required. 
A similarity solution exists with a similarity variable of 
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 and with a corresponding differen-

tial equation 
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Choosing the quantity inside the bracket to be 3, the 
equation for the concentration boundary layer thickness 
h(x) is obtained as 
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For µ = 0 we recover the result for convective-diffu- 
sion in ordinary pipes. The equation for the concentra-
tion, (34), then becomes 
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The solution can be written in terms of the incomplete 
gamma function with solution fulfilling the boundary 
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Of special interest is the particle deposition due to 

diffusion, which corresponds to the normal component 
of the particle diffusion flux at the wall. In non-dimen-
sional form this is 
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Neglecting terms of order 2( )O   we find the following 

expression for the deposition: 
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As an example of a possible cartilaginous wall-shape, 
we consider the periodic function  
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Here, the parameter k0 is measure of the spacing between 
the rings. A convenient lowest order approximation for 
the analytical analysis is the first two Fourier compo-
nents of (41), i.e., 
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inspection of bronchoscopic videos shows that for the 
application of cartilaginous rings, these simple wall 
shapes are quite reasonable, at least in some parts of the 
tracheobronchial tree and the shape given by (41) is 
similar to that studied by Martonen et al. [12]. The dif-
ferences between the shape (42) and the shape consid-
ered by Martonen will be discussed in Subsection 3.2. 

For x > 0 the inversion of the Fourier transforms, 
needed for the calculation of the velocity components, 
can be found by deforming the complex k-integration 
contour into the complex plane around a branch-cut cho- 
sen along the positive imaginary k-axis. For x < 0 the 
integration contour can be closed in the lower half com-
plex k-plane yielding that it is zero. This means that 
there is no perturbation of the boundary layer flow up-
stream of x = 0. For x > 0 the following result is obtained 
after inversion of the Fourier integrals 
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or for brevity 
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where g(x) is defined by 
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Here , ( )S z   is a Lommel function defined in Abra- 

mowitz and Stegun [12]. For large x the first term in g(x) 
dominates and is represented by a simple sinusoidal form. 

In Figure 2 the function g(x) is plotted and compared 
with the shape of the boundary f(x). It is noted that both 
functions have the same period with g(x) ahead of f(x) 
with a phase that for large x becomes . Since g(x) is 
the correction of the wall shear stress due to the wavy 
wall, this result can be used to pinpoint the position 
where separation first occurs. This position is where g(x) 
has a minimum, i.e., before the minimum of f(x). 

The behaviour of g(x) is also essential for the particle 
deposition rate since, as will be shown below, g(x) is at 
its maximum where the concentration boundary layer 
thickness is at its minimum. Correspondingly, the con-
centration boundary layer thickness is at its maximum at 
the point of first separation. From (36) the general ex- 
pression for the concentration boundary layer thickness 
can be derived as 

1/3

1/3 1/2

1/2 0

9 1 1
( ) ( ) (1 ( ))

12 2(1 ( ))
2

x

h x g d
g x

  


 
  

 


 
(45) 

Expanding (45) results in 
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                                                  (46) 

where it can be noted that the expansion (46) is invalid 
for very small x. The local deposition of particles can be 
obtained from the normal diffusive flux at the wall, 
given by 

0

1
ˆ( )

Pen
Y

j n c


   .            (47) 

Now, by inserting (45) into (47) the local flux is given 
by 
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Figure 2. The functions g(x) and f(x). 
 
or with numerical values 

-2/30.6783Pe ( )nj x  

where 
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Please observe that the scaling with Pe is the same as for 
ordinary pipe flow ( 

Since the largest deposition occurs for the minimum 
thickness of h(x), we note from (44-45) that the largest 
deposition is localized to the region just before the 
maximum of f(x), which for the wall geometry defined in 
(42) is in fact approximately ahead of the maximum 
of f(x). It follows that the minimum deposition occurs at 
the point of first separation. 

Using expression (44), an analytic expression for the 
integral in (45) can be obtained as 
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(50) 

Combining this with (46) the local deposition rate given 
by (48) can be calculated. In Figure 3, the local deposi-
tion rate is plotted as a function of x for a finite and a 
zero value of . From this figure it is clearly seen that 
the maximum local deposition is slightly ahead of the 
minimum radius of the pipe. 

It is also of interest to calculate the cumulative depo-  
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Figure 3. Local deposition rates for finite and zero value of 
. To connect the results with the ring structure, the shape of 
the rings f(x) are also shown. 

 
sition after a length X by performing the surface integral 
over the azimuth angle and the x-coordinate. This can be 
done analytically, but the expression is rather compli-
cated and is omitted for brevity. The cumulative deposi-
tion after length X is instead written as 

1/3 2/3
0

6 2
( ) ( ) ( , , , )

1 9( )
3

C X Pe X k
    


    (51) 

where 
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                                    (52) 

To get an expression for the probability of a particle to 
adhere to the boundary after a length X, (48) is divided 
by the inlet flux, which in dimensionless quantities is 
equal to 2 so 
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For cylinder tube flow  a rather neat expression 
materializes 
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                                     (54) 

This result is valid for a cylindrical smooth-walled tube, 
and is in agreement with the result given by Ingham [6] 
for a fully developed parabolic velocity profile. Analysis 
of (49) and (50) shows that the total deposition for finite 
 is somewhat greater than for the case of an ordinary 

pipe, and effects from the waviness of the wall are 
clearly revealed, as exemplified in Figure 4 where the 
cumulative deposition given by (50) is plotted for dif-
ferent amplitudes of the wall perturbation. The values of 
the dimensionless numbers are Re = 450 and Pe = 
100000, corresponding approximately to light breathing 
conditions in generation 4 [12] with a particle diameter 
of 10 nm and pipe radius 2.25 mm. Results are shown 
for an ordinary smooth pipe, and for ring configurations 
with small ring-amplitudes  and  
where we note the relation with  as 1/ 2    

1/3Re . The spacing of the rings is chosen such that there 
are five rings within a length of 6 radii, corresponding to 
the wavenumber 0 5k  . 

3. NUMERICAL RESULTS 

3.1. Comparison of Theory with Numerical 
Solution for Parabolic Flow 

The approximate theoretical analysis in Section 2 can 
only provide results for small ring-amplitudes without 
flow separation. For larger amplitudes it is necessary to 
solve the equations numerically. Hence, a numerical so- 
lution of (1-2) is considered. The commercial software 
Comsol Multiphysics 3.5 is used to serve this purpose, 
since this code enables the Navier-Stokes and convec-
tive-diffusion equations to be solved simultaneously. In 
Comsol, the finite element method is used, and an adaptive 
 

 

Figure 4. Cumulative deposition P along the wall as a func-
tion of position X as obtained from (50) for different ring- 
amplitudes. 

mesh-refinement method is applied. For the implementa-
tion of the geometry and for post-processing, Comsol 
script or Matlab are used, both of which can be conven-
iently applied together with Comsol Multiphysics. To 
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start with, the equations for the wavy wall are solved (42) 
and then the theory presented in the previous section is 
used to validate the numerical results. 

First, the theoretical (51) and numerical results for 
smooth-walled pipe flow are compared. The agreement 
is very good for Pe that equals to 100000 and with a Re 
of 450, despite the boundary layer approximation used in 
the theoretical analysis, see Figure 5. Next, the rings 
with a small amplitude of 0.025 diameters is studied. 
The agreement between the local deposition rate as cal-
culated from the numerical method and the analytic 
method presented in the former section is rather good, 
see Figure 6. The agreement between the methods for 
the corresponding cumulative deposition is also rela-
tively good; where the deviation is most notable for 
small and large X, see Figure 7. It is therefore concluded 
that the numerical results are reliable and we proceed 
with considering larger values of the ring-amplitudes. 

Consider a ring-amplitude of .1, mimicking the 
size of amplitudes used in other studies of effects of the 
cartilaginous rings, e.g. (Martonen et al. 1994) [12]. 
There is a qualitative difference in the flow pattern be-
tween this case and that for small . For he 
flow separates in the region between the rings, see the 
lower plot in Figure 8, while for , there is no 
separation, see upper plot in Figure 8. 

A rough criterion for separation can be obtained from 
the theory developed in Subsection 2.1. From the ex-
pression for the velocity profile at the wall g(x) we find 
for large x that the wall shear stress becomes 

0

2 ( )
Y

u
g x

Y





 


             (55) 

at minimum g(x) and for large x we have zero wall shear 
stress if 

1/3 1/3
02Re (0)62crit critAi k   .          (56) 

Solving for critical amplitude we have 
1/3 1/3
00.75 2 Recrit critk  .           (57) 

For the present case this gives the critical amplitude of 
about 0.06 which is quite close to the estimate from the 
numerical analysis. 

In Figure 8 the red area corresponds to high concen-
tration c while the blue area corresponds to regions of 
lower concentration. Remarkably, but in accordance with 
the theory, the deposition is not larger in the separated 
regions, instead the maximum deposition occurs at the 
point of reattachment, i.e., just before minimum contrac-
tion. This is also in agreement with the theory developed 
in Subsection 2.2 where the largest deposition is ob-
tained at the maxima of the function g(x) and the lowest 
deposition at the point of minimum g(x), the latter cor-
responding to the position of first separation. 

 

Figure 5. Comparison between numerical and analytical solu-
tions for smooth pipe. 
 

 

Figure 6. Comparison with numerical and analytical results 
for a ring amplitude = 0.05. 

 

 

Figure 7. Cumulative deposition P along the wall as a function. 
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In Figure 9 the cumulative deposition for amplitudes 
.1 and are shown. It is noted that the larg-
est increase in deposition compared to a smooth pipe is 
in the region before the first ring, where the deposition 
for the case  is about 40% higher than for the 
smooth-walled tube. 

3.2. Analytic and Numerical Results for  
Developing Flow 

Since after an airway bifurcation approximately half the 
flow in each branch will have a developing character, we 
here consider a developing flow in an axisymmetric tube 
with cartilaginous rings. For this case an analytic ap-
proach is nontrivial, even without rings; hence, the case 
with cartilaginous rings is only treated numerically. Ne-
glecting the rings, different approximate results have 
been presented in the literature. Ingham [7,8] applies an 
integral approach for the entry flow and solves the con-
vective-diffusion equation numerically. An approximate 
expression for the deposition, similar to (51), is provided 
in the form 
 

 

Figure 8 Concentration distribution and streamlines for 
upper)and (lower). 

 

 

Figure 9. Cumulative deposition for different ring ampli-
tudes. 

5/9 2/3Pe
( ) 3.023( ) ( )

Re Recyl

X
P X             (58) 

which is valid for small X/R < 0.02. A similar approxi-
mate analytical result using a more heuristic method has 
been given by Martonen et al. [9] as 

1/2 2/3Pe
( ) 2.75( ) ( )

Re Recyl

X
P X  .            (59) 

We note the difference in the scaling for X/Re in (55) 
and (56). It is therefore of interest to consider this prob-
lem numerically where the applied conditions at the inlet  
correspond to uniform flow and the volume flux is the 
same as for the parabolic flow case with Re = 450 and 
Pe = 100000. 

The numerical result obtained fits well in between the 
results of Ingham and Martonen as shown in Figure 10, 
where the solid red line corresponds to the numerical 
solution and the dash-dotted curve corresponds to the 
result (55) and the dashed line corresponds to the result 
(56). For comparison the analytical results for the fully 
developed case is also shown as dotted. It is seen that the 
deposition is about 25% larger for the developing flow 
as compared to the parabolic flow. 

Since there is a disagreement in the power between (55) 
and (56), the power for the numerical solution is calcu-
lated to 0.5437 for large X, which is more close to the 
value 5 / 9 0.5556  provided by Ingham [8] than the value 
1/2 given by Martonen et al. [9]. On the other hand, the 
results by Martonen et al. [9], obtained from (56), have a 
good conformity near the entrance of the tube, which is as 
expected since the flow is of here of Blasius type, which 
has the power 1/2 (Schlichting et al. [13]). 

Next we consider the total deposition for developing 
 

 

Figure 10. Comparison of different analytical results (55- 
56) with numerical solution for a smooth pipe with de-
veloping velocity profile. 
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flow for rings with amplitudes z = 0.1 and . See 
Figure 11. The results show that the largest increase 
in deposition occurs before the first cartilage ring with 
an increase of the order of 25% for  and 35% 
for when compared to the case of a smooth 
pipe. The total deposition is as for the fully developed 
case also increased considerably by increasing the 
amplitude from to  

Considering other shapes of the cartilaginous rings is 
also of interest. The shape studied by Martonen et al. [12] 
is presented in Figure 12. To compare this case with the 
case studied above we consider the same number of 
rings. This means that the region between the rings is 
larger than for the case of the sinusoidal shape discussed 
above. Since these regions have lower deposition rates 
than in the region of smaller cross section the overall 
deposition is smaller than for the corresponding sinusoi-
dal shapes see Figure 13. 
 

 

Figure 11. Cumulative deposition for different ring am-
plitudes for the case of developing flow. 

 

 
Figure 12 Cartilaginous ring configuration of Marto-
nen type. 

 
Figure 13. Cumulative deposition for the ring configura-
tion by Martonen et al [12]. 

4. CONCLUSIONS AND DISCUSSION 

The deposition of nano-sized spherical particles on 
thewalls of a cylindrical tube with periodically spaced 
cartilaginous rings has been explored. For fully de-
veloped flow and for small ring amplitudes analytic 
formulas are derived. It is found that the rings in-
crease the deposition rate and it is shown analytically 
that the largest deposition occurs at a position ap-
proximately /12 before the minimum cross section 
where  is the spacing between the rings. These re-
sults are validated with numerical computations. For 
larger amplitude of the rings  > 0.06 corresponding 
to light breathing conditions, the flow separates and 
the largest local deposition is at the point of reattach-
ment. Although it has a strong influence on the varia-
tion in deposition along the tube the total deposition is 
marginally effected by the amplitude of the rings for 
small amplitudes  < 0.10. For slightly larger values 
of the amplitude  = 0.05, the total deposition is how-
ever increased considerably. 

For the case of a developing smooth-wall flow the 
deposition rates are 25% larger than for fully devel-
oped flow while the additional deposition effect 
caused by the cartilaginous rings is of the same order 
as for the fully-developed flow. The rate dependency 
can be of interest for flow in a tube downstream a 
bifurcation where approximately half of the flow at-
taches to a new wall. A comparison with the ring 
shapes considered by Martonen et al. [12] also illus-
trates another effect, the effect of the ratio of ring ra-
dius to the length between the rings. Considering the 
same number of rings as the sinusoidal shapes, the 
distance between the rings is larger and therefore 
from theory we know that these regions of separated 
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flow have lower deposition rates than in the regions 
close to the rings, and therefore the overall deposition 
is smaller. 

Future work involves other breathing conditions 
especially heavy breathing conditions (large Pe) and 
non-spherical particles such as fibres. The effect of 
asymmetric flow after a bifurcation at inlet is also of 
great interest. Particle deposition due to cartilaginous 
rings in the trachea will also be considered. The flow 
in the trachea is in general turbulent and the present 
results which are valid for laminar flow can therefore 
then only be applied for very weak breathing condi-
tions. Here it is of interest to investigate whether the 
separation due to the rings that occur for the laminar 
case will still be present in the turbulent case, since it 
is a well known phenomenon in fluid mechanics that 
turbulence resists the onset of separation. 

In recent experiments (Åkerstedt et al. [15]) on 
carbon nanotubes it has been seen that the particles 
are electrically charged, therefore studies of deposi-
tion due to charged particles will also be considered. 
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