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ABSTRACT 

We present explicit inverses of two Brownian-type matrices, which are defined as Hadamard products of certain already 
known matrices. The matrices under consideration are defined by 3n − 1 parameters and their lower Hessenberg form 
inverses are expressed analytically in terms of these parameters. Such matrices are useful in the theory of digital signal 
processing and in testing matrix inversion algorithms. 
 
Keywords: Brownian Matrix; Hadamard Product; Hessenberg Matrix; Numerical Complexity; Test Matrix 

1. Introduction 

Brownian matrices are frequently involved in problems 
concerning “digital signal processing”. In particular, 
Brownian motion is one of the most common linear mod- 
els used for representing nonstationary signals. The co- 
variance matrix of a discrete-time Brownian motion has, 
in turn, a very characteristic structure, the so-called 
“Brownian matrix”. 

In [1] (Equation (2)) the explicit inverse of a class of 
matrices n ijG      with elements  

, ,

,
j

ij
j

b i j

a i j


.

  
                (1) 

is given. On the other hand, the analytic expressions of 
the inverses of two symmetric matrices ijK      and 

ijN     , where  

and , ,ij i ij jk k i   j

n

            (2) 

respectively, are presented in [2] (first equation in p. 113, 
and Equation (1), respectively). The matrix K is a special 
case of Brownian matrix and n  is a lower Brownian 
matrix, as they have been defined in [3] (Equation (2.1)). 
Earlier, in [4] (paragraph following Equation (3.3)) the 
term “pure Brownian matrix” for the type of the matrix K 
has introduced. Furthermore, in [5] (discussion concern-
ing Equations (28)-(30)) the so-called “diagonal innova-
tion matrices” (DIM) have been treated, special cases of 
which are the matrices K and N. 

G

In the present paper, we consider two matrices A1 and 
A2 defined by  

1 2and ,nA K G A N G  

n

          (3) 

where the symbol   denotes the Hadamard product. 
Hence, the matrices have the forms  
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    (4) 

and  

1 1 2 2 3 3 1 1

2 1 2 2 3 3 1 1

3 1 3 2 3 3 1 1
2

1 1 1 2 1 3 1 1

1 2 3 1

.

n n n n

n n n n
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k b k b k b k b k b

k a k b k b k b k b
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 (5) 

Let us now define for a matrix ij  the terms 
“pure upper Brownian matrix” and “pure lower Brownian 
matrix”, for the elements of which the following relations 
are respectively valid  

B b   

, 1 1,, , and ,i j ij i j ijb b i j b b i  .j           (6) 

The matrix A1 (Equation (4)) is a lower Brownian ma-
trix. Furthermore, the matrix PNP, where ijP p     is 
the permutation matrix with elements  
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1, 1,

0, otherwise,ij

i j n
p

  
 


            (7) 

is a pure Brownian matrix and n  a pure lower 
Brownian matrix. Hence, their Hadamard product  

 gives a pure lower Brownian matrix, 
that is, the matrix . 

PG P

   nPNP PG P 
2

In the following sections, we deduce in analytic form 
the inverses and determinants of the matrices A1 and A2; 
and we study the numerical complexity on evaluating 

PA P

1
1A  and 1

2A . 

2. The Inverse and Determinant of A1 

The inverse of A1 is a lower Hessenberg matrix expressed 
analytically by the 3n − 1 parameters defining A1. In par-
ticular, the inverse 1

1 ijA       has elements given by 
the relations  
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where  
 

1 0

1 1 1 0 1

1

, 1,2, , 1, 1, ,
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, 2,3, , 1,
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                     (9) 

 
with  

1

1

1 if 1,
i

j

k f i j 




 

              (10) 

and with the obvious assumptions  

1 0 and 0, 1, 2, , .ik c i            (11) 

To prove that the relations (8)-(10) give the inverse 
matrix 1

1A , we reduce A1 to the identity matrix I by 
applying a number of elementary row transformations.  

Then the product of the corresponding elementary matri-
ces gives the inverse matrix of A1. These transformations 
are defined by the following sequence of row operations.  

Operation 1 (applied on A1 and on the identity matrix 
I):  

 
1

row row 1 , 1, 2, , 1,i

i

k
i i i

k 

n      

which transforms A1 into the lower triangular matrix C1 
given by  

 
 

   

     

       

1 2 1 1 1

2
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3 3

1 1 4 3 2 2 4 3 3 4 3 3 3

4 4 4

1 1 1 2 2 1 3 3 1 1 1 1 1
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k k b k a

k
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,








0

0

 

 
and the identity matrix I into the upper bidiagonal matrix 
F1 with main diagonal  

 1,1, ,1  

and upper first diagonal  

11 2

2 3

, , , n

n

kk k

k k k
 

   
 

 .

Operation 2 (applied on  and 

 

1C 1F ):  
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 row row , , ,i ik g
i i i n n     1

1 1

1 , 1 3, 1,n
i i

k
k g 

 

   

which derives a lower bidiagonal matrix  with main 2C
diagonal  

1 11 1 2 2

2 3

, , , ,n n
n n

n

k ck c k c
k c

k k k
 

 
 

  

and lower first diagonal  

2 3 3 2 2 1 1 2 1 11 1 2

3 4 2 2 1

, , , ,n n n n n n n

n n n

k k g f k k g f k k fk a g

k k g k g g
     

 

 
 
 

 ;  

 while the matrix 1F  is transformed into the tridiagonal 
matrix 2F  given by  
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peration 3 (applied on  and O 2C 2F ):  

 

2 1 2

3 1

1

1 1 1

row 2 row 1 and

row row 1 , 3,4, , ,i i i
i

i i i

k a g

k c
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which derives the diagonal matrix  

1 11 1 2 2
3

2 3

,n n
n n

n

k ck c k c
C k

k k k
  c    

and, respectively, the lower Hessenberg matrix F3 given 

 
by  
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,
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c c c c c c c c
   

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  




 

 

n

 

ith the symbol s standing for the quantity w  1
i j .  

Operation 4 (applied on 3C  and 3F ):  

1 row , 1, 2, , ,i

i i

k  i i n
k c

    

which transforms into the identity matrix I and the 3C  
matrix 3F  into the verse 1

1 in A . 
The determinant of 1A  ta thkes 

     


2 1 2

1 1 1

det

.n n n n
1 1 1 1 3 2 2nA k b k b k a k b k a

k b k a  

  
 


    (12) 

Evidently, 1A  is singular if  or, c
the relation 

1 0k  onsidering 
(9), if 0ic   for so

and nt of A2 

In the case of 

me  1,2, ,i n . 

3. The Inverse Determina

, its inverse 1
2 ijA     e form  2A  is a lower 
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Hessenberg matrix with elements given by the relations  
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where  

,

(14) 

with  

           (15) 

and with the obvious assumptions  

n        (16) 

In order to prove that the relations (13)-(15) give the 
inverse matrix 
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0 and 0, 1,2, , .n ik c i     

1
2A , we follow a similar m

of

which transforms A2 into the lower triangular matrix 
equal to  

n n

and the identity matrix I into the bidiagonal matrix 

with main diagonal  

anner to that 
 Section 2.  
Operation 1 (applied on A2 and on the identity matrix 

I):  

 row row 1 , 1,2, , 1,i i i n     

1D  


1 1 2 1

1 2

0 0 0k b k a

a k k


   




   

3 2 2 3 2
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1L  

 1,1, ,1,1  

and upper first diagonal  

 1, 1, , 1, 1 .     

Operation 2 (applied on 1D  and 1L ):  

 

 

1

1

row row 1 and

row rowig
i i

g
  1 , 1, 2, ,3,

n

i
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g
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whic ago atrix D2 with main 
di
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 1 2 1, , , ,n n nc c c k c  
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3 2 2 1 2 2 1 1
1 2

2 2 1n ng g g  

while the m

, , , , ;n n n n n ng k f g k f k k f
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matrix  with diagonal  

1L  
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31,1,1 ,
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2 2 1

,1 ,1 ,n n
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 1, 1, , 1, 1     

and lower first diagonal  

3 1
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0, , , , .n n
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1

Operation 3 (applied on  and ):  2D 2L
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1
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with 

1 1n ng c 

3, 4, , 1i n 
,  

, which yields the diagonal matrix 

3D

3 1 2 1 ,n n nD c c c k c    

and the lower Hessenberg matrix  equal to    3L
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1 1 3 11 2
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where the symbol s  stands for .  

Operation 4 (ap lied on ):  
 1

i j
 and 3Lp 3D

1 1
row , 1,2, , 1, and row ,

i n

i i n n
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which transforms into the identity matrix I and 
into the inverse 

3D  
1

2
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of The determinant 2A  has the form  
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k
     (17) 

which shows in turn that the matrix 2A  is sing  
g 

ular if
0nk  , or, adoptin the conventions (14), if 0ic   for 

some  1, 2, ,i n  . 

4.

The relations (8) and (13) lead to recurrence f
which the inverses 

 Numerical Complexity 

ormulae, by 
1

1A  and 1
2A , respectively, are 

computed in  O n  multiplications/divisions and  
 O n  additions/substractions. In fact, the recursive al-
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where are given by the relation 
(14). T d the relations (9) and (14), it 
is clear t h numb of mult/div and add/sub in 
com

here
h

puting 

f
at t

1
2

ore, consi
e 

A  is the sam  with that of e 1
1A . 

5. Concluding Remarks 

The matrices A  and A  represent generalizations of 
kn

e categories presented. Furthermore, 
by restricting the a’s and b’s to unity, A1 and A2 reduce to 
the matrices given in [2]. Also, the matrices in [7] (pp. 41, 
42, 49) are special cases of A1 and A2. On the other hand, 
concerning the recursive algorithms given in Section 4, 
we have performed numerical experiments by assigning 

1 2

own classes of test matrices. For instance, the test ma-
trices given in [6] (Equations (2.1) and (2.2)) and in [1] 
(Eq. (2)) belong to th

e second sub- 
) and 5 9n
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random ters of A1, and with a variety 
of the order n from 256 to 1024. We have found that 
computing 1

1

 values to the parame

A  by the recursive algorithms (18)-(21) is 
~100 times faster than using the LU decomposition when 
n = 256 and increases gradually to ~1000 times faster 
when n = 1024. 
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