
Journal of Quantum Information Science, 2012, 2, 61-65
http://dx.doi.org/10.4236/jqis.2012.23011 Published Online September 2012 (http://www.SciRP.org/journal/jqis)

Permutation Algebra for Constructing Reversible Circuits

Shah Mohammad Bahauddin, Abu Ashik Md. Irfan
Department of Applied Physics, Electronics & Communication Engineering, Faculty of Engineering & Technology,

University of Dhaka, Dhaka, Bangladesh
Email: bahauddin_omar@ieee.org

Received April 17, 2012; revised May 9, 2012; accepted June 4, 2012

ABSTRACT

In this paper, we show that the algebra of permutation group is one of the inherent structures of reversible logic for
quantum computation. In this venture, we discuss necessary properties of cycle and transposition to reveal the potential
of permutation algebra for reversible logic. Then we present an efficient method which naturally interconnects the struc-
ture of reversible logic with the expression of cycle and corresponding transpositions. Finally we discuss several exam-
ples which show that the algebra can be effectively used to construct complex gates as well.

Keywords: Control NOT; Taffoli-Fredkin Gate; Full Adder

1. Introduction

In recent years, reversible logic has become more and
more prominent technology having its applications in
quantum computing and other aspects of nanotechnology.
Moreover, reversibility can also be a solution to the en-
ergy dissipation issue in chip level integrated systems.
Logically reversible gates are those where the inputs can
be inferred from knowledge of the outputs, meaning the
logic function implemented by the gate has a unique in-
verse. In this paper, we present a method which inter-
connects the structure of reversible logic with permuta-
tion algebra. By applying the properties of cycle and
transposition, we also show that any complex arithmetic
circuit such as full adder can be easily achieved and effi-
ciently constructed.

2. Reversibility & Permutation Group

An n-bit reversible logic gate is a block which performs a
permutation on the 2n possible states of bits that pass
through it. Hence it is a one-to-one correspondence from
a 2n state onto itself. Thus specifying a reversible logic
gate is nothing but specifying the mapping that it per-
forms. In quantum computing, these computational states
are represented by quantum mechanical state. For exam-
ple, let us define an arbitrary finite set S having n-ele-
ments (which are in this case well defined quantum me-
chanical states). Then any reversible logic of such set can
be expressed by introducing NS  where  is a one-
to-one mapping of S onto itself. Now, one can represent
the set of bits  with the set of kets ,a b 0,1 i
(such that i = 0, 1, 2, 3) which are the four computational
states expressed by two input bits of the measurement

gate. This allows us to represent any logic (in this exam-
ple XOR or more specifically Control NOT) by means of
specific basis state as

acontrol btarget |iinput > acontrol btarget |ioutput >

0 0 0 0 0 0

0 1 1 0 1 1

1 0 2 1 1 3

1 1 3 1 0 2

A closer examination immediately reveals that this

representation can be shown as an element under the
permutation S4. Hence we can say C-NOT can be repre-
sented as a one-to-one mapping of S4, and in terms of
energy state, the above table can now be represented by
the permutation.

0 1 2 3

0 1 3 2


 
  
 

Since the S4 contains 4! permutations it means that
there exists 24 different logic gates for a 4-state system.
Generalizing the above statements we can say that, any
N-level quantum system can be permutated in N! com-
putationally distinct logic sets. In other words, these per-
mutations of degree N form a group of order N! under
composite operation of permutation. This permutation
group, SN is the collection of all bijective maps

: S S  of the interval , with com-
position maps () as the group operation. We now intend
to recall some basic definitions for describing permuta-
tions [1].

1,2,3 ,S  N

Copyright © 2012 SciRes. JQIS

S. M. BAHAUDDIN, A. A. MD. IRFAN 62

Cycle of a Permutation: For k > 1, a k-cycle is a
permutation

1 2 1
1 2 1

2 3

, , , ,k
k k

k

i i i
i i i i

i i i
 



 
  
 



that acts on S in the following way

 maps
 

 
1 2 1 1 2

1 2

: , , ,

: , , ,
k

k

i i i i i i i i

j j j i i i

     
  

k

Here k is called the length of the cycle. Cycles of
length 1 are redundant since they reduce to identity. The
order of the entries in a cycle matters, but cycle notation
is not unique as the following

 
 
 

 

1 2 1

2 3 1

3 4 1 2

1 2

 , , , ,

, , , ,

, , , , ,

, , , ,

k k

k

k

k k k

i i i i

i i i i

i i i i i

i i i i



 





 1

Transposition: A cycle of length 2 is called a trans-
position. Every cycle of length k in SN (N > 1) is ex-
pressible as a product (k − 1) of transpositions in the fol-
lowing manner,

       1 2 1 1, 1 1 1 3 1 2, , , , , , ,k k k ki i i i i i i i i i i i 

Since, the inverse of a permutation is the permutation
obtained by interchanging the rows between them. This
results to state that every transposition is the inverse of
its own.

       1
, . , , , j k j k j k j k k ji i i i I i i i i i i


   

A product of disjoint cycle or transpositions is com-
mutative.

     , , , ,j k m n m n j ki i i i i i i i

An important property which will be particularly in-
teresting for this paper is that one can decompose a
transposition in the following product,

      , , , ,j l j k k l j ki i i i i i i i

3. Algebra of Reversible Logic

Now we show that the algebra of reversible logic can be
introduced in terms of permutation group and the concept
of cycle works as the building block of reversible gate.
Hence, we adopt the following statements,

For every n-bit reversible logic there exist a unique
permutation of degree 2n. This means, the properties and
the operations of permutation groups are applicable for
reversible logic as well.

This statement is discussed in the beginning of the lit-

erature. Recall that as a subgroup of a symmetric group,
all the necessary group axioms are satisfied by permuta-
tion group; that is it contains the identity permutation, the
inverse permutation and the associative and closure
property. Since reversible logic mimics a permutation as
shown before, the composite operations between permu-
tations can also be adapted for reversible gates.

Since every reversible gate is expressible by corre-
sponding permutation, hence it is possible to express a
reversible gate as a product of disjoint cycles and nec-
essarily as a product of transpositions.

Let us examine the logic of an inverter which is
 and 1 since it is a single bit logic, the gate

can be expressed as a permutation of degree 2 which is
0 1 0

 NOT

0 1
0,1

1 0


 
  
 

It can be seen that the inverter is logically reversible,
but unfortunately is not a universal gate in the sense that
any arbitrary Boolean logic is not realizable in terms of
inverter alone. For quantum computation, we need uni-
versal reversible gates. One of such gates is the Taffoli-
Fredkin (T-F) gate [2,3] which is necessarily a 3-bit gate
with 3 inputs (a, b, c) and corresponding outputs (a', b',
c'). The relationship between the input and output is the
following

 

'

'

'

a a

b b

c c a b




  

Here  denotes the Exclusive OR and  denotes
the AND function. The variables a and b are control bits
where c is called the target bit. As seen from the logic,
the control bit suffers from no change while passing
through the gate. However the target bit flips if both con-
trol bits are logic 1. The permutation corresponding to
this gate is,

T-F

000 001 010 011 100 101 110 111

000 001 010 011 100 101 111 110


 
  
 

And the corresponding transposition is T-F = (110,
111). We can also write the transposition in decimal
symbol which would be more convenient for calculation.
In case of T-F gate, the transposition is (6, 7).

The similar treatment can be accounted for more com-
plex gates. Such a gate is Peres gate [4], which is another
reversible and universal one. Peres gate is mainly inter-
esting due to its combination of T-F gate and C-NOT gate
which makes it an attractive candidate to realize complex
logic such as addition, subtraction etc. Peres gate is also a
3-bit gate which maintains relationship between the input
and output as following,

Copyright © 2012 SciRes. JQIS

S. M. BAHAUDDIN, A. A. MD. IRFAN

Copyright © 2012 SciRes. JQIS

63

 

'

'

'

a a

b a b

c c a b


 

  

= (4, 6)(6, 7)(5, 6)
= (4, 6)(5, 7)(5, 7)(6, 7)(5, 7)(5, 7)(5, 6)
= (4, 6)(5, 7)(5, 6)(5, 7)(5, 6)
= (4, 6)(5, 7)(6, 7)

As seen from the logic, the outputs of bit b and c suffer
from CNOT and T-F operations respectively while bit a
remains unchanged. The permutation corresponding to
this gate is,

Now going from right to left, all we have to do is to sum
up the corresponding C-NOT gates as per transpositions.
Then the decomposition will denote Peres gate through
the joining of 3-bit C-NOT gates as shown below:

Peres

000 001 010 011 100 101 110 111

000 001 010 011 110 111 101 100


 
  
 

 The corresponding cycle has a length of 4 and can be
decomposed in 3 transpositions,

In the above example, let the C-NOT of cycle (6, 7)
and (4, 6) (5, 7) are expressed as C1 and C2 respectively.
Then clearly C1, C2 are one-to-one mapping of

 0,1, 2, ,7S 
C

 onto itself and the Peres gate is merely
a composite (1 2) of C1 and C2 which can mathe-
matically written by (1 2)(x) = C1(C2(x)),

C
C C x S  .

Since this is the closure property of permutation group, it
is obvious that

 
  

Peres
100,110,101,111

 100,111 100,101 100,110

 

 

In decimal symbol, the cycle of Peres gate is (4, 6, 5, 7)
= (4, 7)(4, 5)(4, 6).

4. Construction of General Gates 1 2C C S8.
Similarly, for n = 4, we have four options to choose

any one as a target bit and for each target bit, there exists
23 – 1 = 7 unique combinations of control bits. Hence
there are 7 × 4 = 28 numbers of C-NOT gate for n = 4
(Table 1). Again each of the 28 gates can be realized by
a unique product of transpositions as shown in Figure 2.

We showed earlier, with example, that the product of
cycles of a permutation is sufficient to realize any re-
versible logic. In an extension, let us introduce an n bit
C-NOT gate. In this case, we can realize the C-NOT op-
eration on any one bit of n while the control bits are the
other (n – 1) bits or (n – 2) and so on. If n = 3, then we can
choose any one as a target bit out of three and for each
target bit, there exist 22 – 1 = 3 unique combinations of
control bits. This means there are 9 possible C-NOT gate
for n = 3 (Figure 1), where each of them can be realized
by a unique product of transpositions.

At this juncture, let us imagine that we intend to real-
ize the logic of a full adder, which is evidently irreversi-
ble. By adding an extra bit, we can make it reversible,
which means it would be a 4-bit reversible logic. But
now the question lies where we want to put that extra bit.
Since there were 3 bits in an irreversible full adder, we
have different positions of significance (from MSB to
LSB) to put that extra bit. In our paper, we have intro-
duced 3 logics of such reversible Full Adder where the
extra bit is set at three different positions of significance
starting from LSB. The permutation corresponding to the
gates are given below. Here, in all three cases, the output
of a full adder logic is realized only when the extra bit is
zero. In addition, the least significant two bits of the
outputs are the sum and carry-out.

Now we will utilize the properties of cycles, to prove
that any reversible logic can be simulated by a combina-
tion of elementary gates. In other words, we will prove that
the decomposition of reversible logic is possible by exploit-
ing the properties of cycles under permutation algebra.

As an example, we can realize Peres gate in terms of
the 3-bit C-NOT gates

Peres = (4, 6, 5, 7)
= (6, 5, 7, 4)

FA-1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0011 0110 0100 0010 0001 0101 0111 1010 1011 1101 1100 1001 1000 1111 1110


 
  
 

FA-2

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0010 0001 0011 0110 0101 0111 0100 1110 1101 1111 1100 1001 1011 1000 1010


 
  
 

FA-3

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0010 0110 0001 0100 0101 0011 0111 1010 1001 1101 1011 1100 1000 1110 1111


 
  
 

Now the corresponding cycles in decimal are, FA-3 = (1, 2, 6, 3)(8, 10, 13)

FA-1 = (1, 3, 4, 2, 6, 5)(8, 10, 13)(9, 11, 12)(14, 15) As we stated before, our intention is to decompose
these reversible adder logics by 4-bit C-NOT gates only. = (1, 2)(4, 6, 7)(8, 14)(9, 13, 11, 12)(10, 15) FA-2

S. M. BAHAUDDIN, A. A. MD. IRFAN 64

(6,7) (2,3)(6,7) (5,7) (4,6)(5,7)(4,5)(6,7)

(2,6)(3,7) (3,7) (1,3)(6,7) (1,5)(3,7)

Figure 1. Possible permutations and corresponding trans-
positions of 3-bit C-NOT gates.

Table 1. Transpositions of 4-bit C-NOT gates correspond-
ing to Figure 2.

Row 1 (target bit at 1st LSB) Row 3 (target bit at 3rd LSB)

No. Transpositions No. Transpositions

1 (14,15) 1 (11,15)

2 (6,7)(14,15) 2 (3,7)(11,15)

3 (10,11)(14,15) 3 (9,13)(11,15)

4 (12,13)(14,15) 4 (10,14)(11,15)

5 (8,9)(10,11)(12,13)(14,15) 5 (8,12)(9,13)(10,14)(11,15)

6 (4,5)(6,7)(12,13)(14,15) 6 (2,6)(3,7)(10,14)(11,15)

7 (2,3)(6,7)(10,11)(14,15) 7 (1,5)(3,7)(9,13)(11,15)

Row 2 (target bit at 2nd LSB) Row 4 (target bit at MSB)

No. Transpositions No. Transpositions

1 (13,15) 1 (7,15)

2 (5,7)(13,15) 2 (3,11)(7,15)

3 (9,11)(13,15) 3 (5,13)(7,15)

4 (12,14)(13,15) 4 (6,14)(7,15)

5 (8,10)(9,11)(12,14)(13,15) 5 (4,12)(5,13)(6,14)(7,15)

6 (4,6)(5,7)(12,14)(13,15) 6 (2,10)(3,11)(6,14)(7,15)

7 (1,3)(5,7)(9,11)(13,15) 7 (1,9)(3,11)(5,13)(7,15)

Figure 2. Possible permutations of 4-bit C-NOT gates.

Figure 3. Realization of full adder FA-3 expressed by 26

4-bit C-NOT gates.

Here, we will utilize the expression of different C-NOT
gates in terms of corresponding transpositions and we
will operate permutation algebra on these transpositions
according to the lemmas to obtain the logic of reversible
adder. So, let us first examine the reversible logic of φFA-3
and then decompose it into elementary transpositions
which are available for C-NOT operation in following
manner,

FA-3 = (1, 2, 6, 3)(8, 10, 13)
= (3, 1, 2, 6)(8, 10, 13)

 = (3, 6)(3, 2)(3, 1)(8, 13)(8, 10)
 = (3, 7)(6, 7)(3, 7)(2, 3)(1, 3)(12, 13)(8, 12)(12, 13)

(8, 10)
Now, if we give a closure look at the figures of C-

NOT gates previously sketched before with their corre-
sponding product of transpositions, we can immediately
reveal that the first transposition (3, 7) cannot be realized
alone by any C-NOT gate rather it can be construted by a
combination of (3, 7) (11, 15) and (11, 15). According to
the previous statement, we can say that both of the
transpositons (6, 7) and (12, 13) also require a combina-
tion of two C-NOT gates while each of the four transpo-
sitions (1, 3), (2, 3), (8, 10) and (8, 12) requires a combi-
nation of four distinct C-NOT gates. In summary, we have
to add a total of 26 C-NOT gates to realize the logic of

FA-3 (Figure 3).
It is now evident that we could also simulate the logic

of FA-2 (shown in Figure 4) and FA-1 (not shown) as
well. Our calculation shows that the FA-2 can be con-
structed by 40 C-NOT gates while FA-1 will be com-
prised of 53 C-NOT gates.

5. Conclusion

The decomposition of complex gate by means of the
product of transposition and corresponding n-bit C-NOT
gate gives us further opportunity to express the logic in
more elementary gates. This is because any n-bit C-NOT
gate and corresponding unitary operations can be ex-
pressed as a composition of 2 bit C-NOT and the T-F

Figure 4. Realization of full adder expressed by 40 4-bit C-NOT gates. FA-2

Copyright © 2012 SciRes. JQIS

S. M. BAHAUDDIN, A. A. MD. IRFAN 65

[5]. Moreover, th

REFERENCES
[1] J. F. Humphre Theory,” 5th Edi-

anguages and Program-gate e number of basic operations to 7th Colloquium on Automata, L

perform all these steps showed in our examples is
mathematically efficient and unique and thus can be eas-
ily estimated. Hence we conclude that permutation alge-
bra can be employed as an inherent structure to construct
complex reversible circuit for quantum computational
networks.

ys, “A Course in Group
tion, Oxford University Press, Oxford, 1996.

[2] T. Taffoli, “Reversible Computing,” Proceedings of the

ming, Vol. 85, 1980, pp. 632-644.
doi:10.1007/3-540-10003-2_104

[3] E. Fredkin and T. Taffoli, “Conservative Logic,” Interna-
tional Journal of Theoretical Physics, Vol. 21, No. 3-4,
1982, pp. 219-253. doi:10.1007/BF01857727

[4] A. Peres, “Reversible Logic and Quantum Computers,”
Physical Review A, Vol. 32, No. 6, 1985, pp. 3266-3276.
doi:10.1103/PhysRevA.32.3266

[5] A. Barenco, C. H. Bennett, C. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin and H.
Weinfurter, “Elementary Gates for Quantum Computa-
tion,” Physical Review A, Vol. 52, No. 5, 1995, pp. 3457-
3467. doi:10.1103/PhysRevA.52.3457

Copyright © 2012 SciRes. JQIS

http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1103/PhysRevA.32.3266
http://dx.doi.org/10.1103/PhysRevA.32.3266
http://dx.doi.org/10.1103/PhysRevA.52.3457

