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ABSTRACT 

In research [1], the authors investigate the dynamic behaviors of a discrete ecological system. The period-double bifur-
cations and chaos are found in the system. But no strategy is proposed to control the chaos. It is well known that chaos 
control is the first step of utilizing chaos. In this paper, a controller is designed to stabilize the chaotic orbits and enable 
them to be an ideal target one. After that, numerical simulations are presented to show the correctness of theoretical 
analysis. 
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1. Introduction 

Population dynamics in ecology are generally governed 
by discrete and continuous systems. In recent years, the 
study of discrete ecological systems has attracted exten-
sive attentions [1-6]. This is because that some natural 
populations have non-overlapping generations, thus dis-
crete models are more realistic than continuous ones to 
study these species. Another reason is that people always 
study population changes by one year (mouth, week or 
day). Such investigations are often required discrete 
models. Especially, using discrete models is more effi-
cient for numerical simulations. Recently, Zhang and Li 
[1] studied the following discrete ecological model: 

 1 1n n n n nx x x x     y  

  2
1n n ny y a bx y    n
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          (1) 

where xn, yn denote the two ecological species’ densities 
respectively in generation n; δ is the integral step size. 
The more meaning of system (1) can refer to the refer-
ence [1,2]. It is shown that the system (1) generates pe-
riod-double bifurcations and chaos. But the authors did 
not investigate the chaos control of the system. 

It is well known that chaos control is the first step of 
utilizing chaos. The possibility of chaos control in bio-
logical systems has been stimulated by recent advances 
in the study of heart and brain tissue dynamics. Recently, 
some authors have investigated that such a method can 
be applied to population dynamics and even play a non-
trivial evolutionary role in ecology [7-9]. In this paper, 
we design a proper controller to control the chaos of sys-
tem (1). 

2. Chaos Control 

In this section, chaotic orbits to an unstable fixed point 
are stabilized by utilizing some control techniques. 
Firstly, we introduce the following lemma which is use-
ful to establish our results 

Lemma 1 [1]. If a > b, then system (1) has an unique 
positive fixed point at , where  * *,E x y *x a b , 

* 1y b a  . 
Consider the following map which is the feedback is 

applied to system (1) 
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where Xn = (xn, yn)
T, μn is control variable and satisfies 

n  , 1 . Evidently, map (2) degenerates to 
original system (1) only if μn = 0. We select the feedback 
variable μn in the range (–ε, ε), so that the orbit holds in 
the neighborhood of fixed point E as long as the control 
arises. The ergodic nature of the chaotic dynamics guar-
antees that the mode trajectory in the neighborhood of 
the wishful orbit  * *,E x y . In the neighborhood of E, 
map (2) can be approximated by the following form: 
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where A is the Jacobian matrix at E and B is a column 
vector, and they are given by: 
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Let X* = (x*, y*)T and suppose that μn is a linear func-
tion of Xn, which is expressed as μn = PT(Xn – X*), 

. Substitute the result into (3), we get 1 2TP R 
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According to the study [10], the fixed point E will be 
stable if the matrix (A – BPT) is asymptotically stable, 
that is to say, all its eigenvalues are less than 1 in 
modulus. Now, we make use of “pole placement tech-
nique” [11] to determine the specific values in (A – BPT). 
If system (1) is chaotic, we obtain 
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Then we choose    1 0  , 2 1
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as the desired eigenvalues of the matrix (A – BPT). The 
controllability matrix 
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has two rank. Thus the solution to the pole placement 
problem is obtained as 
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p1 and p2 are the coefficients of characteristic polynomial 
of the matrix A,   2
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q1 and q2 are the coefficients of characteristic polynomial 
of the matrix (A – BPT), 
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After calculations, we get 
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Furthermore, the controller has the following form: 
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(4) 
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However, the above considerations only are fit for a 

local small neighbor of E. In view of the global situation,  

we can specify μn by making μn = 0 if  *T
nP X X   

is too large. This is because the range of μn is restrained 
by n   and 1 . Thus, we limit the number 
value 
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According to the above analysis, we get the following 
result. 

Theorem 1. If     *( )n T
X X

P


  , 

then the control variable n  can sta-
bilize chaotic trajectory of system (1) to the fixed point E, 
where PT is given by Equation (4). 

 TT
n nP x y   

3. Numerical Simulations 

In the section, we use density-time diagrams and phase 
portraits to confirm the above theoretical analysis. 

Let a = 2.21, b = 1.02, δ = 0.9666. At the condition, 
TP  has the value 7.70732. According to Lemma 1, sys- 

tem (1) has and only has a positive fixed point E(x*, y*) = 
(2.16667, 0.53846). We adopt 

          2 2 2* *, 0r n n n nB E x y x x y y     .001 . 

When ε is given the value 0.03 and 0.09, Theorem 1 is 
satisfied. Density-time diagram of ecological specie xn is 
given by Figure 1(a), which is characterized by switches 
between apparently regular and chaotic behaviors. Actu-
ally, it is intermittency, which is a basic characteristic of 
chaos. At the same parameters, phase portrait is illus-
trated by Figure 1(b), which is a chaotic attractor. Fig-
ure 2 is the chaos control diagrams corresponding to 
Figure 1. With the same parameters of Figure 1, system 
(1) is chaotic if n < 800 when ε = 0.03 (Figures 2(a) and 
(b)) according to the control strategy. Actually, Figure 
2(a) is supertransient, which is used to denote an unusu-
ally long convergence to an attractor. Figure 2(b) is 
phase portrait corresponding to Figure 2(a). When ε in-
creases to 0.09, supertransient disappears and the system  
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