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Abstract. The integrated GPS/INS system has become an 
indispensable tool for providing precise and continuous 
position, velocity, and attitude information for many 
positioning and navigation applications. Therefore, it is 
important to gain insights into the characteristics of the 
integrated GPS/INS system performance, particularly 
their relationships with key operational factors, such as 
the trajectory and dynamics. Such knowledge can be used 
to improve the quality of positioning and navigation 
results from integrated GPS/INS systems. In order to 
analyse the influence of vehicle dynamics and trajectory, 
simulation and field tests have been carried out in this 
research. The test results show that the vehicle dynamic 
changes significantly affect the Kalman filter 
initialisation time and estimation performance depending 
on the system operational environments. 
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1 Introduction 

Global Positioning System (GPS) and Inertial Navigation 
System (INS) have complementary operational 
characteristics (e.g, Savage, 2000).  It is well known that 
INS can provide a complete set of navigation parameters 
with a short-term stability due to the error characteristics 
of its sensor components. Thus, the accuracy of a stand-
alone INS deteriorates very rapidly with time, which can 
be compensated by GPS. Integrating GPS with INS can 
arguably leverage the best of each component system. 
The advantages of GPS/INS integration, relative to either 
GPS or INS only, are reported to be a high data rate of 
complete navigation solutions (e.g., position, velocity, 
and attitude) with a consistent long-term accuracy, 
improved availability, smoother trajectories, and greater 
integrity (Farrell and Barth, 1998; Greenspan, 1996).  

Hence, these systems have been used for a wide range of 
applications, for instance aerial photogrammetry and 
gravimetry, mobile mapping, vehicle navigation, 
guidance and control (see e.g., Bevely et al., 2000; Da et 
al., 1997; Grejner-Brzezinska et al., 1998b; Kwon and 
Jekeli, 2001; Wang et al., 2003).  

Integrated GPS/INS can be implemented using a Kalman 
filter in different modes, such as loosely, tightly and 
ultra-tightly coupled. In these integration modes, the INS 
sensor error states, together with all navigation error 
states and other unknown parameters of interest, are 
estimated using a dynamic model and GPS measurements 
such as Doppler, pseudo-ranges, and/or carrier phases. It 
has been reported from the literature that the vehicle 
dynamic and trajectory changes can improve the Kalman 
filter estimation performance (e.g., Bar-Itzhack  & Porzt, 
1980; Porzt & Bar-Itzhack, 1981; Hong et al., 2002; 
Wang et al., 2003).  The improvement can be described 
by the fact that the error model becomes time-varying 
nature that enhances the filter observability. Hence, it is 
necessary to get insights into the characteristics of the 
integrated GPS/INS positioning and navigation 
performance, particularly their relationships with the 
vehicle trajectory and dynamic changes. 

This paper will study how the vehicle dynamics and 
trajectory changes influence on the performance of an 
integrated GPS/INS system through both simulation and 
real data analyses.  The optimisation of trajectories and 
dynamics during system initialisation and operational 
navigation mode, and in the event of GPS signal 
blockages, will be discussed. 

2 Error Model and Covariance Analysis 

2.1 Strapdown INS (SDINS) error model 

In order to study the behaviour of an inertial navigation 
system, an appropriate presentation error model is 
necessary. The description of the INS error propagation 
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using a linearised error model has been widely used to 
derive the characteristics of INS error behaviour. A 
number of the different models can be found in the 
literature. Among them, the Bar-Itzhack and Berman’s 
mode (Bar-Itzhack and Berman, 1988) is adopted in this 
research. As the model is designed for Gimballed INS, 
modification is made through including the coordinate 
transformation matrix between body and navigation 
frames to drive the Strapdown INS (SDINS) model. Note 
that a local level coordinate system (NED: North, East, 
Down) is used as a navigation frame. Hence, the SDINS 
error model can be described as follows: 
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where, I   and 0  are the third-order identity and zero 
matrices; C  is the coordinate transformation matrix 
between the body and navigation frames; ε~rw are all 

zero-mean Gaussian white noise vectors; rx , vx , ψx , 

∇x , and εx  are, respectively, the position, velocity, 
attitude, accelerometer, and gyro measurement error 
vectors. The error states included in these vectors are as 
follows: 

[ ]TDENr rrδr  x δδ ,,=     (2a) 

[ ]TDENv v,v,v  x δδδ=                  (2b) 

[ ]TDEN ,, x δψδψδψψ =    (2c) 

[ ]  ,,  x T
zyx ∇∇∇=∇ δδδ                 (2d) 

[ ]Tzyx ,,  x δεδεδεε =     (2e) 

 

where ∇   is accelerometer bias and ε  is gyro drift. Both 
two accelerometer bias and gyro drift are modeled as first 
order Gaussian-Markov processes here. 

The details of A  matrix are given below:  
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[ ]ξ-   diag44 ,-ξ,-ξF =     (6c) 

[ ]βββ −−−=    diag55 ,,F                 (6d) 

in which ω  is the Earth rate vector; L  and 
λ respectively denotes latitude and longitude; xf ,  yf , 

and zf  are the measurements sensed by an 

accelerometer; g  is the gravity value; nR  represents the 
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radius of the parallel curvature; ξ  and β are 
1/(correlation time) of accelerometer bias and gyro drift 
processes, respectively. 

2.2 Covariance analysis 

Covariance analysis is a common tool to provide 
numerical time histories depicting the accuracy of a given 
configuration in terms of the covariance of its associated 
error state vector (Savage, 2000). Hence, the analysis can 
be used to evaluate the performance of the suboptimal 
filter that operates in a real world environment, and can 
be utilized as a basic design tool during the synthesis and 
test of the suboptimal configuration, which is typically 
based on a simplified error state dynamic/measurement 
model. 

Formulation of linear covariance equation with respect to 
a system for which feedback the optimally estimated state 
vector for control reset is (Savage, 2000; Maybeck, 
1979): 

( ) { } { }
TT

ff

T
kf

e
kkf

c
k

DRKDK            

HDKIPHDKIP

+

−−=+
        (7) 

where, c  denotes the application of control resets; e  is 
the application of estimation resets; D  denotes the 
feedback matrix 

In this study, a suboptimal filter consisting of 17-sates is 
designed to estimate the INS navigation and sensor errors 
and feedback them to the INS input (control reset) with 
respect to a designed real world system (true) model 
comprising 71 error states. Note that all the analyses will 
be conducted using a GPS/INS integration system based 
on GPS pseudo-range observations and a tactical-grade 
SDINS (5 deg/h, 500µg). 

3 Simulation Study 

In order to investigate the influence of vehicle dynamics 
and trajectory on the GPS/INS integration system 
performance, a serious of covariance simulation analyses 
are carried out. 

3.1 Effect of vehicle dynamics on filter estimation 

The observability of a linear system represents the 
possibility of determining the state variables using the 
information on the input and the output of a system. One 
of the reasons for considering the observability of a 
dynamic system is the need to determine the efficiency of 
a Kalman filter that estimates the states of that system.  

A covariance simulation was carried out to investigate 
comprehensive GPS/SDINS system observability (e.g, 
performance) due to the fact that the error covariance of 
Kalman filter is one of the indices to check the degree of 
observability (Ham and Brown, 1983). A trajectory used 
in the simulation comprised four segments: a constant 
velocity manoeuvring for 600 seconds, an accelerating 
with 0.167 m/sec2 for 100 seconds, a 90 degree turning 
with angular velocity of 1.8 deg/sec, and a constant 
velocity moving for 100 seconds.  

Figure 1 shows the covariance simulation results for 
twelve states in the integration filter, except for three 
position states, which are directly observable from the 
measurements. The figure indicates that heading error, 
horizontal accelerometer bias and vertical gyro drift have 
poor estimation performance (e.g., poor observability) 
during the first constant velocity manoeuvring, when 
compared with other states. However, it can also be seen 
from the figure that the estimation performance of these 
four states is improved, when the vehicle dynamics are 
changed (e.g., acceleration and 90 angle turn).  

 
Fig. 1 Covariance simulation results for four dynamic segments 

In order to study how different vehicle trajectories and 
dynamics affect filter estimation performance, further 
simulations analyses were conducted with respect to the 
states that have poor observability. In these analyses, four 
different trajectories (defined as ‘Circle’, ‘Line’, 
‘Rectangle’, ‘S-turn’) were considered. Their plane 
trajectories and velocity changes are depicted in Fig. 2. 
Note that the first two segments (e.g., stationary mode for 
300 seconds and accelerating with 0.45 m/sec2 for 40 
seconds) are commonly considered in all the trajectory 
generations, then the vehicle moves according to the 
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characteristics of each trajectory. Hence, all the 
simulation analyses were carried out for 3600 seconds. 
When taking a look at Figure 2, the characteristics of 
each trajectory can be described as: 

- Circle: the heading angle is continuously changed 
along clock-wise direction; 

-  Line: moving with the constant heading and North 
velocity (e.g., 0 degree and 18 m/sec, respectively); 

- Rectangle: a 90 degree turn is made every 50 
seconds;  

- S-turn: the vehicle turns are continuously made along 
clock-wise and counter clock-wise directions. 
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Fig. 2 Four different trajectories for the simulations 

Figs. 3 to 5 show the noise variances of some crucial and 
less observable states (i.e., heading error and horizontal 
accelerometer biases). In these figures, the top graphs 
show the results from epoch 1 to epoch 800, whereas the 
bottom graphs illustrate those from epoch 801 to epoch 
360. It is possible to draw the following conclusions from 
these results: (a) the filter performance can be improved 
by steady-turning (‘Circle’, ‘Rectangle’, ‘S-turn’ cases) 
when compared with the ‘Line’ (constant-velocity), (b) 
the quickest filter initialisation of the three states is 
achieved with the ‘S-turn’; c) the performance of heading 
error estimation of the ‘Circle’, ‘Rectangle’ and ‘S-turn’ 
becomes similar; and d) the ‘Circle’ trajectory provides 
the best estimation performance in the horizontal 
accelerometer biases.  
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Fig. 3 Covariance simulation results for the heading error state  
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Fig. 4 Covariance simulation results for the horizontal accelerometer 
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Fig. 5 Covariance simulation results for the horizontal accelerometer 
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3.2 Navigation error behavior during a GPS blockage 

Further simulation analyses were carried out to study the 
effect of vehicle dynamics and trajectory on navigation 
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error estimation in the Kaman filter during GPS outages. 
The scenarios for the two tests are as follows (Fig. 6): 

- The vehicle remained in stationary mode for 600 
seconds before moving in circles within the same 
trajectory for 680 seconds (‘Circle’); 

- The vehicle stayed in static mode for 600 seconds 
before moving in circles within the same trajectory 
for 400 seconds, then in a straight line at a constant 
speed for 280 seconds (‘Line’). 

The GPS blockage was simulated for the last 280 
seconds. It is also important to note that all the navigation 
and sensor error states in the filter reach the steady-state 
condition before GPS signals are blocked. Fig. 7 shows 
the covariance simulation results, which indicate error 
behaviours of navigation parameters (e.g., position, 
velocity, and attitude). Note that Circular Error 
Probability (CEFP) and Probable Error (PE) in the figure 
represent horizontal and vertical positioning errors, 
respectively. These results indicate that all the navigation 
errors rapidly deteriorate according to the length of time 
that GPS is unavailable. Among these results, the most 
interesting is the position and heading error behaviour, 
since the difference in the error increase between the two 
trajectories are relatively large (e.g., around 15 meters in 
position, and 10 arc-minutes in heading). Comparing 
these results, those obtained from the ‘Line’ are superior 
to the ‘Circle’. This is opposite to the result obtained in 
the preceding section. Therefore, it can be noted that the 
vehicle’s lateral acceleration changes enhance the 
integration filter’s performance when the filter can be 
continuously updated by external measurements, whereas 
it degrades the integrated GPS/INS navigation 
performance during the GPS blockage. 
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Fig. 6 Trajectories used in the GPS blockage simulation 

 
Fig. 7 Error behaviours of navigation parameters during the GPS 

blockage 

4 Real Data Analysis 

4.1 Data acquisition and processing 

To analyse the influence of vehicle dynamics and 
trajectory on the integrated GPS/INS system performance, 
kinematic experiments were carried out in Clovelly Bay 
Car park, Sydney, on the 24th and 25th of March 2003. 
The INS used in this research was the Boeing C-MIGITS 
II system, which is considered to be a tactical-level 
accuracy unit (5 deg/h, 500µg), two Lieca 500 GPS 
receivers were used at both the base and rover (vehicle) 
stations. During the data acquisition, raw INS and GPS 
measurements were recorded at 100Hz and 1Hz, 
respectively, and there were 6 visible satellites (above the 
cut-off angle of 15°).  

The C-MIGITS functions as an integrated GPS 
(MicroTracker single board)/IMU navigation system, 
calculating a Kalman-filtered navigation solution in real-
time. In this study, the raw INS and GPS data from the 
Leica 500 receiver were processed using an in-house 
software package - the modified version of the AIMSTM 
navigation processing software (Grejner-Brzezinska et al, 
1998a & b; Lee et al, 2002).  
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4.2 Vehicle Dynamics Influences in the Filter 
estimation  

In order to study the influence of vehicle dynamics and 
trajectory on the estimation of the error states that have 
poor observability (e.g., horizontal accelerometer biases 
and heading error), four experiments were carried out 
with controlled-trajectories. Fig. 8 depicts the vehicle 
trajectories and dynamics during manoeuvring. For 
convenience, each of the trajectories is named as ‘Circle’, 
‘Line’, ‘Rectangle’, and ‘S-turn’. Note that the vertical 
dynamics (Vd) are very low compared with those of the 
horizontal components (Vn and Ve). 

 
Figure 8 Vechicle trajectories and dynamics during the tests 

Fig. 9 and 10 show the Root-Mean-Square (RMS) errors 
in horizontal accelerometer biases and heading error 
estimation, indicating the different vehicle dynamic 
contributions to the Kalman filter estimation procedure. 
The values were obtained from the diagonal components 
of the covariance matrix. It can be seen from these results 
that the filter estimation precision is improved by steady-
turn manoeuvres (i.e., ‘Circle’, ‘Rectangle’, and ‘S-turn’), 
when compared with the constant-velocity manoeuvre 
(e.g., ‘Line’). This improvement can also be verified from 
the ‘Rectangle’ results showing that the filter precision is 
considerably increased when the vehicle makes its first 
right angle turn. In addition, the results in Figs. 9 and 10 
show that the ‘S-turn’ provides the best filter estimation 
performance among the four trajectories considered in 
these tests. This is due to reversing of the vehicle’s lateral 
acceleration that occurs in the ‘S-turn’ manoeuvre (Porzt 
and Bar-Itzhack, 1981). Note that the precision difference 
between the S-TURN and LINE cases is about 200 gµ  in 

horizontal acceleration and 2.5 arc-minutes in heading 
error estimation at the last epoch (see Figures 9 and 10). 

 
Fig. 9 RMS errors for horizontal accelerometer bias and heading error 

estimation 

 
Fig. 10 Magnified results for heading RMS error in Fig. 9 

4.3 Navigation performance during GPS blockage 

Two tests were conducted to investigate the effect of 
vehicle dynamics on navigation error estimation in the 
Kalman filter during a GPS outage.  The scenarios for the 
two tests are as follows (Fig. 11): 

- The vehicle remained in static mode for a duration of 
600 seconds (initialisation) before moving in circles 
within the same trajectory for 420 seconds; 

- The vehicle stayed in static mode for a duration of 
600 seconds (initialisation) before moving in circles 
within the same trajectory for 340 seconds, then in a 
straight line at a constant speed for 80 seconds.  
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The GPS blockage was simulated for the last 80 seconds. 
Fig. 12 depicts test results showing error growth of 
navigation parameters during the GPS blockage. There is 
no abrupt error growth for the initial few tens of seconds, 
immediately after the outage. This seems to be due to the 
navigation and sensor errors being well calibrated during 
the first cycle with precise double-differenced carrier 
phase measurements. Otherwise, the results would be 
different from those presented. As seen from Fig. 12, the 
navigation parameter errors in the case of ‘Circle’ 
increase more rapidly than those in the ‘Line’ case during 
the simulated GPS blockage (i.e. stand-alone INS). 
Hence, highlighting that the integration filter performance 
is strengthened when continuously updated by external 
GPS measurements. This may be due to the fact that the 
equilibrant relationship among error parameters quickly 
deteriorates, the level of which is dependent on the 
magnitude of the vehicle dynamic change during the GPS 
blockage. 

 

 
Fig. 11 Vehicle trajectories and velocities during the GPS blockage 

 
Fig. 12   Error growth of navigation parameter during the GPS blockage 

5.  Concluding Remarks 

The impact of the vehicle trajectories and dynamics on 
the performance of the integrated GPS/INS system has 
been investigated in this paper through both covariance 
simulation and real data analyses. When the GPS 
measurements were used for all the data processing (no 
signal blockages), the results have showed that (a) vehicle 
dynamics affect the Kalman filter initialisation time and 
estimation performance, especially for the heading 
component; (b) the higher the dynamic changes in the 
lateral direction, the shorter the initialisation time; (c) the 
S-turn shaped trajectory provided the quickest filter 
initialisation of the four trajectories considered in these 
tests. Furthermore, throughout these simulations the 
performance of heading error estimation of the ‘Circle’, 
‘Rectangle’ and ‘S-turn’ becomes similar, and the 
‘Circle’ trajectory provides the best performance in the 
horizontal accelerometer biases. On the other hand, when 
GPS signal blockage was simulated, relatively high 
dynamic changes degrade the system performance; thus 
resulting in the rapid growth of the navigation errors.  
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