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ABSTRACT

In this paper, we consider a class of Sine-Gordon equations which arise from the model of the thermoelastic coupled
rod. Firstly, by virtue of the classical semigroup theory, we prove the existence and uniqueness of the mild solution un-
der certain initial-boundary value for above-mentioned equations. Secondly, we obtain the boundedness of solutions by
the priori estimates. Lastly, we prove the existence of a global attractor.
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1. Introduction

In this paper, we consider the following nonlinear ther-
moelastic coupled rod system

u, —Au—calAu, +ysinu+0+u, +eu =g (x),

xeQ,t>0

0, —kAO+u, =g,(x), x>0

u(x,1)| scon = 0(x.1) 0

u(x,0)=uy(x),u, (x,0)=u(x),0(x,0)=6,(x),xeQ
(1

The above system describes the vibrations of an extensi-

ble thermoelastic rod model. Here u = u(x, f) and

6 = 0(x, ?) are all real-valued functions on Q x [0, +oo],

Q = (0, 1) is an open bounded domain of R. The coeffi-

cient a, y, €, k are all positive constants, where « is called

the strong damping coefficient of rod, ¢ is the small pa-
rameter. The sign A denotes

xeoQ

2

ai—z,gl(x),gz (x)e H!(Q).

“Global solutions” and “global attractor” are two basic
concepts in the study of long-time behavior of nonlinear
dissipative evolution equations with various dissipation.
If the coupled terms are equivalent to 0, Equations (1)
will decouple to the Sine-Gordon equation

u, —Au—alu, +ysinu+u, +eu =g (x) 2)

and the heat equation. The structure of global attractors
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for weakly damped nonlinear wave Equation (2) as a, ¢ =
0 is studied in Temam [1] and Zhu [2] and Wang [3] and
the one for the strongly damped nonlinear wave equation
is considered in Zhou [4]. Semion [5] shows the Frechet
differentiability for a damped sine-Gordon equation with
a variable diffusion coefficient. Han [6] proves the exis-
tence of Random attractors for stochastic Sine-Gordon
lattice system. But have the global solution and the
global attractor for the “thermoelastic coupled” rod sys-
tem (1)? To our knowledge, nothing was known until
now.

In this paper, we give the proof of the existence and
uniqueness of the mild solution and the existence of a
global attractor for system (1) in space
Hy (Q) x LA(Q) x L(Q).

2. Existence and Uniqueness of Global
Solutions

It is well known that operator

A=-ADA) = H,(Q)NH(Q) — L*(Q) is self-adjoint,
positive and linear and its eigenvalues {4} . satisfy
0<A <A< <A,<--and 4, — +oo as m — +oo. Set
LA(Q), Hy(Q), H (Q)nH(Q),
E=H,(Q)xL’(Q)xL*(Q) with the usual inner prod-
ucts and norms, respectively

u,v)=| wvdx,|ul| = (u,u %,Vu,vEL2 Q),
Q

(u,v)] = IQVqudx, u"1 = (u,u)% Vu,ve Hy (Q)

1
(v 32), = (.1,), +(VHV2)+(91’92)’||J’||E =(ry):
vy, :(u,.,v,.,&,)r , y:(u,v,Q)T €E,i=12

It is convenient to reduce (1) to an evolution equation
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of the first order in time, Let u, = v, then (1) are equiva-
lent to the following initial value problem in £,

‘;—fz CY+F(Y,1),V120

Y(O):Y0 =(u0,u1,90)T ek

where Y= (u, v, )",

0
F(Y,t)=| —ysinu—u,—eu—0+g (x)
—u, + g, (x)
0o I 0 0 1 0
C=|A oA 0 |=|-4 —-ad4 0
0 0 kA 0 0 —kA4

with D(C) = D(A4) x D(A) x D(A), 1 is the identity opera-
tor LX(Q), H,(Q) and D(A). Set B =-C, then similar to
[7], by making some slight modification and reasoning,
we can prove that for any a, k> 0, B is a sectorial opera-
tor on E and generates an analytic semigroup e on E
for £ > 0. By the assumptions gi(x), g, (x)eH,(Q), it
is easy to check that the function F(Y, f):E — E is locally
Lipschitz continuous with respect to ¥, By the classical
semigroup theory concerning the existence and unique-
ness of the solution of evolution differential equations,
we have

Theorem 2.1. Assume that the assumptions gi(x),
g, (x)e Hy(Q) hold, then consider the initial value
problem (3) in Hilbert space E. For any initial value
Y, = (uy,1,,6,)" € E, there exists a unique continuous
function Y(t) = Y(t, Yo) = (u,v,0) € C((0,4));E)
such that Y(¢) = (u(r), W(f), O(r))" satisfies the integral
equation

_ e b C(t-s)
Y(6)=Y(8,Y,) =Y, + [ e TIF(Y(s),s5)ds .

In this case, Y(?) is called a mild solution of the system
(3) and Y(¢) = Y(¢, Yy) is jointly continuous in ¢ and Y,
that is, the solution (u, u;, 6) of the system (1) satisfies
(u,u,,@) e C((O, +00)),E) .

By Theorem 2.1, for any ¢ > 0, we may introduce the
map

{S(t),t > 0}:{u0,u1,c90} —>{u(l),ut(l),9(l)},E—>E.

Itmaps E= Hy(Q) x LX) x L(Q) into itself and it
enjoys the usual process properties as follows

S(0)=1
{S(t+r)=S(Z)S(‘[),Vt20

It is obviously that the map {S(¢), > 0}, V¢eR is
continuous in E. In the following, we will introduce the
existence of the bounded absorbing set and the global
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attractor for map {S(¢), #> 0} in E.

3. The Existence of Bounded Absorbing Set

In this section, we will show boundedness of the solu-
tions for system (3). For this purpose, we define a
weighted inner product and norm in

E= Hy(Q) xLXQ)x L) by

((015%):/“(”17”2 )1 +(W1=W2)+('91’€2)’

\ “
el = (o-0);

T .
for any ¢, :(ui9Wi99i) e E,i=12,where w;,=u; + ¢,

i=1,2 and u is chosen by

2+’
2+2a%

Obviously the norm |||| . 1n(4) is equivalent to the usual

norm in space E.
Let ¢ = (u, w, H)T, w = u, + ¢u, where ¢ is chosen as

(04
E=——5,
24203

then the system (3) can be written as
o +H(p)=F(p.),

5
?(0) = (uy, wy =u, +&uy,6,),620 ©)
0
where F (p,t)=| —ysinu+g (x)
g (x)
su—w
and H(p)=| Au+60—¢c(w—eu)+ad(w—cu)+w
kAO+w—¢cu
Obviously, the mapping
S, (1): (g, +80,6,) = (w,u, + £,0)' ©)

E—>Et>0
has the relation with
5(1):5. ()= RS(1)R.

where R {u, w, 8} —{u, w + eu, 6} is an isomorphism of
E. So we only need consider the equivalent map (6).

For the boundedness of the solution of (5) in E, we
firstly present an important lemma which plays an im-
portant role in this artical.

Lemma 3.1. For any
Q= (u,W,Q)T € Hé (Q) x L}(Q) x L*(Q). we have
A%w

‘2

(H(0).0), = 8]l + & [l +3, |0 + a‘

where
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3 3 3
5 —o-t 5 —lder i 5 —dk—pr 2
4u 4u 4u ¢

. . e 1
are all positive constants if &k >—+—.
€

Proof.

(11(0).0), ~{ 3ol + .1+ 8 o+

+(1-&=6, =8|’
(u 6’)+82 (u,w)

(2k-6,-5,)

= (e =) |ulf +
+(2k-8,-8,)|6 —2(w.0)-¢
> (o= ulf +(1-2-8 -6, +
<ol =21llwl—lle] -l
l1--6,-0.

2w
M"g"

> (e =8l = & ful ol + ———=
(e =)l &[]+

= 2|6l +

1555

——

2k -9, -9, " 9"

with
2u(e-6,)(1-e-8,-6,) =
2u(e-6,)(2k-06,-05,)=¢
(1-6-6,-6,)(2k-06,-06,)=4

the Lemma is easily obtained.

Theorem 3.1. There exists a positive constant M > 0
such that for any bounded set B of E, then there exists
To(B) > 0 such that the solution ¢ = (u(?), w(?), 6(£))" of (5)
with ¢(0)e B satisfies

oo, = (st + o) Lo <
Vi>T,(B)

in which w = u, + cu.

Proof. Let ¢ = (u, w, 6)", w = u, + eu be the solution of
(5) with initial value $(0)=((uw,.6,)) €E. Taklng
the inner product (-,-), of (5) with ¢ = (u, w, 6)" and
considering of Lemma 3.1, we have

1d
5l Ol +ale (Ol + &
2

1
+6, 6] +a|| 42w

<(F(e.0).0),

with

2
1
(R(0).0), <5+ 2ad ] ()
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2

we have

1 1
s o le GNP+ e (o

By Gronwall’s inequality we have
1 2
sl |

_ 1 ;/2 1

o) <l 5 w5l +
1

o |

1y 1 2
=y Ly L
et (3'1[4a+252 ] 2,

thus we complete the proof of the Theorem.

Corollary 3.1. Let By be a bounded closed ball of E
centered at 0 of radius M. For any initial value
"gz) ||2 < M?, there exists a constant M; = MI(M) such
that the solutlon of (5) p(t) = (u(r), w(t), 6(f))" satisfies
lo(oll, <31, (3. 20,

4. The Existence of a Global Attractor

Theorem 4.1. For any initial value ¢, € B, , the solution
o(t) = (u(f), w(?t), 6(t))" of (5) can be decomposed into

(1) = p1(1) + pa(t) where g(2) = (i), wi(®), 041))',
wi(f) = u;(t) + euyt), i = 1, 2 satisfy, respectively( V¢ > 0)

)

6, (1)

o (03 = sl (O + s )+

2

1
A, (t)
E

2

Auy (1) +
1

<M;

2

Aw, (1) +

2
=u

®)

where M, and M, depend on M.
Proof. Let o(7) = (u(?), (1), 6(¢)), Vt>0be a solu-
tion of (5) in space E with the initial value
9(0)= (uo,wo,ﬁ) €B,. .
Let p(2) =p:1(?) +¢a(8), where ¢,(t) = (ui(t), wi?), 6(0)",
wi(f) = u;(t) + euyt), i = 1, 2, satisfy, respectively
@, +H(p)=0,Yt20
T T
(0)=(,(0).(0).6,(0)) =(up.w,,6) € £

where

&)

su, —w,
—euy )+ ad(w —eu)+w
kAB, +w, — eu,

H(wl)(AuleH e(w

and
{¢2t +H(¢2):Fl((ﬂ,t),vt20,

£.(0)= (16 (0).: (0).0,(0) ~(0.0.0) e
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where
s, —w,
H(p,)=| Auy +6, —&(w, —eu, )+ a A(w, —u, )+ w,

kAOG, +w, —u,

Taking the inner product of (9) with ¢,(f) we have

||€01|| +(H(p).¢), =0 (D

Similar to the proof of Lemma 3.1, we can obtain

(H(gol)a¢l)E >0, "501"; (12)
3
where §4=51=g—g—>0.
4u

Thus by (12) and Gronwall’s inequality, (7) is easily
obtained from (11).
By putting x =0, 1 and =0 in (10) we get

u2xxt (O’O) = u2xx1 (1’0) = 0 (13)
The operator A4 operates into (10) to get

A, + A H(p,) = A°F, (p,1),

=(0,0,0)"
(14)

4,(0)= 4! (1 (0).w: (0).0,(0))

Taking the inner product of (14) with
T
Ap, = (A%uz,A%wz,A%HZ)

2 1 1 1 1
+(A2H(¢2),A2¢2) :(AZE(¢,t),A2(p2)
E E E
(15)

1df 2
— |42
Zdt‘ 72

Considering to (13) we get that

(41 (p.). 40
E

LR 2
= pe|Au, 4
I

val w4,

k|46, +2(A%WZ,A%92)—g(/ﬁuz,,ﬁ@)

1 2
—&|A*w,

2 1 1
& (Azuz,Azwz)
with

Sy—2+a||Aw ||2 +(A%g (x t) A%w )
4a 2 1 2t ) 2
+(A%g2 (x,t),A%Hz)
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from (15) we have
1d

a0 +(1-¢)

+2(AEWZ,A592)—5(A%2,A%92)+

2 2

2
Au, Aw, +2k‘

A2¢)2 +/Jg

1

2 1 1
£ (Azuz,Azwz)

2
< :—a+(A%g] (x,t),A%w2)+(A%g2 (x,t),A%HZ)
(16)

Similar to the proof of the Lemma 3.1, from (16) we
get

2dt

2

<7 .

1 d‘Az%

2
+26, HA%%
E

2 2

A2g1 A%gz

s
25,

By the Gronwall’s inequality, we have

2
‘A%(pz (1) s‘
E

N
LN o
29,

2
M32 :i(y__{_L A%gl
) )

(-2411)

2
A0, (0) e
E

2

A2g1 A%gz

)
)

1
25,

Set

2

Azgz

Thus, the proof of Theorem 4.1 is complete.
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