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ABSTRACT 

Several problems arising in science and engineering are modeled by differential equations that involve conditions that 
are specified at more than one point. The non-linear two-point boundary value problem (TPBVP) (Bratu’s equation, 
Troesch’s problems) occurs engineering and science, including the modeling of chemical reactions diffusion processes 
and heat transfer. An analytical expression pertaining to the concentration of substrate is obtained using Homotopy per- 
turbation method for all values of parameters. These approximate analytical results were found to be in good agreement 
with the simulation results. 
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1. Introduction 

All chemical reactions are usually accompanied with 
mass and energy transfer, either homogeneously or het-
erogeneously. Mathematical modeling for these proc-
esses is based on material and energy balance. One can 
generate a set of differential equations known as the re-
action-diffusion problem. Owing to the strong nonlinear-
ity of the reaction rate, mainly from the effect of tem-
perature, reaction-diffusion equations are paid more at-
tention in analyzing and designing chemical and catalytic 
reactors [1]. The same phenomena exist in electrochemi-
cal processes, with the add complexity of a varying po-
tential field, and considerable research has been reviewed 
for electrochemical reactions occurring in the porous 
electrode [2]. 

 Linear and nonlinear phenomena are of fundamental 
importance in various fields of science and engineering. 
Most models of real-life problems are still very difficult 
to solve. Therefore, approximate analytical solutions 
such as Homotopy perturbation method (HPM) [3-12] 
were introduced. This method is the most effective and 
convenient ones for both linear and nonlinear equations. 
Perturbation method is based on assuming a small pa-
rameter. The majority of nonlinear problems, especially 
those having strong nonlinearity, have no small parame-
ters at all and the approximate solutions obtained by the 
perturbation methods, in most cases, are valid only for 
small values of the small parameter. Generally, the per-

turbation solutions are uniformly valid as long as a scien-
tific system parameter is small. However, we cannot rely 
fully on the approximations, because there is no criterion 
on which the small parameter should exists. Thus, it is 
essential to check the validity of the approximations nu-
merically and/or experimentally. To overcome these dif-
ficulties, HPM have been proposed recently. In this paper 
we will apply Homotopy perturbation method (HPM) to 
the nonlinear Bratu’s problem, Troesch’s problem, and 
catalytic reactions in flat particles. 

Systems of non linear differential equations arise in 
mathematical models throughout science and engineering. 
When an explicit condition that a solution must satisfy is 
specified at one value of the independent variable, usu-
ally its lower bound, this is referred to as an initial value 
problem (IVP). When the conditions to be satisfied occur 
at more than one value of the independent variable, this 
is referred to as a boundary value problem (BVP). If 
there are two values of the independent variable at which 
conditions are specified, then this is a two-point bound-
ary value problem (TPBVP). TPBVPs occur in a wide 
variety of problems, including the modelling of chemical 
reactions, heat transfer, and diffusion. They are also of 
interest in optimal control problems. 

There are many techniques available for the numerical 
solution of TPBVPs for ordinary differential equations 
[13]. The standard techniques can be divided into two 
classes. Typical of this class are various shooting and 
multi-shooting approaches. The other class involves 
converting the TPBVP into a system of algebraic equa-*Corresponding author. 
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tions, and includes methods based on various versions of 
finite difference or collocation. Methods for solving 
TPBVPs usually require users to provide an initial guess 
for the unknown initial states and/or parameters.  

The problem of reliably identifying all solutions of a 
TPBVP was apparently first addressed only recently, by 
[14,15]. Present a new approach that will rigorously 
guarantee the enclosure of all solutions to the TPBVP. In 
this paper we have obtained the analytical solutions of 
some nonlinear elliptic problems (Bratu’s equation, Troe- 
sch’s problem and Catalytic reactions in a flat particles) 
using Homotopy perturbation method. 

2. Mathematical Formulation of the Problem 

Many problems in science and engineering require the 
computational of family of solutions of a non linear sys-
tem of the form [16]: 

  , 0,   G y y y                (1) 

where  is continuously differentiable fun- 
ction, y represents the solution and 

1: nG  
  is a real parame-

ter (i.e., Reynold’s number, load etc.). It is required to 
find a solution for some  -interval, i.e., a path solutions, 

  y ,  . Equations of the form (1) are called nonlinear 
elliptic eigenvalue problems if the operator G with   

ed is an elliptic differential operator. Fore more details 
about this type of operators see [17]. As a typical exam-
ple of nonlinear elliptic eigenvalue problems, we con-
sider the following problem 

fix

   ,G y y f y    ,  in          (2) 

0,y   on                (3) 

where  is Laplacian operator in one dimension.  
Equation (2) arises in many physical problems. For 

example, in chemical reactor theory, radiative heat trans-
fer, combustion theory, and in modelling the expansion 
of the universe. The function y could be a function of 
several variables and the domain  is usually taken to 
be the unit interval 


0,1  in , or the unit square 

   0,1 0,1  in , or the unit cube 2      0,1 0,1 0,1   
in . Equation (1) can take several forms, for example, 
Bratu equation is given by  

3

0,yy e    in             (4) 

0,y   on                (5) 

and a reaction-diffusion problem takes the form 

exp 0,
1

y
y

y



 

    
 in        (6) 

0,y   on                (7) 

There are no bifurcation points in the two problems 
above; all singular points are fold points. The behaviour 

of the solution near the singular points has been studied 
numerically [17-19] and theoretically [20-23]. For both 
one and two-dimensional cases, the Bratu problem has 
exactly one fold point, whereas the three-dimensional 
case has infinitely many fold points.  

2.1. Bratu’s Equation and Its Solution 

Bratu’s equation [24] was first studied as a simple case 
of a second-order ordinary differential equation by Bratu 
[25]. The equation arises when deriving the temperature 
distribution for a reaction in an infinite vessel with plane- 
parallel walls, and also in a simplification of a combus-
tion reaction with a cylindrical vessel [26]. The differen-
tial equation is   

   exp 0, 0,1y y t               (8) 

with boundary conditions  

   0 1y y 0                 (9) 

The analytical solution of Equations (8) and (9) using 
Homotopy perturbation method (See Appendix A) is  

   

   

   

   

     

2 2

2

2

2

2

7 5  
cos   

4 3 2

sin 21
cos 2

12 6

1 3
sin

2 4sin

sin1
cos 2

12 2

sin 2 2
cos

6 2

b b b t
y t t

b tb
t

t b
t b

b
t

b bb

 







 


 

   
          

           
                      

           

       
  

 



3



  

 (10) 

where 

 
 

1 cos

sin
b





 


 




              (11) 

2.2. Reaction Diffusion Equation and Its Solution 

Consider the reaction diffusion equation [16] 

   exp 0, 0,1
1

y
y t

y



 

   
 

       (12) 

with the boundary conditions  

   0 1y y 0              (13) 
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The analytical solution of Equations (12) and (13) us-
ing Homotopy perturbation method (See Appendix C) is  

 
 

   

     

       

       

 

2

2

2

22

2

3
1

2

2 4
1 cos

3

1  cos 2 sin 2  
  

6 3

sin sin
sin

 sin 2 1 cos 23

3 2 6

2 4
 cos

3

b
y t

b
b t t

b t b t

t b t

b bb

b
b




  

   

    




 

 
  
 
 

 
   
 
 

 
  
 
 

             


 

     
  



(14) 

where  is defined by Equation (11). b

2.3. Troesch’s Problem and Its Solution 

Troesch’s problem comes from the investigation of the 
confinement of a plasma column under radiation pressure. 
The problem was first described and solved by Weibel 
[27]. It has become a widely used test problem, and has 
been solved many times, including in analytical closed 
form [28] by using a shooting method [29], by using a 
Laplace transform decomposition technique [30] and 
most recently by using a modified Homotopy perturba-
tion technique [31]. The differential equation is  

   sinh ,  0,1y y t   



          (15) 

with the boundary conditions  

   0 0 and 1 1y y             (16) 

The known analytical, closed form solution [28] of 
Equations (15) and (16) is given by 

      21 02 1
sinh ,1 0

2 4

y
y t sc t y


     

 





 (17) 

where    
1

20 2 1y  m 0t is the derivative at   and 
the constant m is the solution to the equation  

  
sinh

2
,

1
sc m

m





 
 
  


          (18) 

We have obtained the analytical solution of Equations 
(15) and (16) using Homotopy perturbation method (See 
Appendix F) is  

   
 

 
 
     

   

3

3

sinh

sinh

sinh sinh 3  
3cosh

sinh 448sinh

sinh 3
 3 cosh

4

λt
y t

tλ

t
t t



 









 
   
 

                
     
  

(19) 

2.4. Catalytic Reactions in a Flat Particle and Its 
Solution 

This example arises in a study of heat and mass transfer 
for a catalytic reaction within a porous catalyst flat parti-
cle [32]. The differential equation is the direct result of a 
material and energy balance. Assuming a flat geometry 
for the particle and that conductive heat transfer is negli-
gible compared to convective heat transfer yields the 
differential equation. 

 
  1

exp , 0,1
1 1

y
y y t

y





 

     
       (20) 

with boundary conditions  

  0 0 and 1y y  1              (21) 

The analytical solution of the Equations (20) and (21) 
using Homotopy perturbation method [33-41] (See Ap-
pendix H) is  

    
 

 
 

  
   

22 2

2 2

  cosh 2 3 cosh
1

cosh6 1 cosh ( )

3 cosh 2

6 1 cosh

k kt
y t

kk k

kt

k

  







   
         
 
 
  

   (22) 

where 

 1
k




 


               (23) 

3. Numerical Simulation 

The non-linear equations [Equations (3), (7), (10) and 
(15)] for the given boundary conditions are solved by 
numerically. The function pdex4, in Matlab software is 
used to solve two-point boundary value problems (BVPs) 
for ordinary differential equations given in Appendix B, 
Appendix D, Appendix E, Appendix G, Appendix I, Ap-
pendix J and Appendix K. The numerical results are also 
compared with the obtained analytical expressions 
[Equations (5), (6), (9), (14), (17) and (18)] for all values 
of parameters  ,  ,   and  . 
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4. Results and Discussion 

 

Figure 1 represents the dimensionless concentration 
 y t  versus the dimensionless distance t for different 

values of the dimensionless parameter  . From this 
figure, it is evident that the values of the dimensionless 
concentration  y t  increases when dimensionless pa-
rameter   increases. Figures 2(a)-(d) show the con-
centration  y t  versus dimensionless distance t for 
various values of dimensionless parameters   and  . 
From these figures, it is obvious that the values of the 
dimensionless concentration  y t  increases when di-
mensionless parameters   increases for the fixed val-
ues of  . From the Figures 3(a) and (b), it is clear that 
the concentration  y t  decreases for the different val-
ues of the dimensionless parameter  , for the various 
values of  . The dimensionless concentration  y t ver-
sus the dimensionless distance t for different values of 
dimensionless parameter   is plotted in Figure 4.  

Figure 1. The curve is plotted for the influence of λ on the 
dimensionless on concentration y(t) versus the dimen-
sionless distance t obtained from the Equations (10) and 
(11). 

 

      
(a)                                                             (b) 

      
(c)                                                             (d) 

Figure 2. Influence of λ on the dimensionless concentration y(t) obtained from the Equation (14). The curve is plotted, when (a) 
α = 0.5; (b) α = 1; (c) α = 2; (d) α = 3. 
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(a)                                                             (b) 

Figure 3. Influence of α on the dimensionless concentration y(t) obtained from the Equation (14). The curve is plotted, when 
(a) λ = 0.3; (b) λ = 1. 
 

 

Figure 4. The curve is plotted for the influence of λ on the dimensionless concentration y(t) versus the dimensionless distance t 
from the Equation (19). 
 
From this figure, it shows that the concentration  y t  
decreases for the various values of  . Figures 5(a)-(d) 
shows the dimensionless concentration  y t  in the re-
actor versus the dimensionless distance down the reactor 
t. From these figures it is clear that the concentration 
 y t  decreases for the fixed values of   and   for 

the different values of  . 
Figures 6 and 7 shows the dimensionless concentra-

tion  y t  versus the dimensionless distance t. From 
these figures it is clear that the concentration  y t  de-
creases for the fixed values of   and   for the dif-
ferent values of  . 

5. Conclusion 

The steady state non-linear reaction-diffusion equation 

has been solved analytically and numerically. The di-
mensionless concentrations  y t  in the reactor at the 
position t are derived by using the HPM. The primary 
result of this work is simple approximate calculations of 
concentration for all values of dimensionless parameters 
 ,  ,   and  . The HPM is an extremely simple 
method and it is also a promising method to solve other 
non-linear equations. This method can be easily extended 
to find the solution of all other non-linear equations. 
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(a)                                                             (b) 

      
(c)                                                             (d) 

Figure 5. The curve is plotted for the influence of λ on the dimensionless concentration y versus the dimensionless distance 
down the reactor t obtained from Equations (22) and (23), when (a) β = 0.2, γ = 1; (b) β = 0.1, γ = 5; (c) β = 0.05, γ = 20; (d) β = 
0.3, γ = 0.5.  
 

      
(a)                                                             (b) 
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(c)                                                             (d) 

Figure 6. The curve is plotted for the influence of β on the dimensionless concentration y versus the dimensionless distance 
down the reactor t obtained from Equations (22) and (23), when (a) λ = 1, γ = 10; (b) λ = 1, γ = 0.5; (c) λ = 1, γ = 1; (d) λ = 0.5, γ = 
10. 
 

      
(a)                                                             (b) 

      
(c)                                                             (d) 

Figure 7. The curve is plotted for the influence of γ on the dimensionless concentration y versus the dimensionless distance 
down the reactor t obtained from Equations (22) and (23), when (a) λ = 1, β = 0.5; (b) λ = 1, β = 0.1; (c) λ = 1, β = 0.05; (d) λ = 2, 
β = 0.05. 
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Appendix A: Solution of Bratu’s Equation 
Using HPM 

In this Appendix, we indicate how the Equation (10) is 
derived. When y is small, Equation (8) is reduces to 

2 2

2

d
1

2d

y y
y

t

 

    
 

0           (A1) 

We construct the Homotopy for the Equation (A1) is 
as follows:  
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d d
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p y p y

t t
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2y 
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
(A2) 

The analytical solution of Equation (8) with Equation 
(9) is 

2
0 1 2y y py p y            (A3) 

Substituting the Equation (A3) into an Equation (A2) 
we get 
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      (A4) 

Comparing the coefficients of like powers of p in 
Equation (A4) we get 

2
0 0
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d
:

d

y
p y

t
    0           (A5)  
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d
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            (A6) 

The initial approximations are as follows   

   0 00 0, 1 0y y ,            (A7) 

   0 1i iy y  0, 1, 2,3,i        (A8) 

Solving the Equation (A5) and the Equation (A6) and 
using the boundary conditions Equation (A7) and the 
Equation (A8) we obtain the following results: 
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(A10) 

where b is defined in Equation (9). According to the 
HPM, we can conclude that  

  0
1

lim
p

y y t y
 1y               (A11) 

After putting the Equation (A9) and Equation (A10) into 
an Equation (A11) we obtain the solution in the text. 

Appendix B: Matlab Program Is to Find the 
Numerical Solution of the Non Linear  
Differential Equations (8) and (9) 

function pdex4 
m = 0; 
x = linspace(0,1); 
t=linspace(0,10000); 
sol= pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('u1(x,2)') 
%------------------------------------------------------------------ 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = 1;  
f = DuDx;  
lamda=2; 
F =lamda*exp(u) 
s = F; 
%------------------------------------------------------------------ 
function u0 = pdex4ic(x); %create a initial conditions 
u0 = 1;  
%------------------------------------------------------------------ 
function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 
boundary conditions 
pl = ul;  

t         (A9) ql = 0;  
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pr = ur-0;  
qr = 0; 

Appendix C: Solution of Reaction Diffusion 
Equation Using HPM 

In this Appendix, we indicate how Equation (14) is de-

rived. When 
1

y

y
 is small, Equation (12) is reduces 

to  
2

2
2

d
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d

y
y y

t
       0        (C1) 

We construct the Homotopy for Equation (C1) is as 
follows:  
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(C2)  

The analytical solution of Equation (12) with Equation 
(13) is 

2
0 1 2y y py p y            (C3) 

Substituting Equation (C3) into an Equation (C2) we 
get 
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Comparing the coefficients of like powers of p in 
Equation (C4) we get 
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boundary conditions Equation (C7) and the Equation (C8) 

       (C6) 

The initial approximations are as follows:   

   0 00 0,  1 0,y y          (C7) 

   0 1 0,  1, 2,3i iy y i         (C8) 

Solving the Equations (C5) and (C6) and using the 

we obtain the following results: 
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(C10)  

where b is defined in the text Equation (6). According to 
the HPM, we can conclude that 

 limy y t y0 1
1p

y              (C11) 

After putting Equation (C9) and Equation (C10) into 
an

Appendix D: Matlab Program Is to Find the 

pace(0,1); 
); 

pde,@pdex4ic,@pdex4bc,x,t); 

1(end,:)) 

e x') 

------------------------------------------------ 

x;  

xp(u/(1+(alpha*u))); 

------------------------------------------------------------ 

--------------------------------------------------------- 

 Equation (C11) we obtain the solution in the text.  

Numerical Solution of the Non-Linear  
Differential Equations (12) and (13) 

function pdex4 
m = 0; 
x = lins
t=linspace(0,10000
sol= pdepe(m,@pdex4
u1 = sol(:,:,1); 
figure 
plot(x,u
title('u1(x,t)') 
xlabel('Distanc
ylabel('u1(x,2)') 
%------------------
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = 1;  
f = DuD
lamda=1.5; 
alpha=0.5; 
F =lamda*e
s = F; 
%------
function u0 = pdex4ic(x); %create a initial conditions 
u0 = 1;  
%---------
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function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 
boundary conditions 
pl = ul;  
ql = 0;  
pr = ur-0;  

Appendix E: Matlab Program Is to Find the 

ace(0,1); 
); 

pde,@pdex4ic,@pdex4bc,x,t); 

1(end,) 

----------------------------------------------- 

x;  

xp(u/(1+(alpha*u))); 

------------------------------------------------------------ 

--------------------------------------------------------- 

  

Appendix F: Solution of Troesch’s Problem 

, we indicate how the Equation (19) is 

qr = 0; 

Numerical Solution of the Non Linear  
Differential Equations (12) and (13) 

function pdex4 
m = 0; 
x = linsp
t=linspace(0,10000
sol= pdepe(m,@pdex4
u1 = sol(:,:,1); 
figure 
plot(x,u
title(‘u1(x,t)’) 
xlabel(‘Distance x’) 
ylabel(‘u1(x,2)’) 
%-------------------
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = 1;  
f = DuD
lamda=0.3; 
alpha=30; 
F =lamda*e
s = F; 
%------
function u0 = pdex4ic(x); %create a initial conditions 
u0 = 1;  
%---------
function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 
boundary conditions 
pl = ul;  
ql = 0;  
pr = ur-0;
qr = 0; 

Using HPM 

In this Appendix
derived.  

When y  is small, Equation (15) is reduces to 
2 3 3d y y 

2 0
6d

y
t
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         (E1) 

We construct the Homotopy for the Equation (E1) is 
as follows:  
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The analytical solution of Equation (15) with Equ
(16) is 

d

ation 

2
0 1 2y y py p y              (E3) 

Substituting the Equation (E3) into an Equation (E2) 
we get 
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      (E4) 

Comparing the coefficients of like powers of p in 
Equation (E4) we get 
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The initial approximations are as follows   

   0 00 0, 1 1y y ,              (E7) 

   0 0, 1 0, 1,2,3i iy y i          (E8) 

Solving the Equation (E5) and the Equation (E6) and 
using the boundary conditions Equation (
Equation (E8) we obtain the following results: 

E7) and the 
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3cosh

sinh 4

sinh 3
3 cosh

4

y

t

t
t t




 









 


 

  
 
  
       

 
   

 

  (E10) 

According to the HPM, we can conclude that 

  0 1
1

lim
p

y y t y


y             (E11) 
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After putting the Equation (E9) and the Equation (E10) 
into an Equation (E11) we obtain the so

Appendix G: Matlab Program Is to Find the 
N

pdex4pde,@pdex4ic,@pdex4bc,x,t); 

 x') 

----------------------------------------------- 
ex4pde(x,t,u,DuDx) 

----------------------------------------------------- 

ix H: Solution of Catalytic Reactions 
article Using HPM 

ppendix, we indicate how the Equation (22) is 

lution in the text.  

umerical Solution of the Non Linear  
Differential Equations (15) and (16) 

function pdex4 
m = 0; 
x = linspace(0,1); 
t=linspace(0,10000); 
sol= pdepe(m,@
u1 = sol(:,:,1); 
figure 
plot(x,u1(end,:)) 
title('u1(x,t)') 
xlabel('Distance
ylabel('u1(x,2)') 
%-------------------
function [c,f,s] = pd
c = 1;  
f = DuDx;  
lamda=2.8; 
F =-lamda*(sinh(lamda*u)) 
s = F; 
%-------------
function u0 = pdex4ic(x); %create a initial conditions 
u0 = 1;  
%------------------------------------------------------------------ 
function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 
boundary conditions 
pl = ul;  
ql = 0;  
pr = ur-1;  
qr = 0; 

Append
in a Flat P

In this A

derived. When 
 
 
1

1 1

y

y





 

 is small, Equation (20) is 

reduces to 

   

2 2

2 2

d
0

y y
y

 

1d 1t


 

 


     

We construct the Homotopy for the Equation (H1) is 
as follows: 

          (H1) 

   

   

2

2 2

2 2

d

d  
1 0

1d 1

y

y y
p y

t



 
 

  
  

  
           

The analytical solution of Equation (20) with Equation 
(21) is 

2
1 1

1d
p y

t 
      

 (H2) 

2
0 1 2y y py p y             

Substituting the Equation (E3) into an Equation (E2) 
we get 

 (H3) 

 

   

2 2
0 1 2d

(1 )
y py p y

p
   


 

   

 
 

2

2 2
0 1 2

2

2
0 1 2

22
0 1 2

2

d

d

d

1
1

0
1

t

y py p y
p

t

y py p y

y py p y










2
0 1 21

1
y py p y




 
       



  
   


 

       
    









   (H4) 

Comparing the coefficients of like powers of p in 
Equation (H4) we get 



 
2

0 0
02

d
: 1

1d

y
p y

t




 
0     

      (H5) 

   

22
1 01

12 2

d
: 1 0

d

yy
p y

t


 

1 1 

 
           

The initial approximations are as follows 


 (H6) 

  

   0 00 0, 1 1y y ,              (H7) 

   0 0, 1 0,i iy y    1, 2,3i        

Solving the Equation (H5) and the Equation (H6) and 
us ) and the 
Equ

 (H8) 

ing the boundary conditions Equation (H7
ation (H8) we obtain the following result: 

 
 0

cosh

cosh

kt
y

k

 
   
 

                        (H9) 

  
   

 
 

 
 

1 22 2

  cosh 2 3 cosh

cosh6 1 cosh

k kt
y

kk k

  



   
        

 2

3 c

6 1 coshk k





 


   (H10) 

where k is defined in the text Equation (23).  
According to the HPM, we can conclude that 

2 2

osh 2kt 

  0 1
1

lim
p

y y t y


y           

After putting the Equation (H9) and the Equation (H10) 
into an Equation (H11) we obtain the solution in the text.  

   (H11) 
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Appendix I: Matlab Program Is to Find the 
Numerical Solution of the Non Linear  
Differential Equations (20) an

function pdex4 
m

) 

’) 

--- 

------- 
 pdex4ic(x); %create a initial conditions 

---------------------------------------------------- 
l,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 

tions (20) and (21) 

pdex4 

ace(0,1); 

 

) 

--- 

----------------------------------------------------------- 
 pdex4ic(x); %create a initial conditions 

------------------------------------------------------ 
l,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 

 

on of the Non Linear  
ntial Equations (20) and (21) 

 

ace(0,1); 

 
(x,t)') 

) 

---- 
dex4pde(x,t,u,DuDx) 

 

----------------------------------------------------------- 
 pdex4ic(x); %create a initial conditions 

-------------------------------------------------------- 
l,pr,qr]=pdex4bc(xl,ul,xr,ur,t) %create a 

 

Dimensionless distance down the reactor 
Dimensionless concentration in the reactor 

d (21) 

 = 0; 
x =linspace(0,1); 
t=linspace(0,10000); 
sol= pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
figure 
plot(x,u1(end,

(x,t)’) title(‘u1
xlabel(‘Distance x
ylabel(‘u1(x,2)’) 
%---------------------------------------------------------------

dex4pde(x,t,u,DuDx) function [c,f,s] = p
c = 1;  
f = DuDx;  
lamda=4; 
beta=0.1; 
gamma=5; 
F=-lamda*u*exp(beta*gamma*(1-u)/(1+beta*(1-u))); 
s = F; 

---------------------------------------------------%--------
function u0 =
u0 = 1;  
% ----------
function[pl,q
boundary conditions 

 pl = 0; 
ql = 1;  
pr = ur(1)-1;  
qr = 0; 

Appendix J: Matlab Program Is to Find the 
Numerical Solution of the Non Linear  

ntial EquaDiffere

function 
m = 0; 
x =linsp
t=linspace(0,10000); 
sol= pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
figure 
plot(x,u1(end,:))

(x,t)') title('u1
xlabel('Distance x'
ylabel('u1(x,2)') 
%---------------------------------------------------------------

dex4pde(x,t,u,DuDx) function [c,f,s] = p
c = 1;  
f = DuDx;  
lamda=1; 

beta=0.15; 
gamma=10; 
F=-lamda*u*exp(beta*gamma*(1-u)/(1+beta*(1-u))); 
s = F; 
%-------
function u0 =
u0 = 1;  
%------------
function[pl,q
boundary conditions 
pl = 0; 
ql = 1;  
pr = ur(1)-1;  
qr = 0; 

Appendix K: Matlab Program Is to Find the 
Numerical Soluti
Differe

function pdex4
m = 0; 
x =linsp
t=linspace(0,10000); 
sol= pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
figure 
plot(x,u1(end,:))
title('u1
xlabel('Distance x'
ylabel('u1(x,2)') 
%--------------------------------------------------------------
function [c,f,s] = p
c = 1; 
f = DuDx;  
lamda=1; 
beta=0.1; 
gamma=15; 
F=-lamda*u*exp(beta*gamma*(1-u)/(1+beta*(1-u))); 
s = F; 
%-------
function u0 =
u0 = 1;  
%----------
function[pl,q
boundary conditions 
pl = 0; 
ql = 1;  
pr = ur(1)-1;  
qr = 0; 

Appendix: L Nomenclature 

Meaning Symbol 
t  
y  
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 Dimensionless parameter    Dimensionless parameter 
   Dimensionless parameter  Dimensionless parameter 
 
 
 
 


