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ABSTRACT

In this paper, a Chebyshev polynomial approximation for the solution of second-order partial differential equations with
two variables and variable coefficients is given. Also, Chebyshev matrix is introduced. This method is based on taking
the truncated Chebyshev expansions of the functions in the partial differential equations. Hence, the result matrix equa-
tion can be solved and approximate value of the unknown Chebyshev coefficients can be found.
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1. Introduction

Let the second-order partial differential equation be in
the form [1,2]

A(X, Y) Uy + B(x,y)uxy +C(x,y)uyy +D(X,y)u,
+ E(x,y)uy +F(xy)u=G(x,y)

We assume that it has a Chebyshev series solution in
the form

1 1
u(xy) :Zao,oTo,o(X’ y)+5a0,1T0’1 (X y)+

1
+Eal,oT1,o (% y)+a, T, (Xy)+-
(1.2)

1
+§az,oTz,o (X, y)+a,, T, (X, y)+-

= iiar,sTﬁs (X’ y)

r=0s=0

where z denotes a sum whose first term is halved. The
unknown coefficients a,; r=0,1,2,---, $=0,1,2,--
can be determined by using so called Chebyshev matrix

method.

2. Calculation of Chebyshev Coefficients

Let we have a function u(x,y), (x,y)e[-11] and its
nth derivatives with respect to x can be expanded in
Chebyshev series

u(xy)=3

r=0s

M

aI',STI',S (X’ y)

Il
o

and
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Ut (% y) =2 2 A T (% y)
r=0s=0
Respectively, where a.” and a,, are Chebyshev
coefficients; clearly, az” =a,; and
u®?(x,y)=u(x,y). Then the recurrence relation be-
tween the coefficients of u™”(x,y) and u™"”(x,y)
is obtained as

(n,0) — a(n+l,0) _a(n+l,0) r >1 5> 0 (2 1)
21, 592 .

r,s r-1,s r+ls 2

2ra
From Equation (2.1), we can deduce the relations
n,0) _ A(n+1,0) (n+1,0)
2(r+l)ar+1,s - ar,s _ar+2,s ’

2(r + 3)a(n,0) — a(n+1,0) _ a(n+1‘0)

T+3,S r+2,5 r+4,s
(n,0) _ A(n+L,0) (n+1,0)
2(r+5)ar+5,s - a‘r+4,s _ar+6,s ’

And adding these side by side, we get

ant = 2[(r +1)all? +(r+3)ally) +(r+5)a’y) +- ]

r+1,s r+3,8 r+5.,8

or

alnt = 2i(r+2i +1)aly) (2.2)
i=0

T+2i+1,s

Specially, we can express the coefficients a'y” and
(2,0) '
a

rs » interms of the a ; by means of Equation (2.2),
in the forms

aﬁf;o) :2i(r+2i +1)a(°‘°) (2.3)

T+2i+1,s
i=0
and

8" =23 (r+2i+1)a?)

r+2i+l,s
i=0
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or

a0 =43 i(r+i)(r +2i)
i=0

Now, let us take r=0,1,2,---,N and assume
al%”=a" =-..=0 for r>N; then the system (2.2)

a0

T+2i,5

can be transformed into the matrix form,

A" =2MA™D, n=0,1,2,-,
where M is given in [3].
1 1 1 ]
(n,0) (n,0) (n,0)
Zao,o an,l an‘N
1
(n,0) (n,0) (n,0)
A0 — Eal,o 8y a N
1
(n,0) (n,0) (n,0)
EaN,O aN,l aN,N

For n=0,1,---, it follows from Equation (2.5) that
ALO — ZMA(O’O),
A(Z,O) — ZMA(I,O) — 22 M 2A(0,0)’

(3,0) _ (2,0) _»3 3 7 (0,0)
ACY = 2MARY =2 WA, 2.6)

A(n,O) — 2MA(H—1,O) — 2n M nA(O,O)

where clearly A®? = A.

Let us assume, in the range [—1,1], that the nth de-
rivatives of u(X,y) with respect to y can be expanded
in Chebyshev series

WO (x,y) = 38T, (x,y)
s=0

Respectively, where a'>" and a,, are Chebyshev
coefficients; clearly a%” =a,; and
u®?(x,y)=u(x,y). Then the recurrence relation be-
tween the coefficients of u®"(x,y) and u®""(x,y)
is obtained as

zsa:?s,n) — a(O,n+1) _ a(O,n+1)

r,5-1 r,s+l 2

r>0,sx>1 2.7)

From Equation (2.7), we can deduce the relations

2(5 + l)a(O,n) — aif)§,n+1) _ a(O,r1+1)

T,5+1 r,s+2

0,n) _ A(0,n+1) (0,n+1)
2 (5 + 3) ar,s+3 - ar,s+2 - ar,s+4 >

0,n) __ A(0,n+1) (0,n+1)
2(S + 5) a‘r,s+5 - ar,s+4 - ar,s+6 >

and adding these side by side, we get

alm = 2[(5 +1)al% +(s+3)al%h +(s+5)al%h +- J

T,5+1 T,S+5
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or

aly™ = Zi(s+2i +1)al% (2.8)
i=0

T,5+2i+1

Specially, we can express the coefficients a';” and
a's? in terms of the a,, by means of Equation (2.8),
in the forms

r,s?

a®h =23 (s+2i+1)a®%,, 2.9)
=
and
al% = Zi(s +2i+1)al%).,
=
or
a® =43 i(s+i)(s+2i)a%,  (2.10)

i=0

Now, let us take $=0,1,---,N and assume
a%”=al% =-..=0 for s>N; then the system (2.8)
can be transformed into the matrix form,

A(O,n+1) =2MA(0,n)’ n=0,1,2,-, (2'11)
where
1 1 1 ]
(0.n) 0.n) (0.n)
4 390 5 Lo 5 N0
1
(0,n) (0,n) (0,n)
o,n) _ _ao,l a, aN,]
AV =12
1 (0,n) (0,n) (0,n)
an,N al,N aN,N

For n=0,1,---, it follows from Equation (2.11) that
A(Oyl) =2 MA(O’O) ,
A(O,Z) — ZMA((O,I) — 22 M ZAI(O,O)

0,3) _ 0,2) _ A3 3 A(0,0)
AT =2MATT =2MIATE, 2.12)

A(O,n) _ 2MA(0,H—]) — 2n M HA(0,0)’

where clearly A" = A Z[A(O‘O) T. Furthermore, A™"
can be expressed as follows:
ACY =2"M"A

A(”v”)ZZ”M”A(ann)‘ (2.13)

3. Fundamental Relations

Now consider Equation (1.1), where A, B, C, D, E, F and
G are functions of X and Y, or constant, defined in the
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range [—1,1]. Our purpose is to investigate the truncated
Chebyshev series solution of Equation (1.1), under the
given conditions, in the series form

u(xy)=

or in the matrix form

u(x,y)=TAT, 3.

M=z
M=z

aI',S-l-l',S (X’ y)

r

Il
o

S

Il
o

where a ¢, r=0,1,2,---,N, s=0,1,2,---,N are the
Chebyshev coefficients to be determined T, (xX,y) are
the bivariate Chebyshev polynomials defined in [4], and
matrices T,, T, and A are defined by

T, (x)

T= [To (x)

T,=[T(y) T(y) - T(y]
1, 1, LU
4a0,0 2 1,0 2 N,0
1
5301 a1,1 aN 1
_zaO,N 1,N N,N |

To obtain the solution of Equation (1.1) in the form of
Equation (3.1), first we must reduce Equation (1.1) to a
differential Equation whose coefficients are polynomials
[5]. For this purpose, we assume that the functions

A(xY), B(x,y), C(xYy), D(xy), E(xy), F(xy),
and G (X, y) can be expressed in the form

N N
A(XY)=2 2 2, X"Y",

n=0 m=0

N N
B(x.y)=>.> b .x"y",

n=0 m=0

N N
C(XYy)=2D ConX"y",

n=0 m=0

N N
D(xy)=2.> d, Xx"y", (3.2)

n=0 m=0

N N
E(xy)=2.> enX"y",

n=0 m=0

N N
FO,y)=22 fiax"y",

n=0 m=0

N N
G(XY)=22 GpuX"y"

n=0 m=0

Which are Taylor polynomials at (x,y)=(0,0). By
using the expressions (3.2) in Equation (1.1), we get

Copyright © 2012 SciRes.

N N
n,,m n,,m n,,m
ZZI:an,mx y uxx_'_bn,mX y uxy+cn,mx y Uyy

+d, X"y u, +e,  X"y"u, + fn,mx”ymuJ (3.3)

N N

=229

n=0 m=0

The Chebyshev expansions of terms
X"y"u®(p=0,1,2n=0,1--,N;m=0,1,---,N)

in Equation (3.3) are obtained by means of the formulae
532 e (o)
y a‘r n+2il,s ' r.s y
N m m m
Zzz (JJa(pSO:THZJ rs(x y)

B T
P i )| j firnsilsmeites U6 Y): (3.4)
Xn ymu(O,t) (X, y)
N N n m Chem n m o)
ZZOZOZOZOZ i J a\r —n+2il,|s-m+2 j| rs(x y)
r=0s=0i=0 j=
X"y"u? (x, y)

D)) »I W L LN R}

r=0s=0 i=0 j=0 J

4. Matrix Forms of Terms in the Equation

The matrix representation of Equation (3.4) can be given
by

XPy'u® =T M pA(MV)t T, 4.1
Xpyvu(l,o) =T M p2|\/|A(|\/|V)l Ty 4.2)
X"y'u®? =T M A(M,2M)'T, (4.3)
xPy'utO =T M 2°M 2A(MV)t T, (4.4)
XPy'u®? =T,M,A(M,22M? ) T, (4.5)
XPy'u™ =T M 2MA(M, 2M )‘Ty (4.6)
N N
ZZgn‘mX”ym :G(x’y):TXSTy 4.7)
n=0 m=0

where S:D‘GDz[SiJ and G_:[gi,j:'7

i,j=0,1,2,-,N .

And for p=0,1,2,+,N; v=0,1.2,-,N, M,=[m]

(I=0,1,---,N+1 and j=0,1,---,N+1) is a matrix of
size (N+1)x(N+1). The elements of M, are given in
[6].
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Substituting the expressions (4.1)-(4.7) into Equation
(3.3), and simplifying the result, we have the matrix
equation

N N
22[4an,mMnM2A(Mm)l +4b,,M,MA(M,M?)

n=0 m=0

+4c, ,M,A(M,M?) ++ 2d,,M,MA(M, ) (4.8)

26,,M,A(M,M?) + fn,mMnA(Mm)t}:s

where W :[Wm’n],Y(r :[ym’n], o=12,,6

Matrix Equation (4.9) can be reduce to new matrix
equation by making use of

X (N+1)+G(N+1)+k =
j=03]‘329""N9 €=0,172’..‘3

\Ni,jykyf s kzoalaza"'aNa
N, i=0,1,2,---,N

Then the new matrix Equation (4.7) becomes

> X,c=S (4.10)
Which corresponds to a system (N +1)x(N+1) al- o=l
gebraic equations for the unknown Chebyshev coeffi- where
cients a,,;n,m=0,L---,N . Briefly, we can assume that
Equation (4.8) is given in the form :[Xz,q] z.q :0’1’2""’(N +1)(N +1)’
. 1,2,--,6
W_AY_=S 4.
; e (4.9) and
C:[aoo ay, Y a a, ay Ay, Ay Ay ]t»
S_z[soo So1 o Son Sio Siy Sin Sno Swi SN ]t
5. Matrix Forms of Conditions
Let the conditions of Equation (1.1) be given by
u(x,—=1)+u(x,0)+u(x,1)+u® (x,=1)+u"(x,0)+u*(x,1)= f (x) (5.1)
u(=Ly)+u(0,y)+u(Ly)+u" (-1 y)+u™(0,y)+u""(Ly)=g(x) (5.2)
u(-1-1)+u(-1,0)+u(-11)+u(0,-1)+u(0,0)+u(0,1)+u(l,—1)+u(1,0)+u(L,1)= 12 (5.3)

where f is a function of X, g is a function of y and A4 is
constant.

Then, there are the following matrix forms at X =—1, 0,
1 and similar way fory=-1,0, 1;

T,(-D)=[1 -1 1 -1 -],
T,(0)=[t 0 -1 0 1 -],
T()=[1 111 -]

Derivative of Ty at x =—1, 0, 1 and similar way for y =
-1,0, 1;

T(”(—l):[o 1 22 3 42 3 }
T (0)=[0 3050 -7 -],
TO(M=[0 1P 2 3 4 5 ]

We assume that the functions f(x) and g(y) can
be expanded as

f (x):;zo 1T (%)

and

Copyright © 2012 SciRes.

or in the matrix form

f(x)=T,f
and
g(y)=4dT,
where
t
f :B £, f fN} :

1 t
g= |:Ego g1 gN:|

In addition, atx=-1,0, 1 and y =—1, 0, 1, we obtain
the matrix forms

u(x,-1)=T,-A-T, (-1),
u(x,0)=T,-A-T,(0),
u(x1)=T,-A-T,(1),

AM
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U0 (x,~1) =T, - AT (1),
U (x,0) =T, - AT (0),
U (x, )=T~ATMOL
u(L,-1)=T,(1)- AT, (-1),
u(-Ly)=T,(- )AT
u(0,y)=T,(0)-A
u(Ly)=T,(1)-A

U (<1,y)= FWI)AR,
u'?(0,y)=T"(0)-A-T,,
u“’o)(l,y):Tx“)(l)-A-Ty,
U(1,0)=T£”(1)-A-Ty(0),

(-
L) =T, (- U A y(1%
(0)-A

Substituting theses matrices forms into conditions
(5.1)-(5.3), and then simplifying, we get the fundamental
matrix equations of conditions as follows:

AU = f,VA=gand QAZ = A (5.4)

V=T/(-1)+T,(0)+T (1)+T}
Q=T (=1)+T,(0)+T,(1),
Z=T"(-1)+T"(0)+T"(1)

6. Former Method for the Solution
We can assume that Equation (6.1) is in the form
X-C=S (6.1)
6
where X =) X_

o=l

Then the augmented matrix of Equation (6.1) becomes

[)?;S_} or

X0.0 Xo.1 Xo.N(N+2)> So.0
X0 X X N(N+2)> So1 62)
XN(N+2),0 XN(N+2),1 XN(N+2),N(N+2); SN,N

If we take the new matrix forms of the conditions as

Copyright © 2012 SciRes.

UC=f, VC=g"' and QC =1, respectively, the aug-
mented matrlces of them become [U f] [V g J and
[Q /ﬂ or more clearly

uo,o Uy, Upnins2ys fo
2
Uo Uy Uninszs (6.3)
Uno Uy Un N(N+2)s fy ]
- : 1 7
Vo,o VO,l VO,N(N+2)7 Ego
Vio Vi Vi N(N+2)> 9, (6.4)
Vo Vau YnNn+2)s On
and
|:qo,0 o, Qo,n(N+2)> /1] (6.5)

Consequently, by replacing Equations (6.3)-(6.5) by
the last 2N + 1 rows of Equation (6.2), we have the new
augment matrix

Xo,0 Xo.1 Xo.N(N+2)> So.0
Xio X1 XN (N+2)> So1
XNZ—I,O N2-11 XNL],N(NQ); N-2,N-1
P — 1
Uo.o Uo,i Uo,n(N+2)5 By fo
Uy o Uy Un N(N+2)s fy
v — 1
VO,O VO,l uO,N(N+2); Ego
Voo Vi VNLN(N+2) On
L q0,0 qO,l qN,N(N+2); ﬂ«

From the solution of this system we can find matrix C
or matrix A.

7. Applications

The Chebyshev matrix method applied in this study is
useful in finding approximate solutions of second-order
linear partial differential equations in both homogeneous
and non-homogeneous cases, in terms of Chebyshev
polynomials. We illustrate it by the following examples.
Example 1. We now consider the problem [7]:

utt :uxx +6;
u(x,0)=x% (1)
u, (x,0) =4x

AM
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And seek the solution in the form

2 2
u(xt)=>>a.T . (xt),

=0 520 2)
(X,t) € [—1,1]
Then we obtain the matrix equation
A(2M?) ~2’M>A=6R, 3)
where
1 00
R={0 0 0
000
And the condition matrices are
A-T, (o)—[l 0 l}t “)
‘ 2 2]’
AT (0)=[0 4 o], Q)

By replacing the new matrix form of Equations (4) and
(5) in the new matrix form of Equation (3), we have the
matrix equation under given conditions as follows:

o
4 0,0 _6_
00 4 00 0 -4 0 0]ly ||
000000 0 —4 0|2 |1,
000000 0 0 —4|ta,| |
101000 0 0 0 ? 5
00 0 10 -1 0 0 S0 =0
000000 1 0 -1fa, | |1
01 0000 0 0 a, | |2
00 0 01 0 0 0 1 0
000000 0 1 o0f2%] |4
) _ aZ,l —0—
a2,2

Hence, we obtain the augmented matrix

00 4 00 0 -4 0 0; 6]
00 0000 0 —4 0; 0
00 0000 0 0 —4 0
10—1000000,%
00 0 10-1 0 0 0, 0
00000010—1,%
01 0000 0 0 0 0
00 0 10 0 0; 4
0 0 0 00 0 ;0]

Copyright © 2012 SciRes.

The solution of this system is

>
Il
|~ O N|wn
S
o

and thereby the solution of the problem (1) becomes
a(x,8) = 2T, (68) + 2Ty (x1)
+4T, (x.1) +%TZ’O (x.1)

u(x,t):(x+2t)2

This is exact solution [7].
Example 2
Let us now study the equation

2 2 _
XUy, —yu, =0
with conditions which are

u(0,y)=1
u(x,0)=1,

u(Ly)=e’,
u(x,1)=e’,
The first four terms of the series expansions:
2 3
U(O,y):], U(l,y):ey =1+ y+y7+y?’
X2 3
u(x,0)=1, u(x,1)=e*=1+x+—+—,
2 6
Chebyshev matrix forms of the conditions,

[ 0 -1 01 0JA=[1 0 0 0 0 0]

[111111]A=§21i00

4 8 4 24

5]

S 4
17 [1 1 |9
0| [0 1l |3
ARIN U R
ol |o 1] | 4
0 1 | L

o [o] [1] [*4
-4 bt 0
_0_

Matrix form of the equation is

AM
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t

M,4M>A-A(M,4M?) =0

00 L0 7 0
2
0002 0 2
2 2
1
00 =010 0|A
2
00020 2
2 2
0000 3 0
00 0 0 5
0 0 0 0 0 0]
00 0 0 00
Lo Lo oo
2 2
-A =0
02 0 2 00
2 2
7 0 10 0 3 0
02 o0 ¥ g

From the solution of this matrix equation under the
given conditions, we get the Chebyshev coefficients ma-
trix as

2 0 1 0 00
8 8
0 33 0 € 0 0
32 32
1 1
A=|- 0 - 00
8 8
0 L 0 L 00
32 96
0 0 0 0 00O
00 0 0 0 0]
The solution of problem is obtained as
2 3
X X
u(x,y)=1+ xy+—( ,2y) +—( ’6y) ,

Which is the first four terms of e® .

8. Conclusions

Analytic solutions of the second order linear partial dif-
ferential equations with variable coefficients are usually

Copyright © 2012 SciRes.

difficult. In many cases, it is required to approximate
solutions. For this purpose, the Chebyshev matrix me-
thod can be proposed.

In this study, the usefulness of the Chebyshev matrix
method presented for the approximate solution of the
second order linear partial differential equations is dis-
cussed. Also, the method can be applied to both the non-
homogeneous and homogeneous cases.

A considerable advantage of the method is that the so-
Iution is expressed as a truncated Chebyshev series and
thereby a Taylor polynomial. Furthermore, after calcula-
tion of the series coefficients, the solution u(X,y) of
the equations can be easily evaluated for arbitrary values
of (X,y) atlow computation effort.

An interesting feature of the Chebyshev matrix method
is that the method can be used in finding exact solutions
in much cases. The method can be also extending to the
solution of the higher order linear partial differential
equations.
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