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ABSTRACT 

The nonlinear vector differential equation of the sixth order with constant delay is considered in this article. New crite-
ria for instability of the zero solution are established using the Lyapunov-Krasovskii functional approach and the dif-
ferential inequality techniques. The result of this article improves previously known results. 
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1. Introduction 

In 2008, E. Tunç and C. Tunç [1] proved a theorem on 
the instability of the zero solution of the sixth order 
nonlinear vector differential equation 
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The objective of this article is to investigate the insta-
bility of the zero solution of the sixth order nonlinear 
vector differential equation with constant delay, 0,   
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by the Lyapunov-Krasovskii functional approach under 
assumptions  A and B are constant ;nX  n n - 
symmetric matrices; E, F and G are continuous n n - 
symmetric matrix functions depending, in each case, on 
the arguments shown;   and H 
is continuous. Let 

: ,n nH  
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 denote the Jacobian matrix 
corresponding to H X  that is,  
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where  1 2, , , nx x x  and  are the com-
ponents of X and H, respectively. We also assume that 

the Jacobian matrix 
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 exists and is continuous. 
It should be noted that Equation (2) is the vector ver-

sion for systems of real nonlinear differential equations 
of the sixth order  
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We can write Equation (2) in the system form 
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which is obtained from (2) by setting ,X Y  ,X Z  
,X W  (4)X U  and .(5)X S  Throughout what fol-

lows      ,, ,X t Y t S t  are abbreviated as , , , ,X Y S  
respectively.   

Consider, in the case  the linear differential 
equation of the sixth order: 

1,n

(4)
2x a(6) (5)

1 3 4 5 6 0,x a x a x a x a x a x           (4) 

where  are real constants. 1 2 6, , ,a a a
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It is known from the qualitative properties of solutions 
of Equation (4) that the zero solution of this equation is 
unstable if and only if the associated auxiliary equation  

6 5 4 3 2
1 2 3 4 5 6 0a a a a a a                (5) 

has at the least one root with a positive real part. The 
existence of such a root depends on (though not always 
all of) the coefficients 1 2 6  in Equation (5). 
Basing on the relations between the roots and the coeffi-
cients of Equation (5) it can be said that if  
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4
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2
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a a a 0,               (6) 

then at the least one root of Equation (5) has a positive 
real part for arbitrary values of   and  or  

 and  respectively. 
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It should be noted that Equation (2) is an n-dimen-
sional generalization of Equation (4), and when we es-
tablish our assumptions, we will take into consideration 
the estimates in (6). The symbol 

,a

,X Y  corresponding 
to any pair X, Y in  stands for the usual scalar prod-  n

uct 
1

,
n

i i
i

x y

  and   ,i A   are the ei-   1,  2, , ,i   n

genvalues of the -matrix n n .A  
It is worth mentioning that using the Lyapunov func-

tions or Lyapunov-Krasovskii functionals and based on 
the Krasovskii properties [2], the instability of the solu-
tions of the sixth order nonlinear scalar differential equa-
tions and the sixth order vector differential equations 
without delay were discussed by Ezeilo [3], Tejumola [4], 
Tiryaki [5] and Tunç [6-13]. The aim of this paper is to 
improve the results of ([1,3]) form the scalar and vector 
differential equations without delay to the sixth order 
nonlinear vector differential equation with delay, Equa-
tion (2). 

2. Main Result 

First, we give an algebraic result.  
Lemma. Let D be a real symmetric -matrix. 

Then for any  
n n

nX 
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where d  and d  are the least and greatest eigenval-
ues of  respectively (Bellman 14). 


,D

Let  be given, and let 0r    ,0 , nC C r    with  

 
0

max
r s

,  .s C  
  

 

For  define  by  0H  HC C

 : .HC C    H

,

 

If  is continuous,  then, 
for each t in 

 : , nx r A 
 0, ,

0 A  
A  tx  in C is defined by  

    , 0,tx s x t s r s t 0.       

Let G be an open subset of C and consider the general 
autonomous delay differential system with finite delay  

    , 0 0,

0, 0,
t tx F x F x x t

r t

 ,



  

   



n


 

where  is continuous and maps closed and 
bounded sets into bounded sets. It follows from these 
conditions on F that each initial value problem  
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 The zero solution is said to be unstable if it is not 
stable.  
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The result to be proved is the following theorem. 
Theorem. In addition to the basic assumptions im-

posed on A, B, E, F, G and H that appear in Equation (2), 
we suppose that there are constants 1    and ,a 2 ,a 6a
  such that the following conditions hold: 
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then the zero solution of Equation (2) is unstable. 
Remark. It is worth mentioning that there is no sign 

restriction on eigenvalues of F, and it is obvious that for 
the delay case our assumptions also have a very simple 
form and their applicability can be easily verified.  
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where   is a certain positive constant and will be de-
termined later in the proof.   

It follows that 
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 of Krasovskii [2] holds. 
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The following estimates can be easily calculated: 
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Using these estimates in (3) and the assumptions of the 
theorem, we get   0H   0.    Thus, we have  
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 for all  So that the 
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3P  of Krasovskii [2] holds.  

The proof of the theorem is complete. 
Example. For the particular case  in Equation 

(2), we have 
2n 

10 1
,

1 10
A

 
  
 

 

 1 9,A     2 11,A 

  1 1sgn 9 sgn ,i 1A a a   a  

 
2 2
1 1

2 2
2 2

4
2

1
.

0

4
0 2

1

x s
E ,

x s

     
 

    





 

  1 2 2
1 1

4
. 2

1
E ,

x s
  

  
 

  2 2 2
2 2

4
. 2

1
E ,

x s
  

  
 

  2
. 3i E  6,

,

 

 
2 2
1 1

2 2
2 2

6 0
.

0 6

x s
G

x s

   
    








1 ,s

2 ,s

 

   2 2
1 1. 6G x      

   2 2
2 2. 6G x      

      2

1
1

1
. sgn . 5 0,

4i iG a E
a

      

    
 

1

2

9
,

9

x t
H X t

x t






  
   

   
 

 
9 0

,
0 9HJ X
 

   
 

  . 9i HJ  ,  

  6 9 .i Ha J     0,  1, 2 .i   

If 

5
,

9 2
   

then all the assumptions of the theorem hold. 
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