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ABSTRACT

This article presents the Parametric Iteration Method (PIM) for finding optimal control and its corresponding trajectory
of linear systems. Without any discretization or transformation, PIM provides a sequence of functions which converges
to the exact solution of problem. Our emphasis will be on an auxiliary parameter which directly affects on the rate of
convergence. Comparison of PIM and the Variational Iteration Method (VIM) is given to show the preference of PIM
over VIM. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the

method.
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1. Introduction

Consider linear system described by

X =Ax(t)+Bu(t),t>t,,

X(ty) = X-
where XeR",ueR"™ are the state and control vector,
respectively. AeR™,BeR™™ are constant matrix
and X, is the initial state. The Optimal Control Problem

(OCP) is to find a control law u"(t) which minimizes
the quadratic cost functional

)

ty
J :%XT (t;)sx(t, )+%£(XTQX+UTRu)dt )
where S,Q e R™ are symmetric positive semi-definite
matrices and ReR™" is symmetric positive definite
matrix.

In general the problem can be transformed to the Ric-
cati differential equation [1], although solving the Riccati
equation arised from OCP is not very simple. Another
proposal for directly solving the OCP is discretizing the
original problem and solving it numerically. Herein, the
spectral collocation methods differ from other computa-
tional methods in their special discretization at carefully
selected nodes for example, the so-called Legendre-
Gauss-Lobatto nodes. Then the differential equations of
the OCP are approximated by algebraic equations [2].
Although these methods are flexible and for program-
ming with computer are compatible, but they have their
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weaknesses for instance they react quite sensitively on
the selection of time-step size [3].

According to the classic optimal control theory, as
pointed out in [4], by using Pontryagin’s maximum prin-
ciple, we can obtain the following Two-Point Boundary
Value (TPBV) problem

x=Ax(t)-BR'B"A(t), x(t,)=x,

A(t)=-Qx(t)=ATA(t), A(t;)=3x(t,).
and the optimal control law for OCP can be written as
u'(t)=-R'B"A(t) where A(t)eR" is known as the
costate variable.

Analytic solutions can rarely be found for such TPBV
problem and authors often solve it approximately for
example Yousefi, Dehghan and Tatari [5] applied He’s
Variational Iteration Method (VIM) to find the optimal
solutions. In this paper, we are going to solve (3) by use

of the Parametric Iteration Method (PIM) with emphasis
on preference of PIM over VIM.

3)

2. Parametric lteration Method

PIM is an approximation method for solving linear and
nonlinear problems and at beginning it was proposed for
solving nonlinear fractional differential equations [6], by
modifying He’s variational iteration method [7]. The idea
of PIM is very simple and straightforward. Consider the
following differential equation:

Afu(t)]=0. Q)
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where A is a nonlinear operator, t denotes the time, and
u (t) is an unknown variable. To explain the basic idea
of PIM, we first consider Equation (4) as below:

Lu(t)+Nu(t)=g(t),t>0. Q)

where L denotes a linear differential operator with
respect to U, N is a nonlinear operator with respect to u
and ¢ (t) is the source term. We then construct a family
of iterative formulas as:

Lo, (0-u (0]=mH (AL, (O]  ©

where h#0 and H(t)=0 denote the so-called auxil-
iary parameter and auxiliary function respectively. Now
by use of L™ which is a weighted integral operator, we
have:

Uy, (1) =u, (t)+ L (hH (t) Alu, (1) ]).

Accordingly, the successive approximations u, (t),
n>1 will be readily obtained by choosing the zeroth
component U, (t) satisfying the general property

U, (t,)=u(ty),vneN. 7

One logical guess for u,(t) can be stablished by
solving its corresponding linear homogeneous equation
L[u,(t)]=0. Another choice is u,(t)=u, according
to the initial condition. Otherwise it can be freely chosen
with possible unknown constants. Note that choosing
U, (t) can affect on the form of the solutions.

The auxiliary parameter h is an accelerating factor
which can be identified optimally by the technique pro-
posed in this paper. We show that a suitable value of h,
directly improves the rate of convergence. The auxiliary
function H (t) prepare us to have various basis func-
tions to change the solution terms to a desired form. Re-
lation (6) shows that the sequence constructed by PIM is
dependent on h and H (t), and this directly ables us to
identify and control the domain and rate of convergence
and this is the main preference of PIM over VIM.

It should be emphasized that though we have the great
freedom to choose the linear operator L, the auxiliary
parameter h, the auxiliary function H (t) , and the initial
approximation U, (t), which is fundamental to the va-
lidity and flexibility of PIM, we can also assume that all
of them are properly chosen so that solution of (6) exists,
as will be shown in this paper later.

Finally, the exact solution may be obtained by using

u(t)= limu, (t). (3)
3. Solution of Optimal Control Problem via
PIM

In order to solving the OCP described by (1) and (2), the
PIM constructs the following sequences to directly ap-
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proximate the solutions of the TPBV problem (3),
Xn+1 (t)

=%, (t)+ th (s)[ %.(5)— Ax, (s)+BR™'B" 4, (s)]d

fo

@

2 (1)

t
=2, (t)+h[H (s)[ 4, (s)+Qx, (5)+ A 2,(s) |ds (10
)

Starting with x,(t)=x, and 4, (t)=4, as initial ap-
proximations, X,(t) and ,(t) calculate from above
iteration formulas. Convergence of these sequences to the
optimal solution of the problems (1) and (2) is guaranteed
by the following theorem. A similar theorem for nonlinear
chaotic Genesio system can be found in [§].

Convergence theorem: if sequence (9) constructed by
PIM converges to X(t), then X(t) is the optimal tra-
jectory of system (1), and if A(t) is the limit of (10),

then the optimal control function u”(t) is
u (t)=-R'BTA(t).

Proof: Analytically, as mentioned in [4,5], by having
the answers of the system (3), i.e. x(t) and ﬂ(t? , we can
establish the optimal control law u”(t)=-R'B'A(t) of
OCP (1) - (2) and it’s corresponding optimal trajectory
X (t). Hence if we show that the limits of the iteration
formulas (9) and (10) are the answers of the system (3),
then the proof is complete. To this end, suppose that

X(t)=limx, (t), A(t) = lim 4, (t). (11)

Also consider that X,(t) and A4, (t) be uniformly
convergent. This hypothesis is in order to guarantee
convergence of sequence of derivatives to derivative of
the limit i.e.

X (t)=limx, (t), A(t)=1lim 4, (t). (12)

nN—oo n—w

Now
lim [ x,,, (t) =%, (t)]

= th (s)lim[ %, (s)- Ax, (s)+BR'B"4,(s)]ds =0

n—o

lim [ 4., (t)= 4, (1)]

= th (s)lim[/in (s)+Qx,(s)+A"4, (s)]ds =0

and since h=0,H (t) =0, we have:

lim [ %, (t)— Ax, (t)+ BR'B"4,(t)] =0

n—oo

lim[ 4, (t)+Qx, (t)+ A", (t)]=0

n—o
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Now by substituting (11) and (12) we have:
X (t)=AX (t)-BR'BTA(t)
A(t)=-QX (t)— ATA(t)

Also X(t) and A(t) satisfy in conditions of system
(3), because:

X(to):%iigxn(to)zxo
Afty)=1im 2, (t, ) =sx(t, ).

This shows X (t) and A(t) are the answers of sys-
tem (3), and this completes the proof.

Remark 1. Unfortunately the second condition of sys-
tem (3) i.e. /1(tf ) = Sx(tf ) , 1s not an initial condition, so
the initial approximation for iteration formula (10) is not
available. To overcome this difficulty we use a technique
likes shooting method, such that first we let 4,(t)=s
where S is a constant and calculate A4, (t) using (10), next
we apply the condition /1(tf ) = Sx(tf ) and solve this
equation due to S as an unknown to find out S. Finally we
return to iteration formula (10) with A (t) =S as an
initial approximation.

Remark 2. Finding an optimal h: h is a parameter in
this method which has effect on the rate of convergence. If
h=-1 this method is coinciding on He’s variational
iteration method. But we show by several examples that a
suitable value of h, directly improves the rate of conver-
gence. An optimal value of the convergence accelerating
parameter h can be determined by the residual error

ty

Res(n) = [ (L[ X, (th)]+ N[ X, (t:n)]-g(t)) dt.(13)
)

One can easily minimize (13) by imposing the re-

dRes(h)

uirement ——~= =
a dh

4. lllustrative Examples

In this section, we solve several examples by the PIM to
show the efficiency and usefulness of the method indi-
cating on the influence of parameter h on decreasing the
iterations and increasing the convergence rate and accu-
racy of approximations. Whenever the form of approxi-
mations has no importance, we take H (t)=1. As pointed
out in section 3, we solve OCPs by solving the corre-
sponding TPBV problems (3).

Example 1. Consider the following optimal control
system [4]:
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The PIM constructs the following sequences to ap-
proximate the solutions:

%o ()=, (t)+hj)'[>'<n(s)—xn(s)+/1n(s)]ds

t

Aot (1) = 2 (1) + h[[ 4, () + %, (5)+ 4, (s) |ds

0

The exact solutions are:

eﬁt e—ﬁt
X (t)= + ,
(3-2v2)e™ +1 (3+242)e>? 41
(2 -1e?™ 2 +1)e ™

w()=-(1)= (3—2ﬁ)e25+1 +(3+2«/§)e’2ﬁ +1

Figure 1, shows the approximate results obtained from
the above iteration formulas for n = 2. As shown in fig-
urel when h=-1 approximations are not so good. To
improve the accuracy we have to increase iterations,
whereas by changing the auxiliary parameter = we can
accelerate the convergence and establish good estimations
by lower iterations. This shows the flexibility and excel-
lence of the PIM. Figure 2 is plot of the error for various
iterations. It is clear that accuracy of PIM is higher than
VIM.

Example 2. Consider the following system:

min J :lx2 (1)+lj'(x2 +u2)dt,
2 2%
sto:x=-2x(t)+u(t),x(0)=0.9.

According to [4,5], u”(t)=—k(t)x(t). In Figure 3,
the approximate value for k(t) and its exact value are
plotted for h=-1 and optimal value h=-0.83 . The
exact value of k(t) is

k(1) = x/gcosh\/g(l—t)—Sinh\/g(l_t)
( )_ﬁcoshﬁ(l—t)+3sinh\/§(l—t)

Example 3. Consider a second-order system as follows:

minJ:%i[xT (g Z]x+u2]dt,
s.to:Xz((l) gjx(t)+[(l)ju(t),xl(0):l,xz(O):l.

According to Equations (9) and (10), the iteration for-
mulas are:

X (1)
:xn(t)+h_:[[xn(s)—((l) gjxn(s)+((1) gjzn(s)}ds
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Figure 1. Plot of exact and approximation solutions.
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Figure 2. Plot of errors, left: VIM, right: PIM.
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Figure 3. Exact and approximate solution and affection of h.
Copyright © 2012 SciRes. AM



A. ALAVI, A. HEIDARI 1063

plot of first coordinate, h=-1, number of iterations:5 plot of first coordinate, h=-1.125, number of iteration:5
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Figure 4. Plot of first coordinate for various h.
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Figure 5. Plot of second coordinate for various h.
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(1) u(t)y=—=5 [e‘ ((—4e")cost+(—2—2e")s1nt)
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zan(t)mﬂ/in(s){g Zan(s)+(g (1)}/1

The exact solutions are:

1

_e21t

[e‘ ((l—e")cost+(1+3e")sint)

+et ((e" - ez")cost + (e" +3e")sint)}

[et ((—l—e“)cost +(—2€”)sint)

+e ((—e" —ez")cost + (—Zen)sintﬂ

1

_1_e21t
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+et ((42“ )cost + (—2e“ —2e" )sint)}

Figures 4 and 5 show the exact and approximate solu-
tions. This problem was solved by VIM in [5] and their
presented solutions are only in a small region [1.4, 1.7].

5. Conclusion

There are various methods for solving linear OCPs, but in
practice, the preferred method is that which be executable
by computers and the PIM is one of them, because,
moreover it’s simple structure, it has an accelerator pa-
rameter h which directly increases the convergence rate
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and decreases the number of iterations and this ability will
be interesting for using in the softwars. One idea to esti-
mate optimal h mentioned in the paper. In general finding
optimal auxiliary parameter h and auxiliary function
H (t) , are open problems. This easy to use method can be
used for nonlinear systems too.
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