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ABSTRACT 

This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory 
of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges 
to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of 
convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM 
over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the 
method. 
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1. Introduction 

Consider linear system described by 
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where  are the state and control vector, 
respectively.  are constant matrix 
and 0

,nx u  
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x  is the initial state. The Optimal Control Problem 

(OCP) is to find a control law  which minimizes 
the quadratic cost functional  
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where  are symmetric positive semi-definite 
matrices and  is symmetric positive definite 
matrix. 

, n nS Q 
R m m

In general the problem can be transformed to the Ric-
cati differential equation [1], although solving the Riccati 
equation arised from OCP is not very simple. Another 
proposal for directly solving the OCP is discretizing the 
original problem and solving it numerically. Herein, the 
spectral collocation methods differ from other computa-
tional methods in their special discretization at carefully 
selected nodes for example, the so-called Legendre- 
Gauss-Lobatto nodes. Then the differential equations of 
the OCP are approximated by algebraic equations [2]. 
Although these methods are flexible and for program-
ming with computer are compatible, but they have their 

weaknesses for instance they react quite sensitively on 
the selection of time-step size [3]. 

According to the classic optimal control theory, as 
pointed out in [4], by using Pontryagin’s maximum prin-
ciple, we can obtain the following Two-Point Boundary 
Value (TPBV) problem 
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and the optimal control law for OCP can be written as 
   * 1 Tu t R B t   where  is known as the 

costate variable. 
  nt 

Analytic solutions can rarely be found for such TPBV 
problem and authors often solve it approximately for 
example Yousefi, Dehghan and Tatari [5] applied He’s 
Variational Iteration Method (VIM) to find the optimal 
solutions. In this paper, we are going to solve (3) by use 
of the Parametric Iteration Method (PIM) with emphasis 
on preference of PIM over VIM. 

2. Parametric Iteration Method  

PIM is an approximation method for solving linear and 
nonlinear problems and at beginning it was proposed for 
solving nonlinear fractional differential equations [6], by 
modifying He’s variational iteration method [7]. The idea 
of PIM is very simple and straightforward. Consider the 
following differential equation:  

  0.A u t                     (4) 
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where A is a nonlinear operator

   (5) 

where L denotes a linear differential

, t denotes the time, and 
 u t  is an unknown variable. To explain the basic idea 

of M, we first consider Equation (4) as below:  

      , 0.Lu t Nu t g t t          

 PI

 operator with 
respect to u, N is a nonlinear operator with respect to u 
and  g t  is the source term. We then construct a family 
of iterative formulas as:  
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where  and denote the so-ca
ter and


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lled auxil- 
iary pa  function respectively. Now 
by use of 1L  which is a weighted integral operator, we 
have: 
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One logical guess for  0u t
inear 

 can 
so
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3. Solution of Optimal Control Problem via 

In  solving the OCP described by (1) and (2), the 
PIM constructs the following sequences to directly ap-

be stablished by 
lving its corresponding l homogeneous equation 

 0 0L u t   . Another choice is  0 0u t u  according 
to the i ondition. Otherwise it ca  freely chosen 
with possible unknown constants. Note that choosing 

 0u t  can affect on the form of the solutions. 
T  auxiliary parameter h is an accelerating factor 

nitial c

he

n be

hich can be identified optimally by the technique pro-
posed in this paper. We show that a suitable value of h, 
directly improves the rate of convergence. The auxiliary 
function  H t  prepare us to have various basis func-
tions to change the solution terms to a desired form. Re-
lation (6) shows that the sequence constructed by PIM is 
dependent on h and  H t , and this directly ables us to 
identify and control the main and rate of convergence 
and this is the main preference of PIM over VIM.  

It should be emphasized that though we have the great 
fre L

do

edom to choose the linear operator , the auxiliary 
parameter h, the auxiliary function  H t , and the initial 
approximation  0u t , which is funda ntal to the va-
lidity and flexibili f PIM, we can also assume that all 
of them are properly chosen so that solution of (6) exists, 
as will be shown in this paper later.  

Finally, the exact solution may be obtained by using  

me
ty o
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proximate the solutions of the TPBV problem (3), 
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Starting with  0 0x t x  and  0 0t   as initial ap-
proximations,  nx t  and 

s. Converg
   calculate from

hese seq
n

ration formula ence of t uences to the 
optimal solutio e prob 1) and (2) is guaranteed 
by the following theorem. A similar theorem for nonlinear 
chaotic Genesio system can be found in [8]. 

Convergence theorem: if sequence (9) constructed by 
PIM converges to 

t  above 
ite

n of th lems (

 x t , then  x t  is the optimal tra-
jectory of system (1), and if  t  is the limit of (10), 
then the optimal con nction t  is trol fu  *u
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Proof: Analytically, as mentioned in [4,5], by having 

the answers of the system (3), i.e.

.T

  x t  and  t , we can 
establish the optimal control law    * 1 Tu t R B t   of 
OCP (1) - (2) and it’s correspon  optim ajectory ding al tr

 *x t . Hence if we show that the ion 
formulas (9) and (10) are the answers of the system (3), 

he proof is complete. To this end, suppose that 
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Now by substituting (11) and (12) we have: 
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Remark 1. Unfortunately the second condition of sys-
tem (3) i.e.    f ft Sx t  , is not an initial condition, so 
the initial approximation for iteration formula (10) is not 
available. To  difficulty we use a technique 
likes shooting method, such that first we let 

 overcome this
 0 t s   

where s is a constant and calculate  n t  using (10), next 
we apply the condition    f ft Sx t   and solve this 
equation due to s as an unknown to out s. Finally we 
return to iteration formu  0 t s   as an 
initial approximation.  

Remark 2. Finding an optimal h: h is a parameter in 
this method which has e

 find 
 with la (10)

ffect on the rate of convergence. If  

suitabl

(13) 

One can easily minimize (13) by imposing the

qu

1   this method is coinciding on He’s variational 
iteration method. But we show by several examples that a 

e value of h, directly improves the rate of conver-
gence. An optimal value of the convergence accelerating 
parameter h can be determined by the residual error 
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4. Illustrative Examples 

Res h

l examples by the PIM to 
ness of the method indi-

In this section, we solve severa
show the efficiency and useful
cating on the influence of parameter h on decreasing the 
iterations and increasing the convergence rate and accu-
racy of approximations. Whenever the form of approxi-
mations has no importance, we take   1H t  . As pointed 
out in section 3, we solve OCPs by solving the corre-
sponding TPBV problems (3). 

Example 1. Consider the following optimal control 
system [4]: 
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The PIM constructs the following sequences to ap-
proximate the solutions: 
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The exact solutions are: 

     
2 2

*

2 2 2 2
,

3 2 2 1 3 2 2 1

t te e
x t

e e




 

   
 

       
2 2

* *

2 2 2 2

( 2 1) ( 2 1)

3 2 2 1 3 2 2 1

t te e
u t t

e e






 
   

   
 

Figure 1, shows the approximate results obtained from 
the above iteration formulas for n = 2. As shown in fig
ure1 when

-
 1h    approximations are not so good. T

improve the accuracy we have to increase iterations, 
w

o 

hereas by changing the auxiliary parameter  we can 
accelerate the convergence and establish good estimations 
by lower iter o . This shows the flexibility and excel-
lence of the PIM. Figure 2 is plot of the error for various 
iterations. It is clear that accuracy of PIM is higher than 
VIM. 

Example 2. Consider the following system: 
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ons  second-order system as follows: 

       

π

2
2

0

0 0 1

  
   

1 2

0 01
min d ,

0 42

. : , 0 1, 0 1.
1 0 0

TJ x x u t

s to x x t u t x x

  
   

      
   





According to Equations (9) and (10), the iteration f
mulas are: 
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Figure 1. Plot of exact and approximation solutions. 
 

   

Figure 2. Plot of errors, left: VIM, right: PIM. 
 

   

Figure 3. Exact and approximate solution and affection of h. 
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Figure 4. Plot of first coordinate for various h. 
 

   

Figure 5. Plot of second coordinate for various h. 
 

The exact solutions are: 
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Figures 4 and 5 show the exact and approximate solu-
tions. This problem was solved by VIM in [5] and their 
presented solutions are only in a small region [1.4, 1.7].  

5. Conclusion 

There are various methods for solving linear OCPs, but in 
practice, the preferred method is that which be executable 
by computers and the PIM is one of them, because, 
moreover it’s simple structure, it has an accelerator pa-
rameter h which directly increases the convergence rate

t
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and decreases the number of iteration
e interesting for using in the softwars. One idea to esti-

mate optimal h mentioned in the paper. In general finding 
optimal auxiliary parameter h and auxiliary functio

s and this ability will 
b

n 
 H t

used fo
, are open problems. This easy to use method can be 
r nonlinear systems too.  
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