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ABSTRACT 

In this paper, a new class of over-relaxed proximal point algorithms for solving nonlinear operator equations with 
(A,η,m)-monotonicity framework in Hilbert spaces is introduced and studied. Further, by using the generalized resolvent 
operator technique associated with the (A,η,m)-monotone operators, the approximation solvability of the operator equa-
tion problems and the convergence of iterative sequences generated by the algorithm are discussed. Our results improve 
and generalize the corresponding results in the literature. 
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1. Introduction 

Motivated by an increasing interest in the nonlinear 
variational (operator) inclusion problems, complementar-
ity problems and equilibrium problems, which provide us 
a general and unified framework for studying a wide 
range of interesting and important problems arising in 
mathematics, physics, engineering sciences, economics 
finance and other corresponding optimization problems, 
the proximal point algorithm have been studied by many 
authors. See, for example, [1-10] and the references 
therein. Recently, Verma [9] developed a general frame- 
work for a hybrid proximal point algorithm using the 
notion of (A,η)-monotonicity and explored convergence 
analysis for this algorithm in the context of solving a 
class of nonlinear inclusion problems along with some 
results on the resolvent operator corresponding to 
(A,η)-monotonicity. Furthermore, Verma [10] introduced 
a general framework for the over-relaxed A-proximal 
point algorithm based on the A-maximal monotonicity 
and pointed out “the over-relaxed A-proximal point algo-
rithm is of interest in the sense that it is quite applica-
tion-oriented, but nontrivial in nature”. 

On the other hand, Lan [4] first introduced a new con-
cept of (A,η)-monotone (so called (A,η,m)-maximal 
monotone [6]) operators, which generalizes the 
(H,η)-mono-tonicity, A-monotonicity and other existing 
monotone operators as special cases, and studied some 
properties of (A,η)-monotone operators and defined re-
solvent operators associated with (A,η)-monotone opera-

tors. 
Motivated and inspired by the above works, the pur-

pose of this paper is to introduce and study a new class of 
over-relaxed proximal point algorithms for approximat-
ing solvability of the following nonlinear operator equa-
tion in Hilbert space H based on (A,η,m)-monotonicity 
framework: 

Find x ∈ H such that 

    ,
, 0A
MB x R A x

  ,         (1) 

where A,B:H → H and η:H × H → H are three nonlinear 
operators, M:H → 2H is an (A,η,m)-monotone operator 
with B(H) ∩ domM(·) ≠   and B(H) ∩ domA(·) ≠  , 
2H denotes the family of all the nonempty subsets of H, 

 1,
,

A
mR A M

     is the resolvent operator associated 
with the multi-valued operator M and ρ > 0 is a con- 
stant. 

Based on the definition of the resolvent operator, 
Equation (1) can be written as 

      0 A B x A x M B x   ,    (2) 

which was studied by Verma [9,10] when B ≡ I, the iden-
tity operator. 

We remark that for appropriate and suitable choices of 
A, B, M, η and H, one can know that the problems (1) and 
(2) include a number of known a general class of prob-
lems of variational character, including minimization or 
maximization (whether constraint or not) of functions, 
variational problems, and minimax problems as special 

Copyright © 2012 SciRes.                                                                              IJMNTA 



F. LI 68 

cases. For more details, see [1-13] and the references 
therein, and the following example: 

Example 1.1. Consider the following convex optimi-
zation problem with bound constraints: 

Min f(u), 

. .s t u ,               (3) 

where  lu R d u h      , R = (−∞, +∞) and f:Ω → 
R is convex and continuously differentiable. From the 
Karush-Kuhn-Tucher conditions, we see that u* is an 
optimal solution to the problem (3) if and only if u* satis-
fies 

 

* *

* *

* *

0, ,

0, , ,

0, .

i i i

i i i i

i i i

f u u d

f u u d h

f u u h

   

   

   

        (4) 

The problem (4) is equivalent to the following varia- 

tional inequality: , where      0,
T

u u f u u     

 f u  is the gradient of f. 

2. Preliminaries 

In the sequel, we give some concept and lemmas needed 
later. 

Definition 2.1. An operator M–1, the inverse of M:H → 
2H, is (s,t)-Lipschitz continuous at 0 if for any t ≥ 0, there 
exist a constant s ≥ 0 and a solution x* of 0 ∈ M(x) 
(equivalently x* ∈ M–1(0)) such that 

 * 10 ,x x s w x M w     , 

where  t : , ,w B w w t w H t     0 . 
Definition 2.2. Let A, B:H → H and η:H × H → H be 

single valued operators, and M:H → 2H be a multi-valued 
operator. Then 

i) B is δ-strongly monotone, if there exists constant δ > 
0 such that  

    2
, ,B x B y x y x y x y H     , , 

which implies that B is δ-expanding, i.e., 

    , ,B x B y x y x y H     ; 

ii) A is r-strongly η-monotone, if there exists a positive 
constant r such that  

      2
, , , ,A x A y x y r x y x y H     , 

iii) A is β-Lipschitz continuous, if there exists a con-
stant β > 0 such that 

    2
, ,A x A y x y x y H     , 

iv) η is τ-Lipschitz continuous if there exists a constant 
τ > 0 such that 

 , , ,x y x y x y    

v) M is m-relaxed η-monotone if there exists a con- 
stant m > 0 such that for all x, y ∈ H, x ∈ M(x) and y ∈ 
M(y), 

  2
, ,x y x y m x y    ; 

vi) M is said to be (A,η,m)-maximal monotone if M is 
m-relaxed η-monotone and R(A + ρM) = H for every ρ> 
0. 

Remark 2.1. 1) If m = 0 or A = I or η(x, y) = x − y for 
all x, y ∈ H, (A,η,m)-maximal monotonicity (so-called 
(A,η)-monotonicity [4], (A,η)-maximal relaxed mono- 
tonicity [3]) reduces to the (H,η)-monotonicity, H-mono- 
tonicity, A-monotonicity, maximal η-monotonicity, clas-
sical maximal monotonicity (see [1-10]). Further, we 
note that the idea of this extension is so close to the idea 
of extending convexity to invexity introduced by Hanson 
in [11], and the problem studied in this paper can be used 
in invex optimization and also for solving the varia-
tional-like inequalities as a direction for further applied 
research, see, related works in [12,13] and the references 
therein. 

2) Moreover, operator M is said to be generalized 
maximal monotone (in short GMM-monotone) if: 

i) M is monotone; ii) A + ρM is maximal monotone or 
pseudomonotone for ρ > 0. 

Example 2.1. ([3]) Suppose that A:H → H is 
r-strongly η-monotone, and f:H → R is locally Lipschitz 
such that ∂f, the subdifferential, is m-relaxed η-monotone 
with r − m > 0. Clearly, we have  

    2
, ,x y x y r m x y    , 

where x ∈ A(x) + ∂f(x) and y ∈ A(y) + ∂f(y) for all 
x, y ∈ H. Thus, A + ∂f is η-pseudomonotone, which is 
indeed, η-maximal monotone. This is equivalent to stat-
ing that A + ∂f is (A,η,m)-maximal monotone. 

Lemma 2.1. ([4]) Let η:H × H → H be τ-Lipschitz 
continuous, A:H → H be a r-strongly η-monotone opera-
tor and M:H → 2H be an (A,η,m)-maximal monotone 
operator. Then the resolvent operator  
defined by  

,
, :A
mR H H

 

    1,
, ,A
mR x A M x H

     . 

is         
r m




-Lipschitz continuous. 

Lemma 2.2. Let A, B, η, M and H be the same as in 
the problem (1). If 

        ,
,

A
MI x A B x A R A x

   

for .x H , and for all 1 2,x x H , ρ > 0  

and                
1

2
    H . 
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, ,
, 1 , 2

1 2

2
, ,
, 1 , 2

,A A
M M

A A
M M

A R A x A R A x

A B x A B x

A R A x A R A x

 
 

 
 





 

 

then 

         
   
     

2
, ,
, 1 , 2

2

1 2

2
1 2

2 1

|| ||

A A
M MA R A x A R A x

I x I x

A B x A B x

 
   

 

 

, 

Proof. By the assumption, now we know 

   

       
     

  
     

       
     

2

1 2

2
, ,
, 1 , 2

2

1 2

, ,
, 1 , 2

1 2

2
, ,
, 1 , 2

2

1 2

2 ( ( )) ( ),

(2 1)

A A
M M

A A
M M

A A
M M

I x I x

A R A x A R A x

A B x A B x

A R A x A R A x

A B x A B x

A R A x A R A x

A B x A B x

 
 

 
 

 
 



 

 

 



   

 

. 

This completes the proof.  

3. Algorithms and  
Approximation-Solvability 

In this section, we shall introduce a new class of 
over-relaxed (A,η,m)-proximal point algorithms to ap-
proximating solvability of the nonlinear operator Equa-
tion (1). 

Algorithm 3.1. Step 1. Choose an arbitrary initial 
point 0x H . 

Step 2. Choose sequences {αn}, {σn} and {ρn} such 
that for n ≥ 0, {αn}, {σn} and {ρn} are three sequences in 
[0, ∞) satisfying 

0

, limsup 1, 0,i n n
ni

r

m
    





       
 

 . 

Step 3. Let  nx H  be generated by the following 
iterative procedure  

       1 1n n n n nA B x A B x y     ,    (5) 

and yn satisfies 

      ,
,

A
n M n n n ny A R A x y A B x

    , 

where n ≥ 0,  1,
,

A
mR A M

     and ρ > 0 is a constant. 
Step 4. If xn and yn (n = 0, 1, 2, ···) satisfy (5) to suffi-

cient accuracy, stop; otherwise, set k: = k + 1 and return 

to Step 2. 
Remark 3.1. We note that Algorithm 3.1 becomes to 

the algorithm of Theorem 3.2 associated with A-maximal 
monotonicity in [10] when B ≡ I. 

Theorem 3.1. Let A, B, M, η and H be the same as in 
problem 1). If, in addition, 

i) η is τ-Lipschitz continuous, A is κ-Lipschitz con-
tinuous and r-strongly η-monotone, B is β-Lipschitz con-
tinuous and δ-strongly monotone with the inverse B–1 is 
μ-expanding with μδ ≤ 1; 

ii)  1
A B A M    is (s,t)-Lipschitz continuous at 

0, where A B  is defined by     A B x A B x  for 
x ∈ H; 

iii) for          
1 1 1

2 2 2



    

and λ > 0, 

     
     

       

, ,
, 1 , 2

1 2

2
, ,
, 1 , 2

( ,A A
M M

A A
M M

A R A x A R A x

A B x A B x

A R A x A R A x

 
 

 
 





 

, 

iv) the iterative sequence  nx generated by Algo-
rithm 3.1 is bounded; 

v) there exists a constant ϱ > 0 such that 

   

 

2

2 2 2 2

2 2 2

1 2 1,

1 2 1

1,
2 1

r m

r

s

r


 

,       


   




    


       

    

 (6) 

then 1) the nonlinear resolvent operator Equation (1) has 
a unique solution x* in H. 

2) the sequence {xn} converges linearly to the solution 
x* with convergence rate 

    2 2 2 21 2 1 1 2 1
1

d d

r

     



      
 . 

Proof. Firstly, for any given ρ > 0, define F:H → H by 

       ,
, ,A
MF x x B x R A x x H

     . 

By the assumptions of the theorem and Lemma 2.1, for 
all x, y ∈ H we have  

   

   

     , ,
, ,

A A
M M

F x F y

x y B x B y

R A x R A y

x y
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where 21 2
r m

  


   


. 

It follows from condition (6) that 0 <   < 1 and so F is 
a contractive mapping, which shows that F has a unique 
fixed point in X. 

Next, we prove the conclusion (2). Let x* be a solution 
of problem (1). Then for all ρn > 0 and n ≥ 0, we have 

           * * ,
,1

n

A
n n M

*A B x A B x A R A x
    , (7) 

For            ,
,n

A
MI A B A R A

  , 

and under the assumptions, it follows that I(xn) → 0(n → 
∞). Since 

        1 1
,n

A
n n n M nI x A B A M B R A x

     , , 

this implies 

       11 , 1
,n

A
M n n n nB R A x A B A M I x

        . 

Then, applying Lemma 2.2, the strong monotonicity of A, 
and the Lipschitz continuity of A and η (and hence, A 
being expanding), and the Lipschitz continuity at 0 of 

 by setting  and   1
A B A M    1

n nw I x

   1 ,
,n

A
M nx B R A x


 , 

we know 

     
       

    
     

       

2
2 , , *

, ,

2
1 , 1 , *

, ,

2
2 1 1 *

2
2 2 *

2 2
, ,
, ,2 1

n n

n n

n n

A A
M n M

A A
M n M

n n n

n n

A A
M n M

R A x R A x

B R A x B R A x

s I x I A x

s A B x A B x

r
R A x R A x

 
 

 
 

 
 



 






 

 





 

 

 



*      

  

, 

which implies 

     
     

, ,
, ,

* *

A A
M n M

n n

R A x R A x

A B x x A B x

 
 





 

*

,      (8) 

where 
 2 2 2

1
2 1

n

n

s

r


   

 
 

. 

For n ≥ 0, let  

           ,
1 ,1

n

A
n n n n MA B z A B x A R A x

     n . 

By the assumptions of the theorem, (7) and (8), now 
we find the estimate, 

     
       

     

       
     

     

2
*

1

22 *

,
,

, ,
, ,

*

2
2 *

1

2 1

,

n

n n

n

n n

A
n M n n n

A A
M n M

n

n n

A B z A B x

A B x A B x

A R A x

A R A x A R A x

A B x A B x

A B x A B x




 
 



 



 

  

  

 

 

 

*


    (9) 

where 

   2 2 2 21 2n n n n n n            1 . 

Since 

       1 1n n n n nA B x A B x y     , 

we have 

        1n n n nA B x A B x y A B x     n  

and 

     
   

  
     
     

1 1

,
,

*
1

* .

n

n n

A
n n M n

n n n n

n n

n n

A B x A B z

y A R A x

y A B x

A B x A B x

A B x A B x




 





 





 

 

 

 

     (10) 

In the sequel, we estimate using (9) and (10) that 

     
           

     
       

*
1

*
1 1 1

*
1

*

n

n n n

n n

n n n

A B x A B x

A B x A B z A B z A B x

A B x A B x

A B x A B x



 



  





   

 

  

 

which implies 

     
     

*
1

* .
1

n

n n
n

n

A B x A B x

A B x A B x
 



 


 



  (11) 

It follows from (11), the strong monotonicity of A and 
B, and the Lipschitz continuity of A, B and η that for all x, 
y ∈ H, 

     r
x y A B x A B y x y
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and 

*
1 1

n n
n

n

*
nx x x

r

 
 


   


x    (12) 

From (12), now we know that the {xn} converges line-
arly to a solution x* for  

n

r




. 

Hence, we have  

   2 2 2 2

limsup
1

limsup

1 2

n n

n n

n

n

r

 
 




      














1     

 

where 

 2 2 2
limsup ,

2 1
n

n

s

r


n   

   
 

 
 , 

lim sup n
n

 


Remark 3.2. 1) If B ≡ I or κ = 1 (namely, A is nonex-
pansive), we have the corresponding results of Theorem 
3.1 for nonlinear equation 

. This completes the proof.  

  ,
,

A
Mx R A x

 . 
2) By using Lemma 2.1, the convergence analysis of 

the iterative sequence {xn} generated by Algorithm 3.1 
can be established when the conditions (ii), (iii) and oth-
ers are not satisfied, that is, the inequality (8) can be re-
placed by 

     , , *
, ,

A A
M n M nR A x R A x x x

r m
 

 



 


*  

3) The corresponding results can be shown when M is 
(H,η)-monotonicity, H-monotonicity, A-monotonicity, 
maximal η-monotonicity and classical maximal mono- 
tonicity, respectively. That is, the results presented in this 
paper improve and generalize the corresponding results 
of [1,2,9,10]. 

4. Conclusions 

In this paper, we introduce and study a new class of 
over-relaxed proximal point algorithms for solving the 
following nonlinear operator equations with (A,η,m)- 
monotonicity framework in Hilbert spaces: Find x ∈ H 
such that 

    ,
, 0A
MB x R A x

  . 

Further, by using the generalized resolvent operator 
technique associated with the (A,η,m)-monotone opera-
tors, we investigate the existence of solutions for the op-

erator equation problem and the convergence of iterative 
sequences generated by the algorithm. The results pre-
sented in this paper improve and generalize the corre-
sponding results in the literature. 
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