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ABSTRACT

By using Leray-Schauder nonlinear alternative, Banach contraction theorem and Guo-Krasnosel’skii theorem, we dis-
cuss the existence, uniqueness and positivity of solution to the third-order multi-point nonhomogeneous boundary value

problem (BVP1):

u”+ f(t,u(t),u'(t))=0,te(0,1)
u(0)=u’'(0)=0, u’(l):iZ:ﬁiu’(ni)

where f e C([O,l]xRZ,R), B >0, 0<n <L for i=1---,n. The interesting point lies in the fact that the nonlin-

ear term is allowed to depend on the first order derivative u’.

Keywords: Guo’s Fixed Point Theorem; Three Point Boundary Value Problem; Positive Solution; Leray Schauder

Non-Linear Alternative; Contraction Principle

1. Introduction

It shows that problems related to nonlocal conditions
have many applications in many problems such as in the
theory of heat conduction, thermoelasticity, plasma phys-
ics, control theory, etc. The current analysis of these pro-
blems has a great interest and many methods are used to
solve such problems. Recently certain three point bound-
ary value problems for nonlinear ordinary differential
equations have been studied by many authors [1-9]. The
literature concerning these problems is extensive and
application of theorems of functional analysis has at-
tracted more interest. Recently, the study of existence of
positive solution to third-order boundary value problems
has gained much attention and is a rapidly growing field
see [1,2,6,8-11]. However the approaches used in the
literature are usually topological degree theory and
fixed-point theorems in cone. We are interested in the
existence, uniqueness and positivity of solution to the
third-order multi-point nonhomogeneous boundary value
problem (BVP1):

u”+ f(t,u(t),u'(t))=0,te(0,1)

u(0)=u'(0)=0, u’(l):gﬁiu’(m)
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where feC([0,1]xR*R), B >0, 0<py<L for
i=1---,n.

The organization of this paper is as follows. In Section
2, we present some preliminaries that will be used to
prove our results. In Section 3, we discuss the existence
and uniqueness of solution for the BVP1 by using Le-
ray-Schauder nonlinear alternative and Banach contrac-
tion theorem. Finally, in Section 4 we study the positivity
of solution by applying the Guo-Krasnosel’skii fixed
point theorem.

2. Preliminary Lemmas

We first introduce some useful spaces. we will use the
classical Banach spaces, C[0,1], C'[0,1], L'[0,1]. We
also use the Banach space
X :{u eC'[0,1]/ueC[0,1], u'e C[O,l]} , equipped with
the norm uf, = max{u]_.Ju], | where
ol = maxlu (1]

Firstly we state some preliminary results.

Lemmallet Y " Bn#1 and yel'[0,1], then the
problem

u"+y(t)=0, O<t<1 (2.1)
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u(0)=u(0)=0, UM)=Xhu(n) @2
has a unique solution

=j;G(t s)y(s)ds

(2.3)
— S G s)ds,
( Z_lﬂﬂ?.)z .[ )
where
G(t’s):%{zti)ztt’ t2)s, tsi @4
. oG(t,s) [(1-s)t, t<s
G'(ts)= ot :{(1—t)s, s<t. 9

Proof Integrating the Equation (2.1), it yields

:——J' (t-s)’

From the boundary condition u(0)=u’(0)=0, we
deduce that C,=0, and C,=0.

And the boundary condition u'(1)=Y" Au'(n),
implies

ds+2Ct +C,t+C,.

-t
1- ZI 1ﬂ77|

D
1_Zinzlﬂi77i

Therefore we have

)=-2[;(t-5y(s)

j(l s)y(s)ds

j:i(ni -s)y(s)ds.

ds +§j§(l— s)y(s)ds

+—z‘n=1ﬂimt2 (1-s)y(s)ds
2(1—Zi”1ﬂim)j°(1 )y(s)d
D MV, S . —s)y(s)ds.
2(1—2?1ﬁif7i)J° s)yte)e

Now it is easy to have

:j:G(t,s)y(s)ds
" 2(1_2?:1ﬂi77i ) ;ﬂi.l.oG* (7,5)y(s)ds.

which achieves the proof of Lemma 1.
We need some properties of functions G(t,s).
Lemma 2 For all t, s, such that 0<s,t<1, we have

0<G"(t,5)<2G(Ls)

Proof It is easy to see that, if t<s,
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G'(t,s)=(1-s)t<(1-s)s. If s<t then
G™(t,s)=(1-t)s<(1-s)s=2G(Ls).

Lemma 3 For all t, ssuchthat 0<s<1, O<r<t<1,
we have

%G (1,5) <G (t,5) <G (L) ==

E(l—s)s,

Proof For all t,se[0,1], if s<t, it follows from
(2.4) that
Lo g s 1) (1-t)?
G(ts)=7 (2t s)s_z[(l 5)-(1-1)" s
s%(l—s)s:G(l,s),
and
G(t, 2t—t° -
(19)=2(at--s)s
= Lst (1o s)+ S (- t)[(t-5)+(1-9)t]s
2 2
>t’G(Ls).
If t<s, itfollows from (2.4) that

Zt?(1-5)s<G(t,s)==t*(1-5)<G(Ls).

Therefore
r°G(Ls)<G(t,s)<G(Ls),V(t,s)e[r,1]x[0,1]
Lemma 4 (See [6]) We define an operator T:X — X
by
Tu (t):le(t,s) f(s,u(s),u’(s))ds
e ! Z‘lﬂ IG
( Z| 1ﬂ| l)

Lemma 5 (See [5]) The function ueE is a solution
of the (BVP1) if and only if T has a fixed point in X, i.e.

Tu(t)=u(t).

3. Existence Results

u(s),u’(s))ds.

Now, we give some existence results for the BVP1
Theorem 6 Assume that Zin:lﬁi’ﬁ =1 and there exist

nonnegative functions k,heL’([0,1],R,), such that

VX, y,u,veR, te[0,1] we have
|f(t,x,y)—f(t,u,v)|£k(t)|x—u|+h(t)|y—v|,
and

1 1_21 B
G(Ls)(k(s)+h(s))ds < =
then, the (BVP1) has a unique solution in X.

Proof We shall prove that T is a contraction. Let
u,ve X, then
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[Tu(t)-Tv(t) sj:G(l,s)|f (s.u(s),u'(s))=f(s.v(s).v'(s))|ds
+%ﬁg (Ls)|F(siu(s).u'(s))=f(s:v(s).v'(s))|ds,
So we can obtain

<+Mmaxu—v U=V Yx["G(Ls)(k(s)+h(s))ds
e el R AN IR

<l

Similarly, we have

|T’u (t)—T\/(t)| < 2{1+MJ max{|u -v|, ,||u'—v’||m} xj:G(l, s)(k(s)+h(s))ds,

1_Zin:lﬂi’7i 0<t<l
< Ju-vl,
From this we deduce Le m=G(1-F)", Q={ueX:|u|<m}. With the
[Tu=7v], <fu=v],- help of Ascoli-Arzela Theorem we show that T :Q — X

Then T is a contraction. From Banach contraction 1S @ completely continuous mapping. We assume that
principe we deduce that T has a unique fixed point which ~ U€0dQ, A>1 suchthat Tu=Au, then
is the unique solution of (BVP1). am = Alul =[Tull, =max{[Tu]_.[Tul,} we have

We will employ the following Leray-Schauder nonli- ostt
near alternative [12]. Z_ﬂ B )

Lemma 7 Let Fbe Banach space and Q beabounded  [Tu(t) <[u], | 1+—Z52—— |[ G (Ls)(k(s)+1(s))ds
open subset of F, 0eQ. T:Q—F be a completely 1—Zi:1ﬂi'7i
continuous operator. Then, either there exists xe€dQ, zn B )
A>1 suchthat T(x)=Ax, or there exists a fixed point +[1++JIOG(1,s)h(s)ds
X e §_2 l_zi:lﬂini

Theorem 8 We assume that f (t,0,0) 0, and
Zi”:l Bn;#1 and there exist nonnegative functions
k.I,he'[0,1] such that Tu(t)
| (t,u,v)| <k (B)u[+1(t)V+h(t), VuveR, te[01], <o, {“1 %ﬁﬂi ]j;e(l,s)(k(s)n(s))ds

"B = 2uia Pilli
2[1+12i—;1ﬁ'}[;6(1,s)(k(s)+|(s))ds<1 ) '
_Zizlﬂiﬂi +2[1+—Z‘;1'Bi ]J':G(l,s)h(s)d&

Then the (BVP1) has at least one nontrivial solution 1_Zi:1ﬁi77i

ueX.

This shows that Am=|Tu|, <F|u|, +G =Fm+G.
From this we get

>b | <kl Fi— %  _Fig-F)-g
F:2[1+m}j06(1,5)(k(s)+l(s))ds, A<F m F G-F) F+(1-F)=1

Proof Setting

this contradicts A >1. By applying Lemma 7, T has a

"B fixed point u*eQ and then the BVP1 has a nontrivial
G=2 1+% flG(l,s)h(s)ds. luti pn R Xe
1_zi:1ﬁi’7i 0 solution u € AX.

Remarking that F<1. f(t,0,0)=0 and G>0, 4. Positive Results
then there exists an interval [o,r]<[0,1] such that
min

o<t<r

In this section, we discuss the existence of positive solu-
f(t,0,0)>0 and h(t)>|f(t,0,0), ae. te[01].  tions for (BVP1). We make the following additional as-

Copyright © 2012 SciRes. AM
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sumptions.
(Q1) f(t,u,v)=a(t)f,(u,v) where aeC([O,l],R+)
and f, eC(R,xR,R,).

(Q2) [[G(Ls)a(s)ds>0

We need some properties of functions G(t,s).
Lemma 9 Forall 0<7, <t<r, <1se[0,1], we have

77G(Ls)<G(t,s),
2yG(1,s)<G*(t,s) where y=min{z (1-7,)}.

Proof It is easy to see that.
If t<s,

6" (.5)=(1-5)t=(1-5)s
> (1-5)s7, 2 207G (L,s).
If s<t=>-t<—s,
G*@ﬁ):ﬁ—ﬂs:%fga—sﬁ
> (1-7,)(1-5)s = 2(1-7,)G(Ls).

n
Lemma 10 Let ue X and assume that 0< >’ Bn; <1,
i=1
then the unique solution u of the (BVP1) is nonnegative
and satisfies

t|Enin](u(t)+u’(t))2;/ 1+ -
o Zﬁim

i=1

Jul

Proof Let ue X, it is obvious that u(t) is non-
negative. For any te[0,1], by (2.3) and Lemmas 2 and
3, it follows that

Jul.

< +M ! s)a(s u(s),u’(s))ds

4.1)

On the other hand, (2.4) and Lemma 11 imply that, for
any te(z,7,], wehave

u(t)zj:G(t,s)a(s) f,(u(s),u’(s))ds
> rfj:G (Ls)a(s) f,(u(s),u’(s))ds

From (4.1) it yields

u(t)=z?| 1+ —=——| |ul 4.2)

Copyright © 2012 SciRes.

Therefore, we have

n

tr[nin]u(t)le2 T+—=—— | Jul,
v l_Zﬁiﬂi
i=1

Similarly, we get
.

Z'n—lﬂi 1
<2{1+—="— 1| G(Ls)a(s) f(u(s),u’(s))ds

[ D5 | les)a(e) fu(s) i (s)

On the other hand, for 0<7, <t<r7, <1 and using
Lemma 10 and (4.1) we obtain

u'(t)= [ 27 G (Ls)a(s) f,(u(s),u’(s))ds

25 (4.3)
2y 1+ —5—| v,
1_Zﬁi77|
i=1
Therefore,
n -1
> A
min u(t)zp|1+—2— | U],
eln. 7] 1_Zﬂ|77|

i=1
Finally, regrouping (4.2) and (4.3) we have

-1

min (u(t)+u'(t))=y|1+

te[z‘l,rz]
Definition 11 Let use introduce the following sets

K=<ueX,u(t)>0,

>4
min (u(t)+u'(t))>y| 1+ —2—1 |uf,
tefr, 7] 1‘2ﬂﬁ7i

i=1

K is a non-empty closed and convex subset of X.

Lemma 12 (See [5]) The operator T is completely con-
tinuous and satisfies T (K)c K.

To establish the existence of positive solutions of
(BVP1), we will use the following Guo-Krasnosel’skii
fixed point theorem [13].

Theorem 13 Let E be a Banach space and let K c E,
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be a cone. Assume that €, Q, are open subsets of E
with 0e ), @, cQ,, andlet

AKN(Q\Q)>K

be a completely continuous operator. In addition suppose
either

1) JAu|<|u], ueKnax, and |Aul=|u],
e KnoQ,; or

2) |Au=ul, ueKné, and |Au]<ul,
ue KnoQ,.

holds. Then A has afixed pointin K n(Q,\Q,).
The main result of this section is the following
Theorem 14 Let (Qy) and (Qz) hold, 0<>"" A7 <1
and assume that
fy(uv)
()0 [u] +v]

fy(u,v)
(etsh>e Ju)+v]

» =

0:

Then the problem (BVP1) has at least one positive solu-
tion in the case

1) f,=0 and f_ =oo (superlinear) or

2) fo=0 and f_=0 (sublinear).

Proof We prove the superlinear case. Since f,=0,
then forany ¢>0, 36, >0, such that
fo(uv)<e(ju[+V]), for |u[+[v]<s, . Let @ be an
open set in X defined by

Q, ={yeX/|y|<s}
then, forany ue KnoQ,, ityields

Tu(t) < &ful, [1+M]J':G (1,s)a(s)ds

1- Zi":llﬁim
Therefore

<elu Jr—z“n:l’gi ‘G(1s)a(s)ds
ot <ebl, 20 22 eiasiacs
So

[Tu(t)], <2¢ul, [ zz; }'[:G(l,s)a(s)ds

If we choose

= +—Zin:1/’7i ' s)a(s)ds 71
_[3(1 1_2?_1&%}]06(1, )a( )d] ,
then it yields

ITull, <|ull, . YueKnaog,.

Now from f_=o, we have VM >0, 3H >0,
such that f, (u,v)=M (|u]+|v|) for [u]+v|=H . Let

H, = max{Z&l,ﬂ}. Denote by Q, the open set
e

Copyright © 2012 SciRes.

sz{yex/||y||<Hl}.
If ueKnoQ, then
mm]{ (t).u'(t)} 2 |uf, =»H, = H.

te[z T

then Q, cQ,. Let ueKNaQ, then

Tu(t)2||u||XMy{1+ 2./ Jj:G(l,s)a(s)ds.

1- Zinzlﬂini
And

" zllﬂi 1

Tu(t)=|ull, My|1+—="2——1] G(Ls)a(s)ds
(t)]ul, y[ o5 e oals

Choosing

_ Zinzlﬂi 1 b
M _[y[l+mJjoG(l,s)a(s)ds] ,

we get |[Tul, >|ul,, YueKnaQ,. By the first part
of Theorem13, T has at least one fixed point in
K (Q,\Q,) such that H <|y|<H,. This completes
the superlinear case of the theorem 14. Proceeding as
above we proof the sublinear case. This achieves the
proof of Theorem 14.

Example 15 Consider the following boundary value
problem

u” +t2 +4+£usinu+%(t+l)u’=0,0<t<1

3 (E1)
4(0)-0(0)-0, v(0)- )
Set ﬂlzél 182:%' ﬁ3:% and 7]12%' 772:%,

:E <1 andand
60

1 ’
H=5 where 37 Bu'(n,)

f(t,uv)=t? +4+%u sinu+%(t+1)v . One can choose

k(t)z%t
L)’ te[O,l]
h(t)=(t51)

It is easy to prove that k,
tive functions, and

leL'[0,1] are nonnega-
|f(txy)—f(tuv| |x u|+ |y v,
(t)|x— u|+h )|y -V

Hence, by Theorem 6, the boundary value problem
(EX1) has a unique solution in X.
2) Now if we estimate f as

AM
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|t (t,u,v)|s£|u|+@|v|+t2 +4,
3 5
<k (t)|u[+1(t)V]+ ().

then one can choose h(t)=t>+4,t<[0,1]. So k, I,
he'[0,1] are nonnegative functions. Hence, by Theo-
rem 8, the boundary value problem (E1) has at least one
nontrivial solution, u” e X.

Example 16 Consider the following boundary value
problem

2
u” + t2u? +%(u’)2 =0, O<t<l

4(0)=u'(0)=0, u’(l)=iZ::,Biu’(77i).

(E2)

3
where, 0<7; <1, 0<) B <1 and

f (t,u,v):tz(u2 +%v2j =a(t) f,(u,v)

Then a(t)=t*<C((0,1).R,),
f,(uv)eC(R,xR,R,). Weput, u=rcose and
v=rsing , when (Ju[+|v)—>0=r—>0 and when
(|u]+[v]) > e =1 > 0.

Then

fi(uv)
(slb)oo ful -+

fy (u,v)

7 i) Jul+

By theorem 13 1) the BVP (E2) has at least one posi-
tive solution.
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