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ABSTRACT 

The problem of adaptive output tracking is researched for a class of nonlinear network control systems with parameter 
uncertainties and time-delay. In this paper, a new program is proposed to design a state-feedback controller for this sys-
tem. For time-delay and parameter uncertainties problems in network control systems, applying the backstepping recur-
sive method, and using Young inequality to process the time-delay term of the systems, a robust adaptive output track-
ing controller is designed to achieve robust control over a class of nonlinear time-delay network control systems. Ac-
cording to Lyapunov stability theory, Barbalat lemma and Gronwall inequality, it is proved that the designed state 
feedback controller not only guarantees the state of systems is uniformly bounded, but also ensures the tracking error of 
the systems converges to a small neighborhood of the origin. Finally, a simulation example for nonlinear network con-
trol systems with parameter uncertainties and time-delay is given to illustrate the robust effectiveness of the designed 
state-feedback controller. 
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1. Introduction 

Network control system is a real-time closed-loop feed-
back control system composed of sensors, controllers, 
actuators, etc. The advantages of network control sys-
tems are its easy installation and maintenance, and its 
high reliability and flexibility [1,2]. In recent decades, 
there are lots of progresses in the study of stability of the 
network control systems [3-6]. 

However, in the closed-loop control of the network 
control system, the data transmission process is often 
produce time-delay. The time-delay of network control 
system often affects the stability and performance of the 
system, and may even cause the instability of the entire 
system [7]. Therefore, the impact of the time-delay on 
network control system needs to be considered when 
studying network control systems and designing control-
lers. In [8], the authors analyzed the source of the 
time-delay of network control system. For the time-delay 
problem of network control system, a maximum allow-
able delay bound satisfying the requirement of stability 
was proposed in [9], and the maximum delay caused by 
the network was estimated in [10]. For designing con-
trollers of network control systems, in [11], the authors 
discussed a class of uncertain systems’ adaptive control 
scheme, and in [12] authors analysis robust stability of 
networked control systems with uncertainty. Although  

some progresses are made in linear network control sys-
tems, nonlinear network control systems with parameter 
uncertainties and time-delay needs to be studied. For 
example, in [13-17], the authors study the problems of 
adaptive robust control for uncertain systems and high- 
order uncertain nonlinear systems, and analyze the stabil-
ity of the systems by Lyapunov stability theory. But 
these papers did not consider the situation of the systems 
with time-delay. 

Therefore, in this paper, the system is modeled as a 
class of nonlinear network control system with parameter 
uncertainties and time-delay. A new program is proposed 
to design controller for this system, and a robust control-
ler is designed by using the backstepping method. Ac-
cording to Lyapunov stability theory, Barbalat lemma 
and Gronwall inequality, it is proved that the designed 
controller not only guarantees the state of nonlinear net-
work control systems with parameter uncertainties and 
time-delay is uniformly bounded, but also ensures the 
tracking error of the systems converges to a small 
neighborhood of the origin. The rest parts of the paper 
are organized as follows: in Section 2, a class of nonlin-
ear network control system is introduced, and the as-
sumption and lemmas are proposed. In Section 3, the 
controller is designed by using the backstepping method. 
In Section 4, a simulation example is presented. Finally, 
a conclusion is given in Section 5. 
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2. Problem Description 

In this paper, we consider a class of nonlinear network 
control systems with parameter uncertainties and time- 
delay, this system is described as 

   
    

   
    

1

1

1

1

, , ,

,

1 1

, , ,

,

T
i i i i i

i i i

T
n n n n

n n n

x d t x u x x t

g x t h x t

i n

x d t x u u x t

g x t h x t

y x

 



 



  


  


  


 


  
 




     (1) 

where    1i i, , 1, ,
T ix x x R i n      , , and u R

y R  are respectively the states, the control input and 
system output, 1  is a vector of un-
known constant parameters, di(·) ≠ 0, ψi(·) and 

, ,
T q

q R       
 ig   

are unknown smooth functions, hi(0) = 0 (1 ≤ i ≤ n) is 
also an unknown smooth functions, τ is time-delay, and 
τ ≥ 0. 

The objective of this paper is to design an adaptive 
feedback controller. The designed controller ensures the 
state of the closed-loop systems is bounded and the tra-
jectory of output y(t) can asymptotic track reference sig-
nal yr(t). 

Assumption 1 For smooth function di(t, x, u), i = 1, ···, 
n there exist functions : i

ic R R  and 1: i
ic R R   

satisfies 0 < ci(x1, ···, xi) ≤ di(t, x, u) ≤ ci(x1, ···, xi + 1), 
xn+1 = u. 

Assumption 2 Because we have hi(0) = 0, then the 
hi(x1(t)) can be expressed as hi(x1(t)) = γi(x1(t)), and 
γi(x1(t)) satisfies the following assumption 

     1 1i ix t p x t   

where pi(x1(t)) is a known and smooth enough function. 
Lemma 1 If the real number a ≥ 0, b ≥ 0, m ≥ 1, then 

there exist the following inequality 
1

1
m m
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a b
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Proof for any real number x ≥ 0, y > 0, n > 0, by 
Young inequality, we have 
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then we can release to Lemma 1. 
Barbalat lemma [18] If x(t) is a uniformly continuous 

function, and  
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3. Adaptive Controller Design 

In this section, by using the backstepping recursive 
method, we design a robust adaptive output tracking 
controller. The designed ideas of this method are de-
scribed as follows: for the i-th equation of the system, 
constructed a suitable Lyapunov function, and designed 
virtual control law αi, the designed αi makes the subsys-
tem consist of previous i equations is stable, therefore, in 
step n, the designed controller u which makes the system 
consist of n equations stability is the true controller that 
makes the closed-loop control systems globally stable. 

Step 1 Reference signal yr is a smooth function and 
bounded, and its derivative r  is also bounded, the out-
put tracking error is defined by ε1 = x1 – yr. 

y

Constructed Lyapunov function as 
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     x s s , 

where λ are positive, ˆ    , ̂  is estimates of the 
unknown constant parameter θ. Calculating the deriva-
tive of V1 along with system (1), we have 
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Because  is bounded, presence non-negative smooth 
function 

ry

 ˆ,w1 1  , satisfies 

 1 1 1 1
ˆT ˆ,rg y w      . 

By Lemma 1, for any real number σ that greater than 
zero, let  1 1 1

ˆ,a w   , b = σ, so that exists a smooth 
function  1 1

ˆ,    0 , satisfies 

   2
1 1 1 1 1 1

ˆ ˆ, ,w         .       (3) 

By using Young inequality, let constant ξ1 > 0 we have 
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then we have 
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  , (5) 

where ρ1(x1(t)) is a smooth function. 
Let z1 = λε1ψ1, Substituting (3), (4), (5) into (2), we 
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have 
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Designed virtual controller as 
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where 1(·) is smooth function that is greater than zero. 
So that we can release to 
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And because –ε1α2 ≥ 0, by assumption 1, we have 
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where η1 = 0. 
Step 2 Let ε2 = x2 – α2, constructed Lyapunov function 

as 

  2
2 1 2

1 1
d

2 2

t

t
V V q x s s





     

Calculating the derivative of V2 along with system (1), 
we have 
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There exists a non-negative smooth function 
 2 1 2

ˆ, ,w    , satisfies 
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By Lemma 1, let 2 2 1 2
ˆ, ,a w     , b = σ so that 

there exists a smooth function , satisfies  2 1 2
ˆ, , 0    
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And because 1 2 2 1 2x       , combined with 
Lemma 1, there exists a smooth function 

 2 1 2
ˆ, , 0      satisfies 
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By using Young inequality, let constant ξ2 > 0, μ2 > 0, 
we have 
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Substituting (7), (8), (9) into (6), we have 
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Designed virtual controller as  
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where 2(·) is a smooth function that is greater than zero. 
By assumption 1, we have 
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Step i After the recursive design step i-1, we can get a 
group of smooth virtual controller as 
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where smooth function k(·) > 0, k = 1, ···, i – 1. 
Constructed Lyapunov function as  
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Similar to step 2, we can prove (10) is also established 
in the step i. 

Constructed Lyapunov function as 
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There exists a non-negative smooth function wi(·), sat-
isfies 
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By the Lemma 1, there exists a smooth function 
βi(·) ≥ 0 satisfies 
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By using Young inequality, let constant ξi > 0, μi > 0, 
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Designed virtual controller as  
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where i(·) is a smooth function that is greater than zero. 
By assumption 1, we have 
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Step n After repeated recurrence and proof, in the step 
n, constructed Lyapunov function as 
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From (14), we can obtain adaptive control law u and 

parameter ̂  following as 
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where n(·) is a smooth function that is greater than zero. 
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So that the entire design procedure is reasonable. 
Theorem 1 Considering closed-loop systems (1), un-

der assumption and Lemma, there exist a state feedback  

control law u and control law parameter ̂ . The closed-  
loop system is bounded for all allowable uncertainties 
and the output tracking error converges to a relatively 
small area, which satisfies 
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In summary, for any real number ε0 > 0, in limited 
time T > 0, the closed-loop system satisfies 
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4. Simulation Example 

In order to show the effectiveness of the design scheme, 
we choose the nonlinear network control system with 
parameter uncertainties and time-delay as following: 
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In the simulation, for the closed-loop system (17), we 
choose the reference signal yr(t) = sint, time-delay τ = 
0.01s, θ = 0.2, ξ1 = 1, ξ2 = 2, σ = 0.02, λ = 1, the initial 
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The simulation results are shown as in Figures 1 and 2. 
It can be observed that the output of closed-loop system 
can track the reference signal well, and the tracking error 
converges to a small neighborhood of the origin. There-
fore the robust adaptive controller is effective. 
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Figure 1. Output y(t) and reference signal yr(t). 
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Figure 2. Output tracking error y(t) – yr(t). 

5. Conclusion 

By using the backstepping method, we design a control-
ler for nonlinear network system with parameter uncer-
tainties and time-delay. Through theoretical analysis, it is 
shown that the designed robust adaptive output tracking 

pressed the effectiveness of the scheme. 

controller is feasible. The simulation results further ex-
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