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ABSTRACT 

Damped wave diffusion effects during oxygen transport in islets of Langerhans is studied. Simultaneous reaction and 
diffusion models were developed. The asymptotic limits of first and zeroth order in Michaelis and Menten kinetics was 
used in the study. Parabolic Fick diffusion and hyperbolic damped wave diffusion were studied separately. Method of 
relativistic transformation was used in order to obtain the solution for the hyperbolic model. Model solutions was used 
to obtain mass inertial times. Convective boundary condition was used. Sharma number (mass) may be used in evaluat-
ing the importance of the damped wave diffusion process in relation to other processes such as convection, Fick steady 
diffusion in the given application. Four regimes can be identified in the solution of hyperbolic damped wave diffusion 
model. These are: 1) Zero Transfer Inertial Regime, 0 inertia0    ; 2) Rising Regime during times greater than iner-

tial regime and less than at the wave front, Xp > ; 3) at Wave front ,  = Xp; 4) Falling Regime in open Interval, of times 
greater than at the wave front,  > Xp. Method of superposition of steady state concentration and transient concentration 
used in both solutions of parabolic and hyperbolic models. Expression for steady state concentration developed. Closed 
form analytic model solutions developed in asymptotic limits of Michaelis and Menten kinetic at zeroth order and first 
order. Expression for Penetration Length Derived-Hypoxia Explained. Expression for Inertial Lag Time Derived. Solu-
tion was obtained by the method of separation of variables for transient for parabolic model and by the method of rela-
tivistic transformation for hyperbolic models. The concentration profile was expressed as a sum of steadty state and 
transient parts. 
 
Keywords: C Type I Diabetes; Simultaneous Reaction and Diffusion; Michaelis and Menten Kinetics; Damped Wave 

Diffusion; Relativistic Transformation; Hyperbolic Models; Parabolic Models; Islets of Langerhans 

1. Introduction 

Diffusion of oxygen in pancreatic islets in an important 
consideration during development of models of viability 
and function of the islets of Langerhans (Figure 1). Islets 
of Langerhans are spheroidal aggregate of cells located 
in pancreas. They secrete harmones such as insulin dur- 
ing glucose metabolism. These islets are transplanted in 
order to effect cure for Type I diabetes and are often enc- 
apsulated in devices. Islets that are removed from panc- 
reas loose their internal vascularization. The cure is de- 
pends on diffusion of oxygen from external environment.  

Avgoustiniatos et al. [1] and Colton et al. [2] deve- 
loped a method for estimation of maximum oxygen cons- 
umption rate and the oxygen permeability in the tissue in 
a suspension of spherical aggregates from measurements 
of partial pressure of oxygen in batch experiments. A si- 
multaneous reaction and diffusion model was used. Will- 
iams et al. [3] discuss a dramatic diffusion barrier that 

 

Figure 1. Islets of Langerhans. 
 
leads to core cel death during islet transplantation as cure 
for Type I diabetes. They attempted to measure the 
diffusion barrier in intact human islets and deterimine its 
role in cessation of insulin secretion. They monitored im- 
peded diffusion into iselts using fluorescent destran beads. 
They linked the poor diffusion properties with necrosis 
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and not apoptosis. The Fick diffusion model was used in 
the analysis of [1-3]. Sharma [4,5] has shown that non- 
Fick damped wave diffusion effects can become signi- 
ficant at short time scales. Bounded solutions from hyp- 
erbolic models can be obtained when final time condition 
and physically reasonable initial time rate of change con- 
ditions are used. In this study, damped wave diffusion 
effects during the diffusion of oxygen in islets of Lange- 
rhans is accounted for in detail.  

The metabolic process becomes diffusion limited. Oxy- 
gen availability becomes limited in some regions of the 
tissue. The metabolic rate in the cells and demand for 
oxygen is greater than the oxygen that has diffused to 
that region. Growth of multicellular systems over 100 
m cease to happen. A condition called hypoxia has been 
observed in Brockman bodies in fish. During islet trans- 
plantation, lack of oxygen supply may restrict graft func- 
tion especially when encapsulated tissue is used.  

Oxygen partial pressure were measured in the islet 
organs of Osphronemus gorami (Brockmann bodies) 
placed in culture. A microelectrode was used to detect 
oxygen partial pressure in the surrounding region of the 
islet organ that is 800 m in diameter and within the cells. 
This was achieved in a radial track. Within a distance of 
100 m for the case of no convection (Schrezenmeir et al. 
[6]), 

2O  is close to zero. A condition called necrosis is 
reached where the cells begin to die without sufficient 
oxygen supply. The experiments with convection showed 
increased 

2O  at the surface and core regions of the 
islet. The experiments were conducted in a thermostati- 
cally controlled measuring chamber at 37˚C.  

p

p

Oxygen supply in addition to diffusion also comes 
about by the circulatory system and by hemoglobin mo- 
lecule. Oxygen is carried in the blood by convection to 
capillaries by the circulatory system. Islets of Langerhans 
(Figure 1) are spheroidal aggregates of cells that are 
located in the pancreas. The metabolic requirement of the 
cells require oxygen to diffuse from the external envir- 
nonment and through the oxygen-consuming islet tissue. 
The oxygen supply is a critical limiting factor for the 
functionality and feasibility of islets that are encapsulated, 
placed in devices for implantation, cultured, used in ane- 
orobic conditions. Theoretical models are needed to des- 
cribe the oxygen diffusion. The parameters of the mo- 
del require knowledge of the consumption rate of oxygen, 
oxygen solubility, effective diffusion coefficient to oxy- 
gen in the tissue.  

2. Theory 

Avgoustiniatos et al. [1] developed a oxygen reaction 
and diffusion model. They assumed that the islet prepa- 
ration is a suspension of tissue spheres that can be di- 
vided into m groups. Each sphere in group i has the same 
equivalent radius, Ri that varies from group to group. The 

tissue is assumed to be uniform with constant physical 
properties that is invariant in space. The governing equa-
tion for oxygen diffusion and reaction in spherical coor-
dinates with azimuthal symmetry accounting for Fick’s 
diffusion can be written as: 

2 2

2

02
2

1O O
T

2E O

M O

C C
D r

t r r Cr

           

C C

C

2O

    (1) 

where DT is the diffusion coefficient in the tissue, CE0 is 
the total enzyme or complexation species concentration 
and CM is the Michaelis constant. The oxygen consump- 
tion rate is assumed to obey the Michaelis-Menten kinet- 
ics. Equation (1) describes the interplay of transient dif-
fusion and metabolic consumption of oxygen in the tis- 
sue in spherical coordinates. The concentration of oxy- 
gen, 

2O can be expressed in terms of its partial pressure, 

2O . This is obtained by using the Bunsen solubility co- 
efficient, t such that:  

p
p

2O tC p                  (2) 

Substituting Equation (2) in Equation (1), Equation (1) 
becomes: 
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   (3) 

The product tDT can be seen to the product of solu-
bility and diffusivity and hence is the permeability of 
oxygen in the tissue. The Michaelis constant CM, is also 
modified, C'M expressed in units of mm Hg. The initial 
condition can be written as: 

2
0, O Ot p p               (4) 

From symmetry at the center of the sphere: 

2 0
Op

t





                (5) 

At the surface the oxygen diffusive transport from 
within the sphere must be equal to the oxygen transport 
by convection across the boundary layer surrounding 
each sphere: 

   2
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 


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
    (6) 

where the partial pressure of oxygen at the surface is 
given by 

2O  (Ri), the mass transfer coefficient between 
the surrounding space and the surface of the sphere is 
given by ki and the oxygen solubility in the surrounding 
space is given by m. Total rate of oxygen transfer N 
from the surrounding space to all of the spheres can be 
summed up as: 

p

 2

1

4
m

m
i i s i m m

i

p
N J R n f V

t





   

       (7) 

where the volume of the surrounding space is given by 
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Vm, the total number of spheres is ns and the fraction of 
spheres in group i is given by fi. The initial condition for 
surrounding space is: 

 
2 2

0 , 0
m mO Op p t              (8) 

The mass transfer coefficient can be obtained from 
suitable Sherwood number correlations. For instance the 
mass transfer coefficient for spherical particles in an agi-
tated tank in the islet size range of 100 - 300 m can be 
written as: 

1 3 0.15 3 4
imp

3
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2i i i
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dk d d
Sh f
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
 
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      

   (9) 

where  is the power input per unit fluid mass, f is the 
function that has to be obtained form experimental data. 

Numerical methods are needed to obtain the solution 
to Equation (3). This is because of the nonlinearity of 
Michaelis-Meten kinetics.  

2.1. Asymptotic Limits of Michaelis-Menten 
Kinetics 

Closed formed analytical solutions to Equation (3) can be 
obtained in the asymptotic limits of:  

1) high concentration of oxygen, the rate is independ-
ent of Po2 (zeroth order); 

2) low concentration of oxygen, the rate is first order 
with respect to Po2. 

The reasons for choosing the asymptotic limits is elu- 
cidated in Figure 2. It can be seen that at low reactant 
concentrations the rate is linear [7]. At high enzyme or 
complexing agent concentration the rate is invariant with 
respect to concentration. Hence a zeroth order can be ass- 
umed at high concentrations and first order at low reac-
tant concentrations. 

Thus, at high reactant concentrations Equation (3) bec- 
omes, 

2 22
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p
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Figure 2. Rate-concentration curve obeying Michaelis-Men- 
ten kinetics. 

Equation (10) can be non-dimensionalized as follows: 

Let, 
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Equation (10) becomes: 

*
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1u u
X r

X XX
        

        (12) 

2.2. Parabolic Fick Diffusion and Reaction 
Model 

The zeroth order reaction at high concentrations of oxy- 
gen is a heterogeneity in the partial differential equation. 
Systems such as this can be solved for by assuming that 
the solution consists of a steady state part and a transient 
part; Let 

ssu u ut                  (13) 

Substituting Equation (13) in Equation (12), Equation 
(12) becomes: 
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Equation (14) holds good when, 
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and 

2
2
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X

u

X XX
   
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          (16) 

Equation (16) can be integrated twice and the bound- 
ary condition given by Equation (5) applied to yield: 

2 *
max

6
ss X r

u d               (17) 

In order to obtain the solution of the integration con- 
stant d in Equation (17), the boundary condition given by 
Equations (5) and (6) needs to be modified. Assuming 
that after attainment of steady state, the surface concen-
tration of the sphere would have reached the surrounding 
space concentration, d can be solved for the solution for 
the at steady state written as:  

2Op

 2 2 *
max

26

iss

i

R r r
u

R


             (18) 

The solution to Equation (16) may be obtained by 
separation of variables as follows: 

Let ut = V()g(X). Then Equation (16) becomes: 
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 
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Hence, 
2
nV ce                         (20) 

     2 22 0nX g X Xg X X g X   2       (21) 

Comparing Equation (21) with the generalized Bessel 
function [8]: 

22; 0; 1; ; 1 2na c s d p      

The solution to Equation (21) can be seen to be: 

 
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X
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    (22) 

From the boundary condition given by Equations (5) 
and (6), it can be seen that d1 can be set to 0 and, 

 
 1 2

1
nJ X

g X c
X


             (23) 

The eigenvalues n can be solved for from the bound-
ary condition given by Equation (6). 

In the dimensionless form Equation (6) may be written 
as: 
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where  
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the Biot number (mass). This represents the ratio of mass 
transfer from the surrounding space and the diffusion 
within the sphere. To simplify matters from a mathe-
matical standpoint, Equation (22) can be written in terms 
of elementary trigonomentric functions as;  
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The Eigenvalues can be obtained from the solution of 
the following trancedental equation: 
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The general solution for the dimensionless can be 
written as: 

2Op
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The Eigen values are given by Equation (26). The cn 
can be solved for from the initial condition given by 

 1 2iR nJ X

Equation (4) using the principle of orthogonality and 
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Thus the oxygen concentration profile at high oxygen 
co



ncentration is obtained. At low concentration of oxy-
gen the rate of consumption of oxygen is first order. The 
governing equation, Equation (3) can be written as 
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Obtaining the dimensionless form of Equation (29) 
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It can be recognized that  is the thiele modulus. 
Equation (30) can be solved for by the method of separa-
tion of variables. Let u = V()g(X). 

 21V g 2 2
2 nX

V X XgX
 
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The solution in time domain can be seen to be; 

 2 2

e nV c
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              (33) 

The solution in space domain can be seen to be 
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Comparing Equation (34) with the generalized Bes
fu

sel 
nction [8]. 
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From the boundary condition given by Equation (5), it 
can be seen that d1 can be set to 0 and, 
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The Eigenvalues n can be solved for from the bo- 
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where 

i i
m

T

k R
Bi

D

 
 

 
 

the Biot number (mass). This represents the ratio of mass 
transfer from the surrounding sp ce of the diffusion 
within the sphere. To simplify matters from a mathema- 

a

tical standpoint, Equation (35) can be written in terms of 
elementary trigonomentric functions as: 
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The eigenvalues can be obtained from the solut
following trancedental equation. 
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X

The Eigen values are given by Equation (39). The c  
can be solved for from the initial condition 
Equation (4) using the principle of orthogonality and 

n
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Thus the oxygen concentration profile at low oxygen 
concentration is obtained. 

2.
l 

. 
ts 

of re al materials by Mitra et al. 

tration is given at the 
su
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

3. Damped Wave Diffusion and Reaction 
Hyperbolic Mode

The times associated with oxygen consumption are low
Oxidation reactions are fast. Recent experimental repor

laxation times in biologic
[9] are in ther order of 16 seconds. Hence in times asso- 
ciated with the oxygen consumption (~10−3 - 1 s) the fi- 
nite speed of diffusion effects cannot be ignored. The 
damped wave diffusion and relaxation effects may be in- 
cluded in the following manner.   

At low oxygen concentration a first order rate of reac- 
tion can be assumed. A semi-infinite medium of tissue is 
considered. A step change in concen

rface. At times zero the concentration of oxygen is at a 
initial value. At infinite distances the concentration of 

oxygen would be unchanged at the initial value. The 
mass balance equation for oxygen can be written as; 
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 
  

 
         (42) 

where k is the lumped first order reaction rate constant. 
Combining Equation (42) with the dampe
on and relaxation equation given below in Equation (43): 

d wave diffusi- 
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       (43) 

the governing equation is obtained.mr is the mass relaxa- 
tion time. When it is zero Equation (44) 
Fick’s law of diffusion. When the rate of mass flux is 

reverts to the 

greater than an exponential rise the wave regime would 
be more dominant mechanism of transport compared 
with the Fick regime. Equation (43) is differentiated by x 
and Equation (42) is differentiated by t and the cross 

term 
2 J

t x


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 eliminated between the two equations and 

the governing equation obtained as follows: 
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 
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The governing equation for oxygen concentration in 
the tissue is obtained in the dimensionless form
following substitutions. 

 by the 

2* ; ; ;
O

mr

C t x
k k u X

C
 


2mO mr T mrD 

      (45) 

The governing equation is a partial differenti
tion of the hyperbolic type. It is second order 
spect to time and second order with respect to space. 

al equa- 
with re- 

 
2 2

* *
2 2

1
u u u

k k u
X 
  

   
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      (46) 

The Equation (46) can be solved by a recently devel- 
oped method given in Sharma [2] called
transformation of coordinates. The expression for the 
tra

 relativistic 

nsient temperature during damped wave conduction 
and relaxation developed by Baumeister and Hamill [10] 
by the method of Laplace transforms was further inte- 
grated in Sharma [11]. Chebysheve polynomial approxi- 
mation was used for the integrand. The integrand was a 
modified Bessel composite function of the first order in 
space and time. Telescoping power series was used in 
order to develop a more useful expression for the model 
solution. By another method named relativistic transfor- 
mation the transient temperature during damped wave 
conduction and relaxation was derived. The solution ex- 
hibited a convev concave pattern. This is different from 
the parabolic solutions that are concave in nature. The 
convex to concave transition is an interesting phenomena. 
This can be the point where damped wave conduction 
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and relaxation reverts to Fourier conduction. Four re- 
gimes can be identified in the solution of hyperbolic 
damped wave diffusion model. These are: 1) Zero 
Transfer Inertial Regime, 0 inertia0    ; 2) Rising Re- 
gime during times greater than inertial regime and less 
than at the wave front, Xp > ; 3) At Wave front ,  = Xp

; 
4) Falling Regime in open In es greater than 
at the wave front,  > Xp. The solution for the transient 
temperature from the method of retavistic transformation 
was compared side by side with the solution for transient 
temperature from Chebyshev economization. Both solu- 
tions were withing 12% of each other. For conditions 
close to the wave front the method of Chebyshev econo- 
mization is expected to be closer to the exact solution. 
The solutions from methods of Chebyshev economiza- 
tion and relativistic transformation was found to be 
within 2% of each other. Far from the wave front the 
numerical error in the method of Chebyshev economiza- 
tion is expected to become significant. This was illus- 
trated using an example. For  > 0.5 the solutions for 
transient surface heat flux from both parabolic and hy- 
perbolic models were found to be within 10% of each 
other. A “blow-up” is found in the parabolic model as  
 0. The hyperbolic model solution is devoid of any 
singularities. At large times the model solution from the 
method of Chebysveb economization was found to be 
withing 25% of the error function solution of the para- 
bolic model. A penetration distance beyond which there 
is no effect of the step change at the boundary is derived 
using method of relativistic transformation. 

The method of relativistic transformation of coordi- 
nated has been shown [11] to bounded solutions close to 
the integrated expression of exact solution 

terval, of tim

presented by 
other investigators. This method of analysis is used in 
this study, The damping term is first removed by Equa- 
tion (46) by en. Choosing   

*1

2

k
n


  and let enW u   Equation (46) becomes: 

 2*2 2

2 2 4

W W

X

 
 

          (47
1W k




  ) 

The significance of W is it that this can be recognized 
as the wave concentration. During the t
Equation (46) to Equation (47) the damping term has 
va

ransformation of 

nished. Now let us define a spatio-temporal symmetric 
substitution (relativistic transformation), 

2 2X    for X            (48) 

Equation (47) becomes: 

 2

1
        (49) 

*2
2 0

16

kW W 


 
 

Comparing Equation (49) with the generalized Bessel 

equation [8] 

2 

1; 0; 0; 1 2a b c s     
 2*k1

d


   

 0,  
16

The order p =

 *1

2

i kd

s


  

and is imaginary. Hence the solution is: 

* 2 2 * 2 2

1 0 2 0

1 1

2 2

k X k X
W c I c K

       
    
   


 

(50) 

c2 can be seen to be zero from the condition that at 
0, W is finite. 

  

 = 

* 2 2

1 0 2
W c I

 
 

        ( 1) 
1 k X  

 

From the boundary condition at X = 0, 

5

 *1 *

2
1 0

1
1

2

k k
e c I

   
 
 


          (52) 

c1 can be eliminated between Equations (51) and (52) 
in order to yield: 

 

2 2 *
0

*
0

1
1I

2
1

1
2

X k

I k

   

 
 

This is valid for for  > X, k*  1. For X > , 

u  
 

         (53) 

2 2 *
0

*
0

1
1

1
1

2

2

J X k
u

   
 

 

         (54) 

At the wavefront ,  = X,  

I k  

   *1 1

2 2e e

k k
X

u


 
 

  

*

          (55) 

3.

The mass inertia can be calculated fro
the Bessel function at 2.4048. Thus, 

 Results 

m the first zero of 

2

inertia 2*1 k

23.1323pX



           (56) 

A de no vo dimensionless group called Sharma Num- 
ber (Mass) was introduced [12]. This can be written as 
follows: 
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i rk
Sha

a

   
 

     

It is the ratio of mass transfer rate to the transport tak-
in

          (57) 

g place by damped wave diffusion. This can be seen to 
a product of Maxwell number and Sherwood number. 

2
i rD

Max
a

   


              (58) 


M

of the speed of mass 

axwell number (mass) as given by Equation (58) can 
be seen to be the Fick number with the relaxation time 
substituted for time, t. This gives the ratio of the square 

i
m

r

Dv 
 

 


 by damped wave 

diffusion divided by the square of a characteristic speed 


(a/r). 
The Sherwoord number, Sh can be written as: 

i

i

k a 
          (59) 

The product of Maxwell number (mass) and Sherwood 
number can be seen to yield the Sharma number (mass) 
as

Sh
D

  
 

    

 follows: 

2
*Max Sh


    (60) i r i r i

i

k D k a
Sha

a Da

           
   

he given application.  
The concentration at a interior point in the 

nite medium is shown in Figure 3. Four regim
identified. T

Sharma number (mass) may be used in evaluating the 
importance of the damped wave diffusion process in re-
lation to other processes such as convection, Fick steady 
diffusion in t

semi-infi- 
es can be 

hese are: 
 Zero Transfer Inertial Regime, 0 inertia0    ; 
 Times greater than inertial regime and less than at the 

wave front, Xp > ; 
 Wave front ,  = Xp; 
 Open Interval, of times Greater than at the wave front, 

 > Xp. 
 

 

Figure 3. Dimensionless concentration at a interior point Xp 
= 10 in a semi-infinite medium during simultaneous reac-
tion and diffusion. k* = 0.5. 

During the first regime of mass inertia there is no 
transfer of mass upto a certain threshold time at the inte-
rior point Xp = 10. The second regime is given by Equa-
tion (53) represented by a Bessel composite function of 
the first kind and zeroth order. The rise in dimensionless 
concentration proceeds from the dimensionless time 
2.733 upto the wave front at Xp = 10.0. The third regime 
is at the wave front. The dimensionless concentration is 
described by Equation (54). 

The fourth regime is described by Equation (53) d 

sh

om 1 to keep the inertia time 
po

 an
represents the decay in time of the dimensionless con-
centration. It is given by the modified Bessel composite 
function of the first kind and zeroth order. In Figure 4 is 

own the three regimes of the concentration when k* = 
2.0. It can be seen from Figure 4 that the mass inertia 
time has increased to 8.767. The rise is nearly a jump in 
concentratin at the interior point Xp = 10.0. When k* = 
0.25 as shown in Figure 5 the inertia time is 7.673. In 
Figure 6, the three regimes for the case when k* = 0.0 is 
plotted. In Table 1 the mass inertia time for various val-
ues of k* for the interior point Xp = 10.0 is shown. k*  
needs to be sufficiently far fr

sitive. 
The steady state solution for Equation (46) can be 

written as: 
*

ess X ku                (61) 

 

 

Figure 4. Dimensionless concentration at a interior point Xp 
= 10 in a semi-infinite medium dur

k* = 2.0. 
ing simultaneous reac-

tion and diffusion for 
 

 

Figure 5. Dimensionless concentration at a interior point Xp 
= 10 in a semi-infinite medium during simultaneous reac-
tion and diffusion. k* = 0.25 
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Figure 6. Dimensionless concentration at a interior point 
= 10 in a semi-infinite medium during simultaneous rea

*

S. No. k* (k”’mr) Mass Inertia Time (t/

Xp 
c-

tion and diffusion. k  = 0.0. 
 
Table 1. Mass inertia time vs k* for Interior Point Xp = 10.0. 

mr)

1. 0.01 8.741 
2. 0.1 8.452 
3. 0.25 7.673 
4. 0.3 7.266 
5. 0.4 5.979 
6. 0.5 2.733 
7. 1.75 7.673 
8. 2.0 8.767 
9. 4.0 9.871 

10. 8.0 9.976 
11. 25.0 9.998 
12. 10.0 10.0 

 

4. Conclusions 

1) D on and R  Islets of was 
studied using Para and Hyperbolic ls. This 
is needed to better treat Type I diabetes e trans-
plantation method. 

2) Sh a number c used to evalu hen the 
wave term becom portant in the application. It 
represents the ratio of Mass Transfer in Bulk to Re-
laxational Transfer

3) S a number (m may be used in ting the 
im tance of the ed wave diffusi ocess in 
relation to other processes such as convection, Fick 
steady diffusion in the given application. 

n be identified in the solution of hy-

iffusi eaction in  La s ngerhan
bolic Mode

 by th

arm an be ate w
es im

. 
harm ass) evalua
por damp on pr

4) Four regimes ca
perbolic damped wave diffusion model. These are; i) 
Zero Transfer Inertial Regime, 0 inertia0    ; ii) 
Rising Regime during times greater than inertial re-
gime and less than at the wave front, Xp > ; iii) at 
Wave front ,  = Xp; iv) Falling Regime in Open In-
terval, of times greater than at the wave front,  > Xp. 

5) Method of superposition of steady state concentration 
and transient concentration used in both solutions of 
parabolic and hyperbolic models. 

6) Expression for steady state concentration developed. 
7) Closed form analytic model solutions developed in 

asymptotic limits of Michaelis and Menten kinetic at 
zeroth order and first order. 

8) Expression for Penetration Length Derived-Hypoxia 
Explained. 

9) Expression for Inertial Lag Time Der ed. 
10) Solution within bounds of Second Law of Therm- 

odynamics. 
11) No Overshoot Phenomena observed. 

iv
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gineering, 

d San Francisco, CA, March 2010 and 
 material. Vote 

from a circle developed at 
r problem. 
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