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ABSTRACT 

In this paper, we propose a new infeasible interior-point algorithm with full NesterovTodd (NT) steps for semidefinite 
programming (SDP). The main iteration consists of a feasibility step and several centrality steps. We used a specific 
kernel function to induce the feasibility step. The analysis is more simplified. The iteration bound coincides with the 
currently best known bound for infeasible interior-point methods. 
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1. Introduction 

In this paper we deal with SDP problems, whose primal 
and dual forms are:  

      min : , 1, 2, , , 0 ,i iP Tr CX Tr A X b i m X     

and  

 
1

max : , 0 ,
n

T
i i

i

D b y y A S C S


  
 

  
  

where , . The matrices i, , , n
iC X S A  , mb y A , 

 are assumed to be linearly independent.  1, 2,i  ,m
The use of Interior-Point Methods (IPMs) based on the 

kernel functions becomes more desirable because of the 
efficiency from a computational point of view. Many 
researchers have been attracted by the Primal-Dual IPMs 
for SDP. For a comprehensive study, the reader is re-
ferred to Klerk [1], Roos [2] and Wolkowicz et al. [3]. 
Bai et al. [4] introduced a new class of so-called eligible 
kernel functions for Linear Optimization (LO) which are 
defined by some simple properties following the same 
way of Peng et al. who have designed a class of IPMs 
based on a so-called self-regular proximities [5]. These 
methods use the new search directions which are differ-
ent than the classic Newton directions. Some extensions 
were successfully made by Mansouri and Roos [6], Liu 
and Sun [7]. In the current paper, we propose a new in-
feasible interior-point algorithm, whose feasibility step is 
induced by a specific kernel function. 

In the sequel, we denotes e as the all one vector and 
 X  the vector of eigenvalues of nX  . Two dif-

ferent forms of norm will be used  

    2

2
1

: max , .
n

i iFi i

X X X X 


    

2. The Statement of the Algorithm  

We start usually with assuming that the initial iterates 
0 0,X y  and  are as follows  0S

0 0 0 0 2, 0,X S I y ,       

where I is the n n  identity matrix, 0  is the initial 
dual gap and 0   is such that  

* *

2
,X S    

for some optimal solution  * * *, ,X y S  of  P  and 
 D . 

2.1. The Feasible SDP Problem 

The perturbed KKT condition for  and   is   P D

 

1

, 1, 2, , , 0

, 0

.

i i

n

i i
i

Tr A X b i m X

y A S C S

XS I


 

 





 



,

 

Based on different symmetrization schemes, several 
search directions have been proposed.  

As in Mansouri and Roos [6], we use in this paper, the 
so-called NT-direction determined by the following 
system  
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1

1

0, 1,2, , ,

0,

.

i

n

i i
i

T

Tr A X i m

y A S

X P SP S X




  

   

    





           (1) 

where  
1

1 1 1 1 1 1 1 12
2 2 2 2 2 2 2 2 .P X X SX X S S XS S


    

       
   

    (2) 

We also define the square root matrix 
1

2D P .  
The matrix D can be used to rescale X and S to be the 

same matrix V, defined by  

1 11 1
:V D XD DS

 
   .D          (3) 

It is clear that D and V are symmetric and positive 
definite. Let us further define  

1 11
: ,

1 1
: and :

X

S i

D D XD

D D SD A DA



 

  

   ,i D

m

    (4) 

where . Using the above notations, the third 
equation of the system (1) is then formulated as follows  

1, 2, ,i  

1 .X SD D V V                  (5) 

It is clear that the first two equations imply that X  
and S  are orthogonal, i.e. , which 
yields that X  and S  are both zero if and only if 

. In this case, X and S satisfy 

D
D

V V 

  0X STr D D 
D D

1 0 XS I , im-
plying that X and S are the  -centers. Hence, we can  

use the norm 1

F
V V   as a quantity to measure close-

ness to the  -centers. Let us define 

    11
, ; : :

2 F
X S V V     V        (6) 

2.2. The Perturbed Problem  

For any   with 0 1  , we consider the perturbed 
problem P  , defined by  

    
   

0

0

min

: , 1, 2, , , 0,

C
X

i i b i

P Tr C R X

st Tr A X b r i m X

 





    
 

and its dual problem  D  given by  

    0

, 1

0

1

max

: ,

i b iiy S i

n

i i C
i

D b r

st y A S C R S

 









  



  0

y
n

 

where  

  0 0 ,b i ii
r b Tr A X  

0

 

0 0

1

.
n

C i i
i

R C y A S


    

Note that if 1   then 0X X  and  
   0,0,y S y S , yielding that both  P  and  D  
are strictly feasible.  

Lemma 1 ([6], Lemma 4.1) Let the original problems, 
 P  and  D , be feasible. Then for each   such that 
0 1   the perturbed problems  P  and  D  are 
strictly feasible.  

We assume that  P  and   are feasible. It fol-
lows from Lemma (1) that the problems 

D
P   and  D  

are strictly feasible. Hence their central path exists. The 
central path of  P  and  D  is defined by the solu- 

tion sets        , , ,X y S     0  of the following 

system  

   0

0

=1

, 1, 2, , , 0

, 0

.

i i b i

n

i i C
i

Tr A X b r i m X

y A S C R S

XS I







  

  





 



,

 

If  0,1   and 2  , we denote this unique so-
lution as       , , SX y   .  X   is the  -center 
of  P , and     ,y S   the  -center of  D . By 
taking 1  , one has  

         0 , 0 0, ,1 , 1 , 1 0,X y S X y S I I   . Initially, 
one has X S I   and 2  , whence V I  and 
 , ; 0X S   . In what follows, we assume that at the 

start of each iteration,  , ;X S   is smaller than a 
threshold value   which is obviously true at the start of 
the first iteration. The following system is used to define 
the step  , , ff fX y S    

   

 

0

1

1

, 0,

, 0

1 .

i b i

n
f f

i i C
i

f f T

Tr A X r X

y A S R S

0f

X P SP S X





 




 

   

     





       (7) 

where  0,1   and 1, 2, ,i m  .  
Inspired by [8], we used in the third equation for the 

above system, a linearization  1f fX S I   , which  

means that we target the -center of  and  P
   D

  . 

After the feasibility step, the new iterates are given by 
f fX X X   , f fy y y    and f fS S   .S e 

algorithm begins with an infeasible interior point 
 Th

 , ,X y S  such that  , ,X y S  is feasible for the per-
turbed problems,  Tr XS n  and  , ;X S   . 
First we find a new point  , ,f f fX y S  which is feasi-
ble for the perturbed problems with  : 1     . Then 
  is decreased to : 1      . A few centering 
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steps are applied to produce new points  , ,X y S    
such that  , ;X S      



. This process is repeated 
until the algorithm terminates. Starting at the iterates 
 , ,f f fX y S  and targeting the  -center, the centering 
steps are obtained by solving the system (1).  

2.3. Infeasible IPMs Based on a Specific Kernel 
Function  

Now we introduce the definition of a kernel function. We 
call  a kernel function if    , 0,  : 0   is twice 
differentiable and the following conditions are satisfied   

1)      1 1 0;  

  0t  0;t 

 0 limtt t 



 

lim
t

2)  for all   

3) .     

We define  

: , : and
1 1

X
X

D
V D D : .

1
S

S

DV

 
 

 
  





    (8) 

By using the scaled search directions f
XD  and f

SD  
as defined in (4), the system (7) can be reduced to  

   

 

0

0

1

1

, 1,

DR

V 

1V

 V

 

1
2, ,

1
,

1 .

f
i X b i

n
f f

i i S C
i

f f
X S

Tr A D r i m

y A D D S

D D V











 

  

   





 





, 0,

0

X 

    (9) 

According to (8), Equation (9) can be rewritten as  

.             (10) f f
X SD D V   

It is clear that the right-hand side of the above equa-
tion is the negative gradient direction of the following  

barrier function  whose kernel loga-

rithmic barrier function is 

  :V Tr  

   1 log t  21

2
t t



.  

Therefore, the aforementioned equation can be rewritten 
as  

.f f
X SD D V      

Inspired by the work of [4,7,9], and by making a slight 
modification of the standard Newton direction, the new 
feasibility step used in this paper, is defined by the 
following different system:  

   

 

0

, 2

DR

V

0

1

1
, 1 , , ,

1
,

,

f
i X b i

n
f f

i i S C
i

f f
X S

Tr A D r i m X

y A D D S

D D







 

  

  





  



0,

0



   (11) 

where the kernel function of   is given by  

 
 

 

2 1

2

1 1
, 0,1

2 1
:

1
log , 1.

2

pt t
p

p
t

t
t p



  
   

  

;

      (12) 

Since   pt t t    , the third equation in the system 
(11) can be rewritten as  

1 f f p
X SD D V V      .         (13) 

In the sequel, the feasibility step will be based on the 
Equation (13).  

3. Some Technical Results 

We recall some interesting results from Klerk [1]. In the 
sequel, we denote the iterates after a centrality step as 
X  , y , S  .  

Lemma 2 Let X, S satisfy the Slater’s regularity 
condition and 0  . If  : , ;X S 1    , then the full- 
NT step is strictly feasible.  

Corollary 3 Let X, S satisfy the Slater’s regularity 
condition and 0  . If  : , ;X S 1    . One has 

 Tr X S n   .  
Lemma 4 After a feasible full-NT step the proximity 

function satisfies  

 
 

2

2
, ; .

2 1
X S

 


  


 

Lemma 5 If  : , ; 1X S    2 , then  

  2, ; .X S      

The required number of centrality steps can easily be 
computed. After the  -update, one has  

 : , ; 1X S    2 , and hence after k centrality 
steps the iterates  , ,X y S  satisfy 

 
2

1
, ; .

2

k

X S     
 

 

From this, one deduces easily that  , ;X S     
holds, after at most 

2 2 2

1
.log log




 


               (14) 

We give below a more formal description of the algo-
rithm in Figure 1. 

The following lemma stated without proof, will be 
useful for our analysis.  

Lemma 6 (See [10], Lemma 2.5) For any , one 
has  

0t 

 
1 1

12 2 , 0,1
p p

t t t t p
 

     .  

By applying Lemma (6), one can easily verify so that  
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:

a bound parameter ;

a threshole parameter 0;

an accuracy parameter 0;

a barrier update parameter , 0 1.

: ; : 0; : ; : 1;

, ,

feasibility step , , : ,

b c

X I y S I

Tr XS r R

X y S X





 

  






 

   





Primal - Dual Infeasible IPMs

Input

begin

while do

begin

   
 

 
     

, , ,

-update : : 1 ;

centrality step :

, ,

, , : , , , ,

f f fy S X y S

X S

X y S X y S X y S

   

  

   

 



    

while do

end while

end

end

;



 

Figure 1. Primal-dual infeasible IPMs. 
 
for any , we have:  0,1 

   

   

   

1 1

4 4

1 1
1 12
2

1 1

2 2

1 1

1 1

1 1
1

p p

2
2

,

p p

 

 

 


 


 




  

         
   

    


        (15) 

and furthermore, according to (6), we obtain:  

 
1

2 .
p

V 
 

  
 

V             (16) 

Lemma 7 According to the result of Corollary (3), for 
any  0,1p  one has  

1

2 .
p

F

V n


  

Proof. By applying Hölder inequality and using 
2

F
V  n , we obtain  

   

221 1 1

2 2 2

1

1 1

2 21 2

1 1

1 1

p p pn

i
iF

2

1

p p
n n

p

i i
i i i

V V V

V V

 

 

  



 



 

   
       

   

       
  



  
n







 

and the result follows.  
The following Lemma gives an upper bound for the 

proximity-measure of the matrix 
1

2

p

V

 .  

Lemma 8 Let  , X S  be a primal-dual NT pair and 

0   such that  Tr XS n . Moreover let  
   S, ;V X    and :V V 1   . Then  

   
1 21

2 24 4 1
p p

 2 2 .
1

n
V V




  
   

 



  

Proof. Since the  ,X S  is a primal-dual pair and by 
applying Lemma (7), and the two inequalities (15) and 
(16), we can get: 

   

 

   

221 1 1 1 1

2 2 2 2 2

2
1 11 1

2 24 4

1 11
2 24

1 11 1
2 24 4

1 1

1 1

p p p p p

F

p pp p

p pp

p pp p

V V V V V

V V

V V

V V

  

   

  

   

    
 

   

  

  


     
             

     

   
       

   

    
            

  
     

  

    24

1

 

 

 

 

   

2

2
1 121

2 2 22

1 1 11
2 2 24

21
22

1

1

,
1

p pp

T

4 1

2 1

4 1

p p pp

p

V V

V V V

n
V

  


   


 


 

   



 
     

   
         

      
                     




 

 

 

since the last term in the last equality is negative. This 
completes the proof of the Lemma.  

Lemma 9 (See [1], Lemma 6.1). If one has  
    det 0X S   , 0     , then   0X   , 

and   0S   .  
Let Q be an n n  real symmetric matrix and M be an 

n n  real skew-symmetric matrix, we recall the follow- 
ing result. 

Lemma 10 (See [7], Lemma 3.8). If Q is positive 

definite, then     1 1Tr Q M Tr Q
   .  

Lemma 11 (See [1], Lemma 6.3). If Q is positive 
definite, then  det 0Q M  .  

Lemma 12 (See [7], Lemma 3.10). Let A, nB , 
0A B   and    min min 0A B   . Then  

      

     

1 1

1 1

,

1 1
.

n n

i i
i i

n n

i ii i i

iA B A

A B A B

  

  

 

 

  


 

 

 

B

 

Lemma 13 (See [11], Lemma A.1) For , let 1, ,i m 
:if R 

z
R  denote a convex functions. Then, for any 

nonzero nR , the following inequality  
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1 1

1
0

n n
T

i i j j iT
i j i j

f z z f e z f
e z  


 


  





 

holds.  

4. Analysis of the Feasibility Step 

4.1. The Feasibility Step 

As established in Section 2, the feasibility step gener-
ates new iterates fX , fy  and fS  that satisfy the  

Feasibility conditions for  P
   and  D

 
 (i.e., primal  

feasible and dual feasible), except possibly the positive 
semidefinite conditions. A crucial element in the analysis 
is to show that after the feasibility step, the inequality 
 , ; 1 2f fX S    holds, i.e., that the new iterates 

are within the region where the Newton process targeting  

at the  -centers of  P
   and  D

 
 is quadratically  

convergent. Let X, y and S denote the iterates at the start 
of an iteration and assume that  , ;X S   . Recall 
that at the start of the first iteration this is true since 

. Defining  0 0 0, ; 0X S   f
XD  and f

SD  as in (4) 
and fV  as in (3). We may write  

 
 
 

2 1

1 1

1
,

.

f f f

f f f
X

f f f
S

V D X S D

X X X D V D D

S S S D V D D









 



    

    

 

Therefore     1f f f f
X SX S D V D V D D     which 

implies that  

  .f f f f
XX S V D V D   S          (17) 

According to (8), Equation (13) can be rewritten as  

  21 1
1

p
p

X S

V
D D V  ,


       

   (18) 

and by multiplying both side from the left with V, we get  

 
1

121 .
p

p
X SVD VD V V


    2        (19) 

To simplify the notation in the sequel, we denote  

 

   

1
:

2
1

:
2

f f f f f
XS X S S X

f f f f f
X X X S S

D D D D D

f
XM D V VD D D D D

 

   
   (20) 

Note that f
XSD  is symmetric and M is skew-symmet- 

ric. Now we may write, using (19),  

  

 

2

1
121 .

f f
X S

f f f f
S X X S

p
p f f f

X X X S

V D V D

V VD D V D D

V VD D V D D




 

   

    

By subtracting and adding 
1

2
f f

S XD D , to the last ex-

pression we obtain  

  
 

   
 

1
12

1

1

1 1

2 2

1 .

f f
X S

p
p f f

X X

f f f f f f f f
X S S X X S S X

p f
XS

V D V D

V VD D V

D D D D D D D D

V D M










 

   

   

   

 

Using (20) and (17), we get  

  11 .f f p f
XSX S V D     M       (21) 

Note that due to (8), 1 pV 
0

 is positive definite.  
Lemma 14 Let  and . Then the iterates X 0S 

 , ,f f fX y S  are strictly feasible if  

  11 0p f
XSV D    .  

Proof. We begin by introducing a step length  0,1  , 
and we define  

, ,f f .fX X X y y y S S            S  

We then have 0X X , 1 fX X
det

 and similar rela-
tions for y and S. It is clear that . We 
want to show that the determinant of 

 0 0 0X S 
X S   remains 

positive for all 1  . We may write  

  
 
   
    

2 2

2 2

2 1 2 21 .

f f
X S

f f f f
X S X S

f f f f f f
X S X X X S

p f f f
X X X

X S
V D V D

V D V VD D D

V VD VD D V VD D D

V V V D V VD D

 

 


 

  

   

  

   

     

       f
SD

 

By subtracting and adding 
2

2
f f

S XD D


 and  

 2 1 1 pV     to the right hand side of the above equal-
ity we obtain  

  

   
    

  

   
    

  

2 1 2

2
2

2 1

2 1

2

2 1

2 1

1

2

1 1 1

1

2

1 1 1

1 ,

p

f f f f f f
X X XS X S S

p

p f
XS

f f f f f f
X X X S S X

p

p f
XS

X S
V V V

D V VD D D D D D

V V

V D

D V VD D D D D

V V

V D N

 

 


 

   

 



   

 











  

    

    

  

   

    

   











f
X

 

f
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where the matrix  

   
2

:
2

f f f f f
X X X S SN D V VD D D D D

    f
X  

is skew-symmetric for all  0,1  . Lemma (11) im-
plies that the determinant of X S   will be positive if 
the symmetric matrix  

    
  

2 1

2 1

1 1 1

1

p

p f
XS

V V

V D

   

 





   

  



  

is positive definite which is true for all  0,1  . This 
means that X S 

0
 has positive determinant. By posi-

tiveness of X  and  and continuity of both 0S X   
and S , we deduce that 1X  and  are positive defi-
nite which completes the proof.  

1S

We continue this section by recalling the following 
Lemma.  

Lemma 15 (See [12], Lemma II. 60). Let  V   

be as given by (6) and   2: 1      . Then  

     1
.i V  

 
   

The proof of Lemma (15), together with  0,1p , 
makes clear that the elements of the vector  1 pV   
satisfy  

     11
, 1, ,p

i V i  
 

    .n       (22) 

Furthermore, by using (8) and (22), we obtain the 
bounds of the elements of the vector  1 pV    

     11
, 1, ,

1
p

i V i
  

  


  


  .n     (23) 

In the sequel we denote  

   
2 2

1 2

1
: : , , , :

2
f f

n X ,SF F
V D D         

where  

   2 21
: , 1,2, ,

2
f f

i i X i SD D i n      .  

This implies  
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2 2 21
2 ,

2

f f f f f
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f f f f
X S X SF F F F
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D D D D 
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i XS i
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D D D D
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Lemma 16 Assuming   11 0p f
XSV D    , one has  
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2 22
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1

1 2
.
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Proof. Using (6), we get  

      11
, ; : :

2
f f f f f ,

F

X S V V V  
     

where  2
.

f f
f X S

V
  

From (21), one has  
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.

1
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V V D
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Due to the fact that  since M is skew- 
symmetric and Lemma (10), we may write  

  0Tr M 

       
 

     
     

  
     

     
   

2 2 2

1
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1

1

1
1

1
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1
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1
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1

1
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p
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where we apply for the third equality, Lemma (12) 
whose second condition is due to the requirement (24) 
given below. 

For each 1, 2, ,i n  , we define  

 
   

   
1

1

1 1
: 2

1 1

p
i i

i i p
i i

V z
f z

V z
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It is clear that  i if z
1 0z

 is convex in  if  iz
22   1 p

i iV     i. Taking iz 
1 2

, we require  

   1 2p
i iV    0.  

By applying Lemma (15), the above inequality holds if 

 
 

3

2
2 1

2



 


 .               (24) 

By using Lemma (13), we may write   
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Furthermore, by using Lemma (8), we get  
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We deduce  
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The last equality is due to (24), which completes the 
proof.  

Because we need to have   1 2fV  , it follows 
from this lemma that it suffices if  
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Now we decide to choose  

1
,

16 8n
  

1
.               (26) 

Note that the left-hand side of (25) is monotonically 
increasing with respect to 2 . By some elementary 
calculations, for  and 1n   V  , we obtain  

  1
0.35 .

2
fV             (27) 

4.2. Upper Bound for    V

In this section we consider the linear space  

  : 0, 1,2,n
iTr A i m      , . 



 

It is clear that the affine space  
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  . We can 

get from Mansouri and Roos [6], the following result.  
Lemma 17 (See [6], Lemma 5.11) Let Q be the 

(unique) matrix in the intersection of the affine spaces 
 and . Then  f

XD  f
SD 

    22
2

F F
V Q Q V    2 .  

Note that (27) implies that we must have 0.35   to 
guarantee   1 2fV  . Due to the above lemma, this 
will certainly hold if 

F
Q  satisfies  

    22 2
2 4* 0.3

F F
Q Q V   5 .     (28) 

Furthermore, according to Mansouri and Ross, we 
have  

    2
1 .

F
Q n      

Since 1 16   , we may write  
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1 2.2

F
Q n n7 .        

By using 
1

8n
  , the above inequality becomes  

2.27
0.28.

8F
Q               (29) 

Because we are looking for the value that we do not 
allow   to exceed and in order to guarantee that  

  1 2f V  , (28) holds if 
F

Q  satisfies  


2

2 1
4* 0.35

8F F
Q Q    

 
2
, since 1 16  . This will  

be certainly satisfied if 0.43
F

. Hence, combining 
this with (29), we deduce that 

Q 
  1 2V   holds. 

4.3. Iteration Bound 

In the previous sections, we have found that, if at the 
start of an iteration the iterates satisfies  , ;X S   , 
with 1 16  , then after the feasibility step, with   as 
defined in (26), the iterates satisfies  , ; 1 2X S   . 
According to (14), at most  centering 
steps suffice to get iterates that satisfy 

 2 2256log
, ;X S

log
     . 

So each main iteration consists of at most 3 so-called 
inner iterations. In each main iteration both the duality 
gap and the norms of the residual vectors are reduced by 
the factor 1  . Hence, using  0 0X S n 2Tr  , the 
total number of main iterations is bounded above by  

 2 0 0max , ,1
log .

b c F
n r R

 
 

Since 
1

8n
  , the total number of inner iterations is 

so bounded above by  

 2 0 0max , ,
24 log .

b C F
n r R

n



 

5. Concluding Remarks 

In this paper we extended the full-Newton step infeasible 
interior-point algorithm to SDP. We used a specific ker-
nel function to induce the feasibility step and we ana-
lyzed the algorithm based on this kernel function. The 
iteration bound coincides with the currently best known 
bound for IIPMs. Future research might focuses on 
studying new kernel functions. 
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