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ABSTRACT 

This paper discusses quantum-inspired models of Livings from the viewpoint of information processing. The model of 
Livings consists of motor dynamics simulating actual behavior of the object, and mental dynamics representing evolu- 
tion of the corresponding knowledge-base and incorporating it in the form of information flows into the motor dynamics. 
Due to feedback from mental dynamics, the motor dynamics attains quantum-like properties: its trajectory splits into a 
family of different trajectories, and each of those trajectories can be chosen with the probability prescribed by the men- 
tal dynamics The paper concentrates on discovery of a new type of entanglement that correlates the probabilities of ac- 
tions of Livings rather than the actions themselves. 
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1. Introduction 

This paper is based upon models of Livings introduced in 
our earlier publications [1,2] and motivated by an attempt 
to interpret special properties of probability density dis- 
tribution when conditional densities are incompatible [3], 
and for that reason, the joint density does not exists. We 
will start with a brief description of mathematical models 
of Livings. 

1.1. Dynamical Model of Livings  

In this paper, the underlying dynamical model that cap- 
tures behavior of Livings is based upon extension of the 
First Principles of classical physics to include phenome- 
nological behavior of living systems, i.e. to develop a 
new mathematical formalism within the framework of 
classical dynamics that would allow one to capture the 
specific properties of natural or artificial living systems 
such as formation of the collective mind based upon ab- 
stract images of the selves and non-selves, exploitation of 
this collective mind for communications and predictions 
of future expected characteristics of evolution, as well as 
for making decisions and implementing the correspond- 
ing corrections if the expected scenario is different from 
the originally planned one. The approach is based upon 
our previous publications (see References) that postulate 
that even a primitive living species possesses additional 
non-Newtonian properties which are not included in the 
laws of Newtonian or statistical mechanics. These prop- 
erties follow from a privileged ability of living systems 
to possess a self-image (a concept introduced in psy- 
chology) and to interact with it. The proposed mathe- 

matical formalism is quantum-inspired: it is based upon 
coupling the classical dynamical system representing the 
motor dynamics with the corresponding Liouville equa- 
tion describing the evolution of initial uncertainties in 
terms of the probability density and representing the 
mental dynamics. (Compare with the Madelung equation 
that couples the Hamilton-Jacobi and Liouville equations 
via the quantum potential).The coupling is implemented 
by the information-based supervising forces that can be 
associated with the self-awareness. These forces funda- 
mentally change the pattern of the probability evolution, 
and therefore, leading to a major departure of the behav- 
ior of living systems from the patterns of both Newtonian 
and statistical mechanics. Further extension, analysis, 
interpretation, and application of this approach to com- 
plexity in Livings and emergent intelligence have been 
addressed in the papers referenced above.  

In the next introductory sub-sections we will briefly 
review these models without going into mathematical 
details. Instead we will illustrate their performance by the 
Figure 1. 

The model is represented by a system of nonlinear 
ODE and a nonlinear parabolic PDE coupled in a mas- 
ter-slave fashion. The coupling is implemented by a 
feedback that includes the first gradient of the probability 
density, and that converts the first order PDE (the Liou-
ville equation) to the second order PDE (the Fokker- 
Planck equation). Its solution, in addition to positive dif- 
fusion, can display negative diffusion as well, and that is 
the major departure from the classical Fokker-Planck 
equation. The nonlinearity is generated by a feedback 
from the PDE to the ODE. As a result of the nonlinearity, 

Copyright © 2012 SciRes.                                                                                 JQIS 



M. ZAK 67

 

 

Figure 1. Classical physics, quantum physics, and physics life. 
 
the solutions to PDE can have attractors (static, periodic, 
or chaotic) in probability space. The multi-attractor limit 
sets allow one to introduce an extension of neural nets 
that can converge to a prescribed type of a stochastic 
process in the same way in which a regular neural net 
converges to a prescribed deterministic attractor. The 
solution to ODE represents another major departure from 
classical ODE: due to violation of Lipchitz conditions at 
states where the probability density has a sharp value, the 
solution loses its uniqueness and becomes random. 
However, this randomness is controlled by the PDE in 
such a way that each random sample occurs with the 
corresponding probability (see Figure 1). 

The model represents a fundamental departure from 
both Newtonian and statistical mechanics. In particular, 
negative diffusion cannot occur in isolated systems 
without help of the Maxwell sorting demon that is strictly 
forbidden in statistical mechanics. The only conclusion 
to be made is that the model is non-Newtonian, although 
it is fully consistent with the theory of differential equa- 
tions and stochastic processes. Strictly speaking, it is a 
matter of definition weather the model represents an iso- 
lated or an open system since the additional energy ap- 
plied via the information potential is generated by the 
system “itself” out of components of the probability den- 
sity. In terms of a topology of its dynamical structure, the 
proposed model links to quantum mechanics: if the in-
formation potential is replaced by the quantum potential, 
the model turns into the Madelung equations that are 
equivalent to the Schrödinger equation. The system of 
ODE describes a mechanical motion of the system driven 
by information forces. Due to specific properties of these 
forces, this motion acquires characteristics similar to 
those of quantum mechanics. These properties are dis- 
cussed below. The most important property is Superposi- 
tion. In quantum mechanics, any observable quantity 
corresponds to an eigenstate of a Hermitian linear opera- 
tor. The linear combination of two or more eigenstates 

results in quantum superposition of two or more values 
of the quantity. If the quantity is measured, the state will 
be randomly collapsed onto one of the values in the su- 
perposition (with a probability proportional to the square 
of the amplitude of that eigenstate in the linear combina- 
tion). Let us compare the behavior of the model of Liv- 
ings from that viewpoint, Figure 2. 

As follows from Figure 2, all the particular solutions 
intersect at the same point v = 0 at t = 0, and that leads to 
non-uniqueness of the solution due to violation of the 
Lipcshitz condition. Therefore, the same initial condition 
v = 0 at t = 0 yields infinite number of different solutions 
forming a family; each solution of this family appears 
with a certain probability guided by the corresponding 
Fokker-Planck equation. For instance, in case of the so- 
lution plotted in Figure 2, the “winner” solution is 

0v   since it passes through the maxima of the prob- 
ability density. However, with lower probabilities, other 
solutions of the same family can appear as well. Obvi- 
ously, this is a non-classical effect. Qualitatively, this 
property is similar to those of quantum mechanics: the 
system keeps all the solutions simultaneously and dis- 
plays each of them “by a chance”, while that chance is 
controlled by the evolution of probability density. It 
should be emphasized that the choice of displaying a 
certain solution is made by the Livings model only once,  
 

 

Figure 2. Switching between superposition and classical 
states. 

Copyright © 2012 SciRes.                                                                                 JQIS 



M. ZAK 68 

and in particular, at the instant of time when the feedback 
is removed and the dynamical system becomes a Newto- 
nian’s one. Therefore, the removal of the feedback can be 
associated with a quantum measurement. Modified ver- 
sions of such quantum properties as uncertainty and en- 
tanglement are also described in the referenced papers.  

The model illuminates the “border line” between liv- 
ing and non-living systems. The model introduces a bio- 
logical particle that, in addition to Newtonian properties, 
possesses the ability to process information. The prob- 
ability density can be associated with the self-image of 
the biological particle as a member of the class to which 
this particle belongs, while its ability to convert the den- 
sity into the information force—with the self-awareness 
(both these concepts are adopted from psychology). Con- 
tinuing this line of associations, the equation of motion 
can be identified with a motor dynamics, while the evo- 
lution of density—with a mental dynamics. Actually the 
mental dynamics plays the role of the Maxwell sorting 
demon: it rearranges the probability distribution by cre- 
ating the information potential and converting it into a 
force that is applied to the particle. One should notice 
that mental dynamics describes evolution of the whole 
class of state variables (differed from each other only by 
initial conditions), and that can be associated with the 
ability to generalize that is a privilege of living systems. 
Continuing our biologically inspired interpretation, it 
should be recalled that the second law of thermodynam- 
ics states that the entropy of an isolated system can only 
increase. This law has a clear probabilistic interpretation: 
increase of entropy corresponds to the passage of the 
system from less probable to more probable states, while 
the highest probability of the most disordered state (that 
is the state with the highest entropy) follows from a sim- 
ple combinatorial analysis. However, this statement is 
correct only if there is no Maxwell’ sorting demon, i.e. 
nobody inside the system is rearranging the probability 
distributions. But this is precisely what the Liouville 
feedback is doing: it takes the probability density   
from the mental dynamics, creates functions of this den- 
sity, converts them into a force and applies this force to 
the equation of motor dynamics. As already mentioned 
above, because of that property of the model, the evolu- 
tion of the probability density becomes nonlinear, and the 
entropy may decrease “against the second law of ther- 
modynamics”, Figure 3. Obviously the last statement 
should not be taken literary; indeed, the proposed model 
captures only those aspects of the living systems that are 
associated with their behavior, and in particular, with 
their motor-mental dynamics, since other properties are 
beyond the dynamical formalism. Therefore, such 
physiological processes that are needed for the metabo- 
lism are not included into the model. That is why this 
model is in a formal disagreement with the second law of  

thermodynamics while the living systems are not. In or- 
der to further illustrate the connection between the life/ 
non-life discrimination and the second law of thermody-
namics, consider a small physical particle in a state of 
random migration due to thermal energy, and compare its 
diffusion i.e. physical random walk, with a biological 
random walk performed by a bacterium. The fundamen- 
tal difference between these two types of motions (that 
may be indistinguishable in physical space) can be de- 
tected in probability space: the probability density evolu- 
tion of the physical particle is always linear and it has 
only one attractor: a stationary stochastic process where 
the motion is trapped. On the contrary, a typical prob- 
ability density evolution of a biological particle is non- 
linear: it can have many different attractors, but eventu-
ally each attractor can be departed from without any 
“help” from outside. 

That is how H. Berg [7], describes the random walk of 
an E. coli bacterium: “If a cell can diffuse this well by 
working at the limit imposed by rotational Brownian 
movement, why does it bother to tumble? The answer is 
that the tumble provides the cell with a mechanism for 
biasing its random walk. When it swims in a spatial gra- 
dient of a chemical attractant or repellent and it happens 
to run in a favorable direction, the probability of tum- 
bling is reduced. As a result, favorable runs are extended, 
and the cell diffuses with drift.” Berg argues that the cell 
analyzes its sensory cue and generates the bias internally, 
by changing the way in which it rotates its flagella. This 
description demonstrates that actually a bacterium inter- 
acts with the medium, i.e. it is not isolated, and that rec- 
onciles its behavior with the second law of thermody- 
namics. However, since these interactions are beyond the 
dynamical world, they are incorporated into the proposed 
model via the self-supervised forces that result from the 
interactions of a biological particle with “itself”, and that 
formally “violates” the second law of thermodynamics. 
Thus, this model offers a unified description of the pro- 
gressive evolution of living systems. More sophisticated 
effects that shed light on relationships between Livings 

 

 

Figure 3. Deviation from thermodynamics. 
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and the second law of thermodynamics is considered in 
[4]. 

1.2. Analytical Formulation 

The proposed model that describes mechanical behavior 
of a Living can be presented in the following compressed 
invariant form 

ln ,vv                 (1) 

2 ,V                  (2) 

where ν is velocity vector, ρ is probability density, ζ is 
universal constant, and α (D, w) is a tensor co-axial with 
the tensor of the variances D that may depend upon these 
variances. Equation (1) represents the second Newton’s 
law in which the physical forces are replaced by infor- 
mation forces via the gradient of the information poten- 
tial ln   , while the constant ζ connects the infor- 
mation and inertial forces formally replacing the Planck 
constant in the Madelung equations of quantum mechan- 
ics. Equation (2) represents the continuity of the prob- 
ability density (the Liouville equation), and unlike the 
classical case, it is non-linear because of dependence of 
the tensor α upon the components of the variance D. This 
model is equipped by a set of parameters w that control 
the properties of the solutions discussed above. The only 
realistic way to reconstruct these parameters for an object 
to be discovered is to solve the inverse problem: given 
time series of sensor data describing dynamics of an un- 
known object, find the parameters of the underlying dy- 
namical model of this object within the formalism of 
Equations (1) and (2). As soon as such a model is recon- 
structed, one can predict future object behavior by run- 
ning the model ahead of actual time as well as analyze a 
hypothetical (never observed) object behavior by appro- 
priate changes of the model parameters. But the most 
important novelty of the proposed approach is the capa- 
bility to detect Life that occurs if, at least, some of 
“non-Newtonian” parameters are present. The method- 
ology of such an inverse problem is illustrated in Figure 
4. 

Our further analysis will be based upon the simplest 

version of the system (1) and (2) 

2 ln ,v
v

 
 


            (3) 

2
2

2
, dV

t V

  




 
1 

            (4) 

where v stands for the velocity, and 2  is the constant 
diffusion coefficient. 

Remark 1. Here and below we make distinction be- 
tween the random variable v(t) and its values V in prob- 
ability space. 

The solution of Equation (4) subject to the sharp initial 
condition 

2

2

1
exp

42 π

V

tt



 

 
 

              (5) 

describes diffusion of the probability density. Substitut- 
ing this solution into Equation (3) at V = v one arrives at 
the differential equation with respect to v (t) 

2

v
v

t
                   (6) 

and, therefore, 

v C t                   (7) 

where C is an arbitrary constant. Since v = 0 at t = 0 for 
any value of C, the solution (7) is consistent with the 
sharp initial condition for the solution (5) of the corre- 
sponding Liouville Equation (4).  

The solution (7) describes the simplest irreversible 
motion: it is characterized by the “beginning of time” 
where all the trajectories intersect (that results from the 
violation of the Lipcsitz condition at t = 0, Figure 5), 
while the backward motion obtained by replacement of t 
with (–t) leads to imaginary values of velocities. One can 
notice that the probability density (5) possesses the same 
properties. Further analysis of the solution (7) demon- 
strates that it is unstable since 

d 1
0

d 2

v

v t
                   (8) 

 

 

Figure 4. Data-driven model discovery. 
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Figure 5. Stochastic process and probability density. 
 

d
  0
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v
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1.3. Example of Entanglement in Livings 

In order to introduce entanglement in a Living system, 
we will start with Equations (11) and (12) and generalize 
them to the two-dimensional case 

1 11 12
1 2

ln ln ,v a a
v v

  
  

 
           (10) 

2 21 22
1 2

ln ln ,v a a
v v

  
  

 
           (11) 

 
2 2

11 12 21 222
1 2 2

,a a a a
t V VV

2

V

     
   

  



     (12) 

As in the one-dimensional case, this system describes 
diffusion without a drift 

The solution to Equation (12) has a closed form 

1 1
exp , 1,2.

4ˆ2 det
ij i j

ij

b VV i
ta t

    
    



,

   (13) 

Here 
1

11 11 22 22

12 21 12 21

ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,

ij ij

ij ji ij ji

b a a a a a

a a a a a a b b


         

     
      (14) 

Substituting the solution (13) into Equations (19) and 
(11), one obtains 

11 1 12 2
1 2

b v b v
v

t


               (15) 

21 1 22 2
2 ˆ,

2 ij ij ij

b v b v
v b

t

  b a          (16) 

Eliminating t from these equations, one arrives at an 
ODE in the configuration space 

2 21 1 22 2
2 1

1 11 1 12 2

d
, 0  

d

v b v b v
v at v

v b v b v


 


0,       (17) 

This is a classical singular point treated in text books 
on ODE.  

Its solution depends upon the roots of the characteris- 
tic equation 

2 2
12 12 11 222 0b b b b              (18) 

Since both the roots are real in our case, let us assume 
for concreteness that they are of the same sign, for in- 
stance, 1 21,  1   . Then the solution to Equation (17) is 
represented by the family of straight lines 

2 1, consv Cv C  t.             (19) 

Substituting this solution into Equation (54) yields 

   
        (20) 

11 12 11 12
1 1

2 2
1 2,

b Cb b Cb
v Ct v CCt

 
 

Thus, the solutions to Equations (10) and (11) are rep- 
resented by two-parametrical families of random samples, 
as expected, while the randomness enters through the 
time-independent parameters C and that can take any 
real numbers. Let us now find such a combination of the 
variables that is deterministic. Obviously, such a combi- 
nation should not include the random parameters C or C . 
It easily verifiable that 

C

    11 12
1 2

d d
ln ln

d d 2

b Cb
v v

t t t


         (21) 

and therefore, 

1 2

d d
ln ln 1

d d
v v

t t
       
   

         (22) 

Thus, the ratio (22) is deterministic although both the 
numerator and denominator are random. This is a fun-
damental non-classical effect representing a global con-
straint. Indeed, in theory of stochastic processes, two 
random functions are considered statistically equal if 
they have the same statistical invariants, but their point- 
to-point equalities are not required (although it can hap- 
pen with a vanishingly small probability). As demon- 
strated above, the diversion of determinism into ran- 
domness via instability (due to a Liouville feedback), and 
then conversion of randomness to partial determinism (or 
coordinated randomness) via entanglement is the funda- 
mental non-classical paradigm that may lead to instanta- 
neous transmission of conditional information on remote 
distance that has been discussed in [2]. 

2. Entanglement 

Prior to deriving a fundamentally new type of entangle- 
ment in living, we will discuss a concept of global con- 
straints in Physics and its application to more general 
interpretation of entanglement. 

Quantum entanglement is a phenomenon in which the 
quantum states of two or more objects have to be 
described with reference to each other, even though the 
individual objects may be spatially separated. Qualitat- 
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ively similar effect has been demonstrated in living 
systems: as follows from the example considered in the 
previous section, the diversion of determinism into ran- 
domness via instability (due to a Liouville feedback), and 
then conversion of randomness to partial determinism (or 
coordinated randomness) via entanglement is the funda- 
mental non-classical paradigm that may lead to instanta- 
neous transmission of conditional information on remote 
distance [2]. In this connection, it is reasonable to make 
some comments about non-locality in physics. As al- 
ready mentioned above, the living systems and quantum 
systems have similar topology (see Figure 1). In this 
section, we will analyze the similarities in terms of en- 
tanglement that follow from this topology. 

2.1. Criteria for Non-Local Interactions 

Based upon analysis of all the known interactions in the 
Universe and defining them as local, one can formulate 
the following criteria of non-local interactions: they are 
not mediated by another entity, such as a particle or field; 
their actions are not limited by the speed of light; the 
strength of the interactions does not drop off with dis- 
tance. All of these criteria lead us to the concept of the 
global constraint as a starting point.  

2.2. Global Constraints in Physics 

It should be recalled that the concept of a global con- 
straint is one of the main attribute of Newtonian me- 
chanics. It includes such idealizations as a rigid body, an 
incompressible fluid, an inextensible string and a mem- 
brane, a non-slip rolling of a rigid ball over a rigid body, 
etc. All of those idealizations introduce geometrical or 
kinematical restrictions to positions or velocities of parti- 
cles and provide “instantaneous” speed of propagation of 
disturbances. Let us discuss the role of the reactions of 
these constraints. One should recall that in an income- 
pressible fluid, the reaction of the global constraint 

 (expressing non-negative divergence of the 
velocity v) is a non-negative pressure ; in inexten- 
sible flexible (one- or two-dimensional) bodies, the reac- 
tion of the global constraint ij ij

0v 
0p 

,0g g  i, j = 1, 2 (ex- 
pressing that the components of the metric tensor cannot 
exceed their initial values) is a non-negative stress tensor 

0ij  , i, j = 1, 2. It should be noticed that all the known 
forces in physics (the gravitational, the electromagnetic, 
the strong and the weak nuclear forces) are local. How- 
ever, the reactions of the global constraints listed above 
do not belong to any of these local forces, and therefore, 
they are non-local. Although these reactions are being 
successfully applied for engineering approximations of 
theoretical physics, one cannot relate them to the origin 
of entanglement since they are result of idealization that 
ignores the discrete nature of the matter. However, there 

is another type of the global constraint in physics: the 
normalization constraint (see Equation (4)). This con- 
straint is fundamentally different from those listed above 
for two reasons. Firstly, it is not an idealization, and 
therefore, it cannot be removed by taking into account 
more subtle properties of matter such as elasticity, com- 
pressibility, discrete structure, etc. Secondly, it imposes 
restrictions not upon positions or velocities of particles, 
but upon the probabilities of their positions or velocities, 
and that is where the entanglement comes from. Indeed, 
if the Liouville equation is coupled with equations of 
motion as in quantum mechanics, the normalization con- 
dition imposes a global constraint upon the state vari- 
ables, and that is the origin of quantum entanglement. In 
quantum physics, the reactions of the normalization con- 
straints can be associated with the energy eigenvalues 
that play the role of the Lagrange multipliers in the con- 
ditional extremum formulation of the Schrödinger equa- 
tion [5]. In living systems, the Liouville equation is also 
coupled with equations of motion (although the feedback 
is different). And that is why the origin of entanglement 
in living systems is the same as in quantum mechanics.  

2.3. Speed of Action Propagation 

Further illumination of the concept of quantum entan- 
glement follows from comparison of quantum and New- 
tonian systems. Such a comparison is convenient to per- 
form in terms of the Madelung version of the Schrödinger 
equation: 

0S
t m

         
           (23) 

 
2 2

2
0

2

S
S V

t m





    


      (24) 

Here   and S are the components of the wave func- 
tion /iSe  , and  is the Planck constant divided 
by . The Newtonian mechanics ( ), in terms of 
the S and 

2π 0
  as state variables, is of a hyperbolic type, 

and therefore, any discontinuity propagates with the fi-
nite speed S/m, i.e. the Newtonian systems do not have 
non-localities. But the quantum mechanics ( 0 ) is of a 
parabolic type. This means that any disturbance of S or 
  in one point of space instantaneously transmitted to 
the whole space, and this is the mathematical origin of 
non-locality. But is this a unique property of quantum 
evolution? Obviously, it is not. Any parabolic equation 
(such as Navier-Stokes equations or Fokker-Planck equa- 
tion) has exactly the same non-local properties. However, 
the difference between the quantum and classical non- 
localities is in their physical interpretation. Indeed, the 
Navier-Stokes equations are derived from simple laws of 
Newtonian mechanics, and that is why a physical inter- 
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pretation of non-locality is very simple: If a fluid is in- 
compressible, then the pressure plays the role of a reac- 
tion to the geometrical constraint , and it is 
transmitted instantaneously from one point to the whole 
space (the Pascal law). One can argue that the incom- 
pressible fluid is an idealization, and that is true. How- 
ever, it does not change our point: Such a model has a lot 
of engineering applications, and its non-locality is well 
understood. The situation is different in quantum me- 
chanics since the Schrodinger equation has never been 
derived from Newtonian mechanics: It has been postu- 
lated. In addition to that, the solutions of the Schrodinger 
equation are random, while the origin of the randomness 
does not follow from the Schrodinger formalism. That is 
why the physical origin of the same mathematical phe- 
nomenon cannot be reduced to simpler concepts such as 
“forces”: It should be accepted as an attribute of the 
Schrodinger equation.  

0v 

Let us turn now to the living systems. The formal dif- 
ference between them and quantum systems is in a feed- 
back from the Liouville equation to equations of motion: 
the gradient of the quantum potential is replaced by the 
information forces, while the equations of motion are 
written in the form of the second Newton’s law rather 
than in the Hamilton-Jacoby form. In this paper, we have 
considered information forces that turn the corresponding 
Liouville equation into the Fokker-Planck equation 
which is parabolic, and therefore, all the changes of the 
probability density propagates instantaneously as in the 
quantum systems. Thus, both quantum systems and liv- 
ing systems possess the same non-locality: instantaneous 
propagation of changes in the probability density, and 
this is due to similar topology of their dynamical struc- 
ture, and in particular, due to a feedback from the Liou- 
ville equation.  

2.4. Origin of Randomness in Physics 

Since entanglement in quantum systems as well as in 
living systems is exposed via instantaneous propagation 
of changes in the probability density, it is relevant to ask 
what is the origin of randomness in physics. The concept 
of randomness has a long history. Its philosophical as- 
pects first were raised by Aristotle, while the math- 
ematic- cal foundations were introduced and discussed 
much later by Henry Poincare who wrote: “A very slight 
cause, which escapes us, determines a considerable effect 
which we cannot help seeing, and then we say this effect 
is due to chance.” Actually Poincare suggested that the 
origin of randomness in physics is the dynamical insta- 
bility, and this viewpoint has been corroborated by the- 
ory of turbulence and chaos. However, the theory of dy- 
namical stability developed by Poincare and Lyapunov 
revealed the main flaw of physics: its fundamental laws  

do not discriminate between stable and unstable motions. 
But unstable motions cannot be realized and observed, 
and therefore, a special mathematical analysis must be 
added to found out the existence and observability of the 
motion under consideration. However, then another ques- 
tion can be raised: why turbulence as a postinstability 
version of an underlying laminar flow can be observed 
and measured? In order to answer this question, we have 
to notice that the concept of stability is an attribute of 
mathematics rather than physics, and in mathematical 
formalism, stability must be referred to the correspond-
ing class of functions. For example: a laminar motion 
with sub-critical Reynolds number is stable in the class 
of deterministic functions. Similarly, a turbulent motion 
is stable in the class of random functions. Thus the same 
physical phenomenon can be unstable in one class of 
functions, but stable in another, enlarged class of func-
tions.  

Thus, we are ready now to the following conclusion: 
any stochastic process in Newtonian dynamics describes 
the physical phenomenon that is unstable in the class of 
the deterministic functions. 

This elegant union of physics and mathematics has 
been disturbed by the discovery of quantum mechanics 
that complicated the situation: Quantum physicists claim 
that quantum randomness is the “true” randomness unlike 
the “deterministic” randomness of chaos and turbulence. 
Richard Feynman in his “Lectures on Physics” stated that 
randomness in quantum mechanics in postulated, and 
that closes any discussions about its origin. However, 
recent result disproved existence of the “true” random- 
ness. Indeed, as shown in [2], the origin of randomness in 
quantum mechanics can be traced down to instability 
generated by quantum potential at the point of departure 
from a deterministic state if for dynamical analysis one 
transfer from the Shrodinger to the Madelung equation. 
(For details see [2]). As demonstrated there, the instabil- 
ity triggered by failure of the Lipchitz condition splits the 
solution into a continuous set of random samples repre- 
senting a “bridge” to quantum world. Hence, now we can 
state that any stochastic process in physics describes the 
physical phenomenon that is unstable in the class of the 
deterministic functions. Actually this statement can be 
used as a definition of randomness in physics. Finally 
one may ask why the instability discussed above has not 
been detected in the Schrödinger equation. The answer is 
simple if one recalls that stability analysis is based upon 
a departure from the basic state into a perturbed state, 
and such departure requires an expansion of the basic 
space. However, Schrödinger and Madelung equations in 
the expanded spaces are not necessarily equivalent any 
more, and that confirm the fact that stability is not an 
invariant of a dynamical system: it can depend upon the 
definition of a distance between the basic and perturbed 
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motions, and these definitions are different for Hilbert 
and physical spaces. 

3. Partial Entanglement in Livings 

In this section we introduce a new, more sophisticated 
entanglement that does not exists in quantum mechanics, 
but can be found in Livings. This finding is based upon 
existence of incompatible stochastic processes that are 
considered below. 

3.1. Incompatible Stochastic Processes 

Classical probability theory defines conditional proba- 
bility densities based upon the existence of a joint prob- 
ability density. However, one can construct correlated 
stochastic processes that are represented only by condi- 
tional densities since a joint probability density does not 
exist. For that purpose, consider two coupled Langevin 
equations [6]. 

   1 11 2 1x g x L t              (25) 

   2 22 1 2x g x L t              (26) 

where the Langevin forces  1L t and  satisfy the 
conditions 

 2L t

      0, 2i i i iiL t L t L t g t t         (27) 

Then the joint probability density  1 2,X X  de- 
scribing uncertainties in values of the random variables 

1x and 2x  evolves according to the following Fokker- 
Planck equation 

   
2 2

2 2
11 2 22 12 2

1 2

g X g X
t X X

   
 

  


     (28) 

Let us now modify Equations (25) and (26) as follow-
ing 

   2 *
1 11 2 1x g x L t              (29) 

   2 *
2 22 1 2x g x L t              (30) 

where *
1x and 2

*x are fixed values of 1x and 2x  that 
play role of parameters in Equations (29) and (30), re- 
spectively. Now the uncertainties of 1x and 2x are char- 
acterized by conditional probability densities  1 1 | 2X X  
and 1 | 2 2X X  while each of these densities is gov-
erned by its own Fokker-Planck equation 

 
2

21
11 2 2

1

g X
t

1

X

 


 


           (31) 

 
2

22
22 1

2

g X
t X

2 


 


           (32) 

The solutions of these equations subject to sharp initial 
conditions 

   , , , 1, 2.       (33) i i i i iX t X t X X i     

for t t  read 

 
  
 
  

1 1 2 2
11 2

2

1 1

2
11 2

1
|

4π

                      exp(
4

X X
g X t t

X X

g X t t

 



 



     (34) 

 
  

 
  

2 2 1 2
22 1

2

2 2

2
22 1

1

4π

                      exp
4

X X
g X t t

X X

g X t t

 


 
  

  

    (35) 

As shown in [3], a joint density for the conditional 
densities (34) and (35) exists only in special cases of the 
diffusion coefficients g11 and g22 when the conditional 
probabilities are compatible. These conditions are 

   
 

1 1 2
1 2

1 2 2 2 1

|
, ln

|

X X
ink

X X X X


 




0 
 

     (36) 

Indeed 

     

   

1 2 1 1 2 2

2 1 2 1

, ,

               , d ,

X X X X X

X X X

d    

   
















    (37) 

whence 

 
   

 

1 1 2

1

2 2 1

2

ln ln , d

                         ln , d

X X
X

X X

X


  



  
















     (38) 

and that leads to Equation (36). 
Thus, the existence of the join density  1 2,X X  for 

the conditional densities  1 1 2X X and  2 2 1X X  
requires that 

 
 

 
 

2

2 1 1 2 2

2 2
1 2 11 2 22 1

0
4 4

X X X X

X X g X g X

    
     

 

    (39) 

Obviously the identity (39) holds only for specially 
selected functions  11 2g X  and  22 1g X , and there- 
fore, existence of the joint density is an exception rather 
than a rule.  

3.2. Partial Entanglement 

In order to prove existence of a new form of entangle- 
ment, let us modify the system Equations (10)-(12) as 
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following: 

  1 11 2 1 1 2
1

lnv a v v v
v


 


            (40) 

     2
1 1 2 1 1 2

11 2 2
1

V V V V
a V

t V

  


 
        (41) 

  2 22 1 2 2
1

lnv a v v v
v


 


1          (42) 

     2
2 2 1 2 2 1

22 1 2
2

V V V V
a V

t V

  


 
       (43) 

Since here we do not postulate existence of a joint 
density, the system is written in terms of conditional 
densities, while Equations (41) and (43) are similar to 
Equations (31) and (32). The solutions of these PDE can 
be written in the form similar to the solutions (34) and 
(35) 

 
  

 
  

1 1 2

11 2

2

1 1

11 2

1

4π

                   exp
4

V V
a V t t

V V

a V t t

 


 
 







     (44) 

 
  

 
  

2 2 1

22 1

2

2 2

11 1

1

4π

                   exp
4

V V
a V t t

V V

a V t t

 


 
 







     (45) 

As noticed in the previous sub-section, the existence of 
the joint density  for the conditional densities  1 2,V V

1 1 2V V   and 2 2 1V V   requires that 

 
 

 
 

2

2 1 1 2 2

1 2 11 2 22 1

0
4 4

V V V V

V V a V a V

   



   






     (46) 

In this case, the joint density exists (although its find- 
ing is not trivial [3]), and the system (40)-(43) can be 
reduced to a system similar to (10)-(12). But here we will 
be interested in case when the joint density does not exist. 
It is much easier to find such functions    11 2 22 1,a V a V  
for which the identity (46) does not hold, and we assume 
that 

 
 

 
 

2

2 1 1 2 2

1 2 11 2 22 1

0
4 4

V V V V

V V a V a V

   



   






     (47) 

In this case the system (40)-(43) cannot be simplified. 
In order to analyze this system in details, let substitute 

the solutions (44) and (45) into Equations (40) and (42), 
respectively. Then with reference to Equation (6), one 
obtains 

1
1 2

v
v

t
                   (48) 

2
2 2

v
v

t
                   (49) 

and therefore 

1 1v C t                 (50) 

2 2v C t                 (51) 

It should be recalled that according to the terminology 
introduced in Section I, the system (40)-(41) and the sys- 
tem (42)-(43) can be considered as dynamical models for 
interaction of two communicating agents where Equa- 
tions (40) and (42) describes their motor dynamics, and 
Equations (41) and (43)—mental dynamics, respectively. 
Also it should be reminded that the solutions (50) and 
(51) are represented by one-parametrical families of 
random samples, as in Equation (7), while the random 
ness enters through the time-independent parameters 1  
and 2  that can take any real numbers. As follows from 
Figure 2, all the particular solutions (50) and (51) inter- 
sect at the same point 1,2

C
C

0v   at t = 0, and that leads to 
non-uniqueness of the solution due to violation of the 
Lipcshitz condition. Therefore, the same initial condition 

1,2 0v   at t = 0 yields infinite number of different solu- 
tions forming a family; each solution of this family ap- 
pears with a certain probability guided by the corre- 
sponding Fokker-Planck Equations (41) and (43), respec- 
tively. Similar scenario was described in the Introduction 
of this paper. But what unusual in the system (40)-(43) is 
correlations: although Equations (41) and (43) are corre- 
lated, and therefore, mental dynamics are entangled, 
Equations (40) and (42) are not correlated (since they can 
be presented in the form of independent Equations (48) 
and (49), respectively), and therefore, the motor dynam- 
ics are not entangled. This means that in the course of 
communications, each agent “selects” a certain pattern of 
behavior from the family of solutions (50) and (51) re- 
spectively, and these patterns are independent; but the 
probabilities of these “selections” are entangled via 
Equations (41) and (43). Such sophisticated correlations 
cannot be found in physical world, and they obviously 
represent a “human touch”. Unlike the entanglement in 
system with joint density (such as that in Equations 
(10)-(12)) here the agents do not share any deterministic 
invariants (compare to Equation (22)). Instead the agents 
can communicate via “best guesses” based upon known 
probability densities distributions.  

In order to quantify the amount of uncertainty due to 
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incompatibility of the conditional probability densities 
(44) and (45), let us introduce a concept of complex 
probability [3]. 

    1 2 1 2 1 2, , ,f V V a V V ib V V           (52) 

1 1 1 2 2 1 2 2

1 1 1 1

( ) ( , )d ( , )d

        ( ) ( )

f V a V V V i b V V

a V ib V

 

 

 

 

  V
     (53) 

2 2 1 2 1 1 2 1

2 2 2 2

( ) ( , )d ( , )d

         ( ) ( )

f V a V V V i b V V

a V ib V

 

 

 

 

  V
     (54) 

Following the formalism of conditional probabilities, 
the conditional density will be defined as 

1 2 1 2 1 2
1|2

2 2 2 2 2 2

2 2 2 2
2 2 2 2

2 2 2 2

( , ) ( , ) ( , )

( ) ( ) ( )

     

f V V a V V ib V V
f

f V a V ib V

aa bb a b ab
i

a b a b


 


 

 
 

      (55) 

1 2 1 2 1 2
2|1

1 1 1 1 1 1

1 1 1 1
2 2 2 2

1 1 2 2

( , ) ( , ) ( , )

( ) ( ) ( )

     

f V V a V V ib V V
f

f V a V ib V

aa bb a b ab
i

a b a b


 


 

 
 

     (56) 

with the normalization constraint 

 
1 2

2 2
1 2d d 1a b V V

 

 

             (57) 

This constraint can be enforced by introducing a nor-
malizing multiplier in Equation (52) which will not affect 
the conditional densities (55) and (56). 

Clearly 

 1 22 2 ,a a b   and       (58) 1 2d d 1a V V
 

 

 

Now our problem can be reformulated in the following 
manner: given two conditional probability densities (44) 
and (45), and considering them as real parts of (unknown) 
complex densities (55) and (56), find the corresponding 
complex joint density (52), and therefore, all the mar- 
ginal (53) and (54), as well as the imaginary parts of the 
conditional densities. In this case one arrives at two cou- 
pled integral equations with respect to two unknowns 

 and (while the formulations of 
, 2 1 2 ,  and follow 

from Equations (53) and (54)). These equations are 

 1 2,a V V
 1 1 2,a V V

 
 

 1 2,b V V
 ,Va V 1 1 2,b V V 2 1 2,b V V

   2 2 1 1
1 1 2 2 1 22 2 2 2

2 2 2 2

, , ,
aa bb aa bb

V V V V
a b a b

 


 


,



(59) 

The system (59) is nonlinear, and very little can be 
said about general property of its solution without de-

tailed analysis. Omitting such an analysis, let us start 
with a trivial case when 

b = 0                 (60) 

In this case the system (59) reduces to the following 
two integral equations with respect to one unknown 
 1 2,a V V  

   

 

   

 

1 2
1 1 2

1 2 2

1 2
2 1 2

1 2 2

,
, ,

, d

,
,

, d

a V V
V V

a V V V

a V V
V V

a V V V





















        (61) 

This system is overdetermined unless the compatibility 
conditions (36) are satisfied. 

As known from classical mechanics, the incompatibil- 
ity conditions are usually associated with a fundamen- 
tally new concept or a physical phenomenon. For in- 
stance, incompatibility of velocities in fluid (caused by 
non-existence of velocity potential) introduces vorticity 
in rotational flows, and incompatibility in strains de- 
scribes continua with dislocations. In order to interpret 
the incompatibility (36), let us return to the system (59). 
Discretizing the functions in Equations (59) and replac- 
ing the integrals by the corresponding sums, one reduces 
Equations (59) to a system of n algebraic equations with 
respect to n unknowns. This means that the system is 
closed, and cases when a solution does not exist are ex- 
ceptions rather than a rule. Therefore, in most cases, for 
any arbitrarily chosen conditional densities, for instant, 
for those given by Equations (44) and (45), the system 
(59) defines the complex joint density in the form (52).  

Now we are ready to discuss a physical meaning of the 
imaginary component of the complex probability density. 
Firstly, as follows from comparison of Equations (59) 
and (61), the imaginary part of the probability density 
appears as a response to incompatibility of the condi- 
tional probabilities, and therefore, it can be considered as 
a “compensation” for the incompatibility. Secondly, as 
follows from the inequalities (58), the imaginary part 
consumes a portion of the “probability mass” increasing 
thereby the degree of uncertainty in the real part of the 
complex probability density. Hence the imaginary part of 
the probability density can be defined as a measure of the 
uncertainty “inflicted” by the incompatibility into the real 
part of this density.  

In order to avoid solving the system of integral equa- 
tions (59), we can reformulate the problem in an inverse 
fashion by assuming that the complex joint density is 
given. Then the real parts of the conditional probabilities 
that drive Equations (40) and (41) can be found from 
simple formulas (55) and (56).  
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Let us illustrate this new paradigm, and consider two 
players (for instance, in a poker-like game), assuming 
that each player knows his own state as well as the com- 
plex joint probability density, 

    1 2 1 2 1 2, ,V V a V V ib V V   ,

0

        (62) 

But he does not know the state of his adversary. 
Without going in details of the game, let us draw a 

sketch of a common-sense-based logic that could be ap- 
plied by the players. Since the player 1 knows the joint 
probability density (62) and he also knows the value of 
his own state variable 

*
1 1   V v at t t                 (63) 

He can find the state variable of the player 2 at 0t t  
as a function of the real part of the probability density at 
the fixed value (63) of its own state variable 

   12 1V F a  at         (64) *
1 1 ,V v t t  0



where  2 1 is the value of the state variable of the second 
player in view of the first player. Now the question is: 
what is the best guess of the player 1 about the next 
move of the player 2 at 0 ? The simple logic sug- 
gests that it is the move that maximizes the real part of 
the joint density, i.e. the value  is to be 
found from the following condition 

V

t t

   
*

2 1 2 1V v

   *
1 2(1) 2(1) 1 1F a V v Sup F F a            (65) 

Obviously the player 2 has the same dilemma, and his 
choice could be 

   *
2 2(1) 2(1) 2F a V v Sup F a              (66) 

However both players rely only upon the real part of 
the complex joint density instead of a real joint density 
(that does not exist in this case). But as follows from the 
inequalities (58), the values of density of the real part are 
lowered due to loss of the probability mass, and this in-
creases the amount of uncertainty in player’s predictions. 
In order to minimize that limitation, the players can in-
voke the imaginary part of the joint density that gives 
them qualitative information about the amount of uncer-
tainty at the selected maxima. This information could 
give a reason to reconsider the previous decision and 
move away from the maxima at which uncertainty of the 
density is large. 

Thus the game starts with a significant amount of un- 
certainties that will grow exponentially with next moves. 
Such subtle and sophisticated relationship is typical for 
communications between humans, and the proposed 
model captures it via partial entanglement introduced 
above. 

4. Conclusions 

In this paper, a novel approach to the concept of entan- 
glement and its application to communications in Livings 
is introduced and discussed. The paper combines several 
departures from classical methods in physics and in 
probability theory. 

Firstly, it introduces a non-linear version of the Liou- 
ville equation that is coupled with the equation of motion 
(in Newtonian dynamics they are uncoupled). This new 
dynamical architecture grew up from quantum physics 
(in the Madelung version) when the quantum potential 
was replaced by information forces. The advantage of 
this replacement for modeling communications between 
intelligent agents representing living systems is ad- 
dressed and discussed.  

Secondly, it exploits a paradigm coming from incom- 
patible conditional probabilities that leads to non-exis- 
tence of a joint probability (in classical probability theory, 
existence of a joint probability is postulated). That led to 
discovery of a new type of entanglement that correlates 
not actions of Livings, but rather the probability of these 
actions.  

Thirdly, it introduces a concept of imaginary probabil-
ity as a measure of uncertainty generated by incompati-
bility of conditional probabilities. 

All of these departures actually extend and comple-
ment the classical methods making them especially suc-
cessful in analysis of communications in Living repre-
sented by new mathematical formalism.  

Thus this paper discusses quantum-inspired models of 
Livings from the viewpoint of information processing. 
The model of Livings consists of motor dynamics simu- 
lating actual behavior of the object, and mental dynamics 
representing evolution of the corresponding knowl- 
edge-base and incorporating it in the form of information 
flows into the motor dynamics. Due to feedback from 
mental dynamics, the motor dynamics attains quantum- 
like properties: its trajectory splits into a family of dif- 
ferent trajectories, and each of those trajectories can be 
chosen with the probability prescribed by the mental dy- 
namics The paper concentrates on discovery of a new 
type of entanglement that correlates not actions of Liv- 
ings, but rather the probability of these actions. 
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